
Copyright © 2008 The Boeing Company. All rights reserved.

The Dynamic PBS Scheduler
Jim Glidewell, Boeing Information Technology

ABSTRACT: Defining multiple queues can help a site to control the mix of system
resources consumed by running jobs. Unfortunately, static limits associated with such
queues can lead to underutilization of the overall system. This paper will describe our
method for adjusting queue limits dynamically, based on the priority and resource
requirements of the current mix of jobs.

Our HPC Environment

Boeing’s Puget Sound High Performance Computing (HPC) environment consists of a
Cray X1 with 128 MSPs (Multi-Streaming Processors) and 1 terabyte of main memory,
and a number of Linux clusters.

There are seven Linux clusters currently: two 128 node clusters, three 256 node dual-
Opteron clusters, and a single 512 node cluster. All of the systems are dual-Opteron and
use Myrinet as their MPI communication fabric, and all nodes have Gigabit Ethernet
connections for TCP traffic.

The Cray X1 and Linux cluster nodes share access to a single, Panasas storage system,
which serves as primary permanent storage for the clusters, as well as shared common
space between the two types of systems.

Background and Motivation

Our site has long used multiple queues to give us more fine-grained control over the mix
of jobs running at any one time on our systems. While multiple queues are useful, they
have drawbacks when presented with a work mix that varies over time. The most typical
problems are poor utilization of system resources and excess queue wait time for user
jobs. System resources can go to waste when a restrictive queue limit holds back waiting
user jobs, even though resources are available. Such a situation also needlessly elongates
user turnaround times. The fixed queue limits that allow the system administrator to
reserve some resources for a specific queue can cause significant waste if the workload
changes and no longer matches previous characteristics.

In practice, we saw this problem often when trying to reserve a limited number of MSPs
on our Cray X1 for short-lived, minimal resource jobs. When using a fixed limit, we
often found we were either reserving too many, or not enough, nodes for this class of
jobs, resulting in wasted resources or unhappy users.

Copyright © 2008 The Boeing Company. All rights reserved.

We needed a more flexible method of apportioning the system between user groups and
job types that fixed limits on queue could provide. To do this, we created a daemon that
would serve to adjust the queue limits to reflect the current work mix on the system. This
daemon is referred to as the Dynamic PBS Scheduler, dyn_pbs.

History

We have long used dynamic scheduling techniques to supplement the basic scheduler
incorporated into the batch subsystems of our HPC systems. Our first dynamic scheduler
daemon was written in “C” and was deployed on our Cray T90 systems starting in the
mid-1990’s. We used that daemon to control the NQS (Network Queuing System) queues
and queue complexes to try to optimize the mix of job memory sizes and CPU limits,
with the goals of controlling the overall memory subscription of the system and providing
good turnaround for smaller jobs. The daemon was table-driven, with weights, targets,
and limits for queues and complexes.

We used a much more limited and less flexible scheduling daemon on our SGI Origin
3800 system. This daemon was written in Perl, and did some very basic modification to
PBS (Portable Batch System) system and queue limits based on the current workload.

The design of the Dynamic PBS Scheduler (dyn_pbs) for our Cray X1 was a return to the
table-based approach of the original dynamic scheduler, but coded in Perl for faster
deployment and ease of maintenance and enhancement. It controls the PBS Professional
batch queuing system installed on our Cray X1.

Goals

Our goals in creating the Dynamic PBS Scheduler were functionality, simplicity, and
safety. From a functional point of view, we wished to provide reasonable turnaround for
all job classes, honor user-specified priorities, minimize the amount of wasted system
resources, and meet some broad throughput target provided to us by our customers. We
wanted a system that was fairly simple, which would require a modest amount of
development effort, and would be easy to adjust and tune as requirements changed.
Finally, it was critically important that the daemon be “safe” – it should not do anything
which might compromise the throughput of the system.

To meet the goal of safety, the daemon was designed to do the minimum changes
necessary and to run as an ordinary user (with PBS administrator rights). As a fail-safe in
case of daemon failure, and automated process run hourly from the Unix cron facility is
used to check for the presence of the daemon and re-launch it if necessary.

