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Stabilizing Lustre at Scale on the Cray XT 

Nicholas Henke, Cray Inc. 

ABSTRACT: The Cray XT uses Lustre to provide a critical system resource and has 
provided a unique set of scaling challenges for Lustre. In highlighting the unique 
attributes of the Cray XT for Lustre, this paper discusses the problems encountered when 
Lustre is pushed into new frontiers. Using illustrative failure scenarios, I present the 
mechanisms in Lustre that fail and the root cause of the issues. Solving these problems 
provides information and insight that will benefit future Cray XT system deployments, 
especially as the size and complexity of Cray XT systems increases. 
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1. Introduction 

 
With the deployment of large Cray XT systems, much 

is demanded of Lustre. Lustre provides the parallel file 
system and I/O capabilities for applications and users. The 
stability of Lustre is a key system component that has a 
direct effect on overall system stability and productivity.  
While the Lustre file system is designed to provide 
unprecedented metadata and I/O performance rates at the 
scale of the most demanding high performance computing 
platforms, [1] pushing it to the very large scale of the Cray 
XT can result in a myriad of problems.  

The Cray XT has pushed the boundaries of system 
scale and will continue to do so. Increased compute node 
counts, memory speed and high speed network bandwidth 
require that the storage subsystem keep pace while 
maintaining a balanced system configuration. These 
features of the XT require a unique view on stabilizing 
system services, demanding that we understand how 
Lustre operates at scale and the nature of its failures. Only 
armed with such knowledge can the system as a whole be 
engineered with Lustre success in mind. 

The difficulty in providing a stable Lustre offering on 
the Cray XT starts with making an order of magnitude 
jump in scale from Lustre’s traditional Linux cluster roots. 
Increases of this size require that fundamental 
assumptions are broken and fixing the architecture often 
requires complex changes. Also, differing customer 
requirements result in system configuration changes that 
impact Lustre in a sometimes subtle manner.  Lustre itself 

is a difficult product to administer and triage. Detailed 
knowledge of the internal workings coupled with the 
ability to sift through mountains of error messages are 
needed find the root cause of issues. 

It is the unique characteristics of the Cray XT that 
provide the platform for discovering the weaknesses in 
Lustre related to scale. The Cray XT is also the only 
system of its size where a Lustre client is used from every 
compute node. The scale and density of storage arrays 
needed to balance processing power are also growing, 
resulting in Lustre server configurations that also push 
through previous boundaries. This combination of system 
attributes delivers a truly impressive load on Lustre. This 
pressure exposes Lustre code paths that do not scale well 
and illuminates the vulnerable points in the Lustre 
implementation. 

This paper discusses the framework by which Lustre 
manages scale related data, the manner in which its 
reliability mechanisms are exceeded, and how the 
breakdown of either results in an unstable system. Using 
real world issues seen while bringing up a Cray XT with 
over 19,000 compute cores running Catamount and 320 
TB of storage, we will take a look at the critical Lustre 
subsystems involved and how the failures affected the 
system as a whole. We then discuss how the gained 
knowledge and understanding of Lustre provides for 
better system configuration and allows us to look for and 
find areas of improvement as new hardware, scale and 
system features progress. 
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2. Overview of Lustre 

Fundamentally, Lustre is internally organized as a 
distributed client-server network application. Requests are 
generated on clients, sent to servers and replies are 
returned. The Lustre servers are responsible for 
maintaining resource usage and connection data for each 
of these clients.  Each client is represented to the servers 
at two different levels, Lustre Networking (LNET) at the 
lower level and Lustre at the top. Each of these layers 
maintains a request timeout that provides health and peer 
status. 

 

2.1. Connection representation 
At the LNET layer, each network interface is 

assigned a network ID (NID). On the Cray XT, this 
translates directly to the NID from Portals, with a process 
ID being used to differentiate multiple applications on the 
same processer in Catamount Virtual Node (CVN) and 
LibLustre. For each of the compute clients, there is a peer-
to-peer LNET connection maintained with each of the 
Lustre server nodes.  

At the Lustre layer, the clients represent themselves 
to the Lustre services as a Universally Unique Identifier 
(UUID). Each client maintains a connection to each 
individual Lustre service, namely those of an Object 
Storage Target (OST) and Metadata Target (MDT).  This 
results in the client keeping multiple service connections 
on top of each LNET connection.  

 

2.2. Timeouts 
To allow for peer and service health detection and 

other resiliency features, Lustre employs a number of 
timeouts. These timeouts bound request service times, and 
exceeding them results in peer or service status changes.  

