

Engineering, Operations & Technology Information Technology

ormatic

The Dynamic PBS Scheduler

Jim Glidewell High Performance Computing Enterprise Storage and Servers May 8, 2008

BOEING is a trademark of Boeing Management Company. Copyright © 2008 Boeing. All rights reserved.

Computing Environment

- Cray X1
 - 2 Chassis, 128 MSPs, 1TB memory

- Linux Clusters
 - Over 1700 compute nodes

- Panasas Storage
 - Primary storage for cluster, secondary for Cray X1

Why use a Dynamic PBS Scheduler?

- Didn't want to write a complete scheduler from scratch
- Default PBS scheduler has a lot of functionality
 - Ordering by priority
 - User limits, queue limits, server limits
 - Starving jobs logic
 - Interaction with Cray's psched
- Multiple queues are useful...
 - Separate queues allow finer control of usage
 - Primary method for separating different "kinds" of jobs
 - Short versus long
 - Varying memory or CPU requirements
- ...but problematic
 - User turnaround can suffer when a restricted queue gets swamped
 - Fixed queue limits can lead to underutilization...
- Many tuning options are not available with a single queue
- We needed a mechanism to balance queue limits based on a changing workload

History

Engineering, Operations & Technology | Information Technology

- First dynamic scheduler at Boeing was written in "C" and targeted to controlling NQS on our Cray T90's
- A more limited dynamic scheduler was used on our SGI Origin 3800, written in Perl
- Current dynamic PBS scheduler (dyn_pbs) is written in Perl
- dyn_pbs is conceptually and functionally similar to T90 version

Triton NQS Queue Configuration

Goals

Engineering, Operations & Technology | Information Technology

Functionality

- Provide reasonable turnaround for all job classes
- Honor user priorities
- Minimize whitespace
- Meet broad throughput targets
- Simplicity
 - Modest development effort
 - Easy to adjust and tune
- Safety
 - "Safe"
 - Does the minimum necessary
 - Can be run as an ordinary user (with PBS operator privileges)
 - Won't put the system in a bad state
 - "Fail-safe"
 - Won't leave the system unusable in case of daemon failure
 - Simple auto-restart via cron

Workload Characteristics

Engineering, Operations & Technology | Information Technology

Mix of very large and very small jobs

- Large jobs are long-running and consume significant percentage of MSPs (10%-20% each)
- Smallest jobs are very short running and require a single MSP or SSP
- Small jobs very sensitive to turnaround
- Job Types:
 - Optimization jobs using Overflow
 - Usually 16 MSPs, multiple cycles
 - Individual Overflow analysis case
 - 8-16 MSPs, single cases
 - TRANAIR analysis cases
 - Single MSP, usually multiple runs
 - ATLAS cases
 - Single MSP or SSP, short running

Queue Structure and dyn_pbs Daemon

Engineering, Operations & Technology | Information Technology

Queues

weights and limits

Overview of dyn_pbs Weights and Limits

Engineering, Operations & Technology | Information Technology

Server-related weights and limits

- Server oversubscription factor
- Reserved MSPs

Queue-related weights and limits

- Minimum, default, maximum number of MSPs
- Queue weighting factor (for queued jobs)
- Queue additional MSP weight per running job
- Queue maximum weight
- Queue oversubscription factor
- Queue oversubscription order
- Job-priority-related weights
 - Priority-based MSP weighting factor
 - Priority-based job weight

Overview of dyn_pbs Process

- Determine # of MSPs
- Gather data from PBS (qstat -f)
- Compute each job's weight
- Compute initial queue MSP distribution
- Reclaim MSPs from any queues above their maximum
- Allocate reclaimed MSPs to other queues
 - Proportional to their computed limit
- Deal with oversubscribed queues
 - Subtract MSPs from all queues, based on queue oversubscription factors
- Issue "qmgr" directives to adjust queue's MSP limits
 - Only for queues who's limits have changed
- Delay, then repeat...

Dynamic Queue Limit Adjustments

Dynamic Queue Limit Adjustments - Detail

Results

Engineering, Operations & Technology | Information Technology

• "No phone calls..."

Copyright © 2008 Boeing. All rights reserved.

Understanding Turnaround

- The two primary goals of dyn_pbs were maximizing utilization and minimizing turnaround time
 - Measuring overall system utilization is easy
 - Turnaround measurements are more problematic
- Tried several metrics
 - Average wait time, average ratio of wait to run times
 - Percentiles for wait time or ratios
 - Same metrics bucketed or weighted by job size
- No single summary metric really told us what was going on
- In measuring turnaround, outliers are often important
 - But summary statistics couldn't answer why these jobs were outliers
- "Wouldn't it be nice" if we could get a birds-eye view of the details...

The "Red/Green" Turnaround Charts

Engineering, Operations & Technology | Information Technology

- Each job is represented by a two-color rectangle
 - Red indicates wait time (queued)
 - Green indicates execution
 time
- Height of rectangles represents number of SSPs (or nodes)
- Horizontal axis is a timeline
- Vertical position of jobs is not significant (first-fit)

Date & Time

Turnaround - Wait versus Run

Engineering, Operations & Technology | Information Technology

01/01 01/02 01/03 01/04 01/05 01/06 01/07 01/08 01/09 01/10 01/11 01/12 01/13 01/14 01/15 01/16 01/17 01/18 01/19 01/20 01/21 01/22 01/23 01/24 01/25 01/26 01/27 01/28 01/29 01/30 01/31 T H T F S S H T H T F S S H T H T F S S H T H T F S S H T H T F S S H T H T F S S H T H T Month = January

Copyright © 2008 Boeing. All rights reserved.

Summary and Conclusions

- Varying workloads are common on many systems
- The default PBS scheduler has a large number of useful features, but does not adjust limits dynamically
- Multiple queues with fixed limits can result in
 - Failure to meet turnaround expectations
 - Increased whitespace (idle capacity)
- Adding a modest dynamic component to a fixed queue structure can improve utilization and still meet user expectations
- The dynamic PBS scheduler has helped us better utilize our Cray X1