Workload Characteristics

Our workload is less diverse than many other Cray sites, but it consists of a small set of
job types with radically different resource requirements. The bulk of our workload

Copyright © 2008 The Boeing Company. All rights reserved.

consists of jobs requiring 16 MSPs, which can run for days at a time. At the other end of
the spectrum, we have a large number of very small and short running jobs that require
immediate turnaround. Between these two extremes are a mix of job sizes and
characteristics.

The bulk of our workload is CFD (Computational Fluid Dynamics) primarily using the
Overflow code originally authored at NASA. Overflow is used both for single case
analysis, as well as for optimization runs where the Overflow application is run multiple
times to optimize a specific CFD characteristic. We also see moderate use of Tranair, a
Boeing-developed CFD code for aerodynamic analysis. Our small, fast-turnaround jobs
consist primarily of structural analysis jobs running ATLAS, a Boeing-developed
structural analysis code.

Overview of the Dynamic PBS Scheduler

The basic design of the PBS Dynamic Scheduler is to do the following: get the status of
all jobs (queued and executing) from PBS, compute new limits for the managed PBS
queues, direct PBS to update the limits, and repeat after a fixed delay.

We use a simple “qstat –f” command to extract job status detail from PBS. We have used
the PBS API (Application Programming Interface) for other tools, but given the default
cycle period of five minutes for dyn_pbs, using qstat output seemed simpler, and allowed
us to simulate various conditions by simply replacing the qstat text output with an edited
test file.

The computation of new limits is based on tables that specify a variety of weights and
limits for the server, queues, and jobs. Each job contributes its “weight” to the queue that
contains it.

These total queue weights are then used to determine what the proper number of MSPs to
allocate to each queue should be, in consultation with the limits defined in the dyn_pbs
tables. These new MSP limits are then fed to PBS using the appropriate qmgr (queue
manager) directives.

Weight and Limits

The following table lists the weights and limits that the Dynamic PBS Scheduler uses to
determine the proper queue limits:

Domain Limit or Weight
Server Server subscription factor
Server Reserved MSPs
Queue Minimum number of MSPs
Queue Default number of MSPs
Queue Maximum number of MSPs

Copyright © 2008 The Boeing Company. All rights reserved.

Queue Queue weighting factor (for queued jobs)
Queue Queue additional MSP weight per running job
Queue Queue maximum weight
Queue Queue oversubscription factor
Queue Queue oversubscription order
Job Priority-based MSP weighting factor
Job Priority-based job weight

Table 1. Weights and limits associated with PBS objects

Computing Queue Limits

Computation of the individual queue limits starts by summing the weights of all member
jobs in that queue. Jobs carry different weights based on their priority, their current state
(running or queued), the number of SSPs or MSPs they require, and the weighting factors
associated with the queue to which they belong.

Once the total weights are computed (and possibly reduced based on a queue’s maximum
weight), an initial division of the systems MSPs is made based on the weight of each
queue. If any queue exceed their maximum number of MSPs, those MSPs are returned to
the pool and reallocated based on the previous apportionment.

One issue that arises when there is a shift in the mix of queued and executing jobs is that
after the limits are computed, some queues may have a limit lower than the number of
MSPs currently being used in that queue. Ignoring this situation will result in
oversubscription of the machine, which often results in the last MSP being consumed,
leaving no resources for the small, turnaround-sensitive jobs. To avoid this situation, the
number of MSPs that would exceed the new limit is multiplied by an oversubscription
factor, then the resulting MSP pool is subtracted from all the computed limits
proportionally. This temporarily reduces the available MSPs until sufficient resources are
available to meet the targets based on the current work mix, and allows a gradual
migration to the target state.

After all computations are complete, and the new MSP limits have been established, the
current computed limit for each queue is compared to the previous value. If the value for
a specific queue has changed, a qmgr directive is issued for that queue. By only issuing
changes when needed, we avoid unnecessarily flooding the PBS and dyn_pbs logs with
repetitive messages and reduce the amount of traffic that the PBS server needs to handle.

Experience

During early production on our Cray X1, the issues of trying to balance the needs of the
users with large, long running jobs with those of the small jobs were somewhat daunting.
Complaints from members of the latter user community were fairly frequent, and active

Copyright © 2008 The Boeing Company. All rights reserved.

monitoring of PBS was a daily requirement. The need for some method of adjusting
queue limits based on current workload was apparent fairly early on.