LNET timeouts are used to determine if the 
underlying network driver and hardware is functioning 
properly and if the remote peer is responsive at the LNET 
layer. This means that message traffic is proceeding, and 
the remote peer is handling that traffic. Exceeding the 
timeout results in an error message being logged and a 
return up the stack to Lustre indicating the request could 
not be serviced. 

Lustre timeouts provide service responsiveness 
information and indicate when a service is down and 
resiliency mechanisms need to be used to recover that 
service. There is a core Lustre timeout related to servicing 
normal I/O requests called obd_timeout. On large Cray 
XT systems, this timeout is set to 300 seconds. The large 
majority of the timeouts in Lustre use this value directly or 
reduce it by some factor for quality of service reasons. An 
example of one such reduced timeout is the timeout that 
covers initial client to service connection requests with a 
value of obd_timeout/20, or 15 seconds. When Lustre 

request timeouts are exceeded, Lustre also logs an error 
and starts retrying the request to the original service and 
any failover partners configured. The default 
configuration of Lustre provides those requests will be 
retried indefinitely until some outside force intervenes.  

There are also timeouts covering the server to client 
communications. Excluding direct responses to client 
requests, the asynchronous messages sent from a server to 
client allow resource information gathering and potential 
revocation. The timeouts covering these asynchronous 
requests are often quite short as well, allowing a more 
responsive quality of service and ensuring forward 
progress when resources are under contention.  

 

3. Scaling challenges 

The system configuration is a key factor in 
determining how I/O load will be distributed across the 
Lustre servers.  With the storage array density increasing, 
the layout of the storage devices becomes critical. 
Typically, a storage array is split into several logical 
devices of which one or more is exported to each Lustre 
server. Each one of these devices becomes a Lustre OST. 

At the time, Lustre required the maximum size of an 
OST to be 2 TB. With 320 TB of storage, this resulted in 
160 OSTs. The system configuration called for 20 Object 
Storage Server (OSS) nodes, resulting in 8 OSTs per OSS. 
The machine also has about 9,500 dual core processors, 
providing a total of 19,000 compute cores and Lustre 
clients. 

This system configuration of 8 OSTs per OSS 
coupled with the large Lustre client count was the catalyst 
in very interesting scaling issues with Lustre. The first 
problem to be discussed is that of RPC load and how this 
ratio increased that load over the threshold of the Lustre 
timeouts. The second is the effect on the Lustre servers of 
trying to process this load and what steps were necessary 
to ensure that Lustre continued to process requests under 
extreme resource utilization. 

 

3.1. Lustre RPC load and processing 
As discussed in the Lustre overview section, each 

client maintains a connection for each Lustre service in 
the configuration. In the case we are using as a running 
example, this resulted in each client having 8 connections 
to the Lustre OSTs on each of the 20 OSS nodes, for a 
total of 160 connections per client. With 19,000 clients, 
this is 3,040,000 connections in total. Each OSS node saw 
152,000 connections. 

The initial test application used, simpleio [2], was 
simple indeed but performed basic operations that 
simulate a large class of HPC applications. It opened up a 
unique file per process, wrote and read a small piece of 
data to verify I/O functionality and then closed the file.  
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With an application running in the Catamount 
operating system and the LibLustre client, one of the first 
actions performed at application launch is the Lustre file 
system mount. Each client sends a single connect remote 
procedure call (RPC) to the Lustre services to set up the 
connections that will be used for file I/O. In the 
configuration at hand, this is a nearly instantaneous 
generation of 3,040,000 connect RPCs. The Lustre 
timeout for each of these requests is 15 seconds, requiring 
that each OSS process the messages at a rate of 10,133 
requests per second to keep from exceeding the timeout.   

There were two factors which prevented the Lustre 
servers from achieving these rates and preventing this 
simple 19,000 node job from completing. The timeout 
used for messages was far too short, and the data 
structures used to store per Lustre service connection 
information were not scaling well. 

3.2. Lustre timeouts 
The result of the 15 second Lustre connect timeout 

being exceeded was the job going into a cycle of RPC 
retries. These subsequent retries would also timeout, 
preventing any real forward progress and creating a 
further backlog on the Lustre servers. The servers did not 
know the RPCs sitting in its incoming queue had been 
abandoned by their respective clients and would attempt 
to process them. This storm of message retries also 
prevented accurate data from being collected on the server 
side to help in problem diagnosis. The net effect of this 
was a loss of the Lustre subsystem as a whole; the servers 
were saturated to the point where virtually no I/O was 
progressing. 