We began implementation of the initial version of dyn_pbs roughly six months after we
took delivery of the Cray X1. Since that time, it has seen several enhancements, including
distribution of MSPs beyond fixed queue limits, improving the handling of over-
subscribed queues, and ensuring that the number of production MSPs is kept current. Our
current version of dyn_pbs has been running without further enhancements since late
2006.

During our early usage of dyn_pbs, tuning of the table entries for weights and limits was
fairly frequent, but that activity has become very infrequent. We have not needed to
change the limits tables for several months, despite some fairly large swings in workload
mixes.

A scheduler that does not require daily system administrator attention, and which
provides users sufficiently reliable turnaround such that the user support phone does not
ring of a frequent basis is a successful one. dyn_pbs has significantly increased user
satisfaction and reduced administrative workload on our Cray X1.

Measuring Success

The two primary goals of the Dynamic PBS Scheduler were maximizing system
utilization, while minimizing turnaround time for users. The measurement of system
utilization is relatively straightforward, since there are a number of ways to view resource
reservation and utilization on the Cray X1. As we intended, dyn_pbs reduced the number
of cases where resources were available but the queue limits prevented a job from
running, and overall system utilization is quite good.

The more difficult item to quantify is user turnaround experience. We have looked at
several metrics, such as average wait time, average wait-to-run ratio, both unweighted
and weighted by the number of MSPs (or nodes on our cluster systems). We also tried
bucketing jobs by size, and looking at various percentiles – none of them gave us a metric
that seemed to reflect our “gut feel” of when things were running well versus when we
knew we had a significant backlog and users were unhappy.

One issue we have seen with studying turnaround is that outliers count. Single jobs that
don’t run for days (or weeks) may not have a big effect on the averages, but can
significantly impact an engineer’s ability to get his job done. Likewise, user behavior like
submitting hundreds of jobs at one time can skew the average turnaround numbers, while
not really impacting the user (who may be well aware that the work will run over the next
month). Summary statistics did not really seem to tell us what we needed to know, so we
started to look for a way to present the data that would give us a “bird’s eye view” of job
turnaround.

Copyright © 2008 The Boeing Company. All rights reserved.

Turnaround Plots

Since summary data wasn’t telling us what we wanted to know, we decided to see if we
could somehow fit all of the job detail history for a day, week, or month onto a single
page plot. In pursuit of this goal, we began development on what came to be known as
the “red/green” charts.

These charts are based on each job being represented by a pair of rectangles, with the red
rectangle representing wait (or queued) time, and the green rectangle representing the
jobs run time. The height of the two rectangles represents that number of SSPs (or nodes)
a job is reserving. The job’s rectangle pair is placed along the horizontal axis, which
represents a time line. Vertical placement of the job is not significant, and is based on
first-fit where the rectangle will not overlap any previously placed rectangles.

By using some rather simple heuristics (including sorting jobs by submit time and
keeping track of the rightmost filled pixel on every horizontal line), we are able to
quickly create plots which display hundreds or thousands of individual jobs and their
respective wait and run times.

Figure 1. Example of “red/green” chart

The red/green charts contain a large amount of detail, and can often provide both answers
and areas for further investigation with minimal study. Periods of heavy demand and
cases where a single user injects a large number of jobs at one time are relatively easy to
identify. Jobs with long wait times, and short run times, are worthy of looking at in detail.

Copyright © 2008 The Boeing Company. All rights reserved.

Simply observing the overall ratio of green to red gives a good indication of whether the
system is lacking sufficient capacity to meet current engineering demands.

These charts have been a useful tool in analyzing job turnaround on both our Linux
clusters and on the Cray X1.

Summary and Conclusions

While using multiple batch queues allow finer administrative control over job selection
and execution, they can impact both user turnaround and overall system throughput if the
job mix varies significantly over time. By adding dynamic adjustments to our queue
limits, using the Dynamic PBS Scheduler, we have been able to better address user
turnaround requirements and maintain overall high system utilization.

About the Author

Jim Glidewell has been a member of Boeing’s HPC group for over twenty years, working
on a variety of systems from Cray, SGI, CDC, and others. He is currently serving as the
CUG User Support SIG Chair. He can be reached at The Boeing Company, P.O. Box
3707 MC 7J-04, Seattle WA 98124-2207; E-mail: james.glidewell@boeing.com