As is often done when timeouts are exceeded, the 
action taken was to increase the Lustre obd_timeout to 
600 seconds and to increase the ratio of Lustre connect 
RPC timeouts to obd_timeout/2 or 300 seconds. This was 
a time period sufficient to provide data on the server side 
processing as well as preventing the timeout and retries. 
The simpleio application was now able to pass through 
this Lustre service connect phase. Data collected with this 
new timeout showed that it took 214 seconds to process 
these incoming connect messages, requiring a further 
analysis of the issue. 

 

3.3. UUID Data structures 
Examination of the profiling data for Lustre server 

code processing indicated a significant amount of time in 
routines that verified a client was not already connected. 
This code was scanning a linked list of client UUIDs and 
comparing each against the UUID in the connect request. 
This algorithm results in M/2 comparisons for each 
connect request, where M is the number of clients already 
connected. For the 19,000 node system and an application 
run spanning the entire machine, it generated 180,500,000 
total comparisons for each Lustre service or 
1,444,000,000 comparisons for each 8 OSTs Lustre server 

node. Given such a large percentage of time was spent 
doing these comparisons, it was clear a fix was needed to 
help reduce the overall connection processing.  

The solution for this issue was to use a hash table 
keyed on the UUID. The hash table is configured with 128 
allowable keys, reducing the number of comparisons to 
M/128. For our example, this now generates 11,017 
comparisons per service or 88,134 comparisons per node. 
Additional improvements were made that allowed 
simpleio to run on 19,000 cores in under 60 seconds from 
an initial successful run of 11 minutes.  

3.4. Configuration impact 
To illustrate the liability of the system configuration 

in these scaling issues, we compare the connection counts 
and RPC processing rates for a Cray XT of a similar size. 
Using our running example configuration as system A, we 
compare it to system B with 288 TB of storage space split 
into 144 OSTs on 72 OSS nodes with 23,000 Lustre 
clients. This system B only required obd_timeout tuning 
to 600s to get simpleio to run. 

The configuration of system B generated a total of 
3,312,000 connections and 46,000 connections per OST 
compared to the 3,040,000 total connections and 152,000 
connections per OSS for system A. The total number of 
connections is higher, but the lower OST per OSS ratio 
spreads them out over more OSS nodes, reducing the 
individual server load greatly. The RPC processing rate 
for a Lustre mount also illustrates the load differences. 
System B needs to be 3,067 requests per second compared 
to the 10,133 requests per second in system A, over a 3 
fold reduction compared to the system in our running 
example.  

In order to provide additional load reduction beyond 
the Lustre code changes mentioned above, System A was 
eventually reconfigured with 4 OSTs per OSS. To 
facilitate this change, Lustre was altered to allow a 
maximum OST size of 8 TB. This reduced the number of 
connections per OSS to 76,000 and the RPC processing 
rate to 5,066 requests per second.  

 
 

3.5. Second order effects of RPC processing 
While the system was able to handle the load from 

simpleio, running applications that performed large 
amounts of I/O uncovered other issues. Applications were 
able to trigger errors in the Portals Lustre Network Driver 
(LND) indicating that Portals was not servicing requests 
in the 50 second timeout set by the LND. The 
investigation into this uncovered a surprising effect of the 
CPU usage associated with the UUID list traversal and 
comparisons.  

The mechanics of incoming message processing in 
Lustre largely resembles a pipeline structure. There are 
three distinct software layers that each take incoming 
requests interrupts and add them to a queue for 
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processing. Each layer then uses separate processes to pull 
a message off the queue and run it through request 
handling, often resulting in a incoming request interrupt to 
the layer above it. These three layers are Portals, the 
Portals LND and LNET.  

Timeouts at the Portals LND layer typically mean the 
remote host has gone away, or there is some problem in 
the underlying network that is preventing message traffic 
from flowing. Using the low-level Portals trace 
information, it was discovered that messages were moving 
fine and there was no appreciable delay in the network. 
Further investigation showed the requests were being 
passed up to and accumulating in the Portals LND queue 
on the order of tens of thousands of messages. The effect 
of this backlog of messages was to starve the remote peer 
of credits by which it could send messages. The 
aforementioned CPU usage was all happening in the 
Lustre layer, starving the Portals LND and LNET kernel 
threads from running and preventing message processing 
that would have returned credits. 

To compound the problem, the Portals LND timeout 
was actually covering the time it took to send a message, 
including receiving enough credits from the remote peer 
and not just the time on the wire. This generated a false 
indication of the problem, requiring significant data 
gathering and analysis to realize the misdirection. 
Addition of a timestamp into the LNET messages when 
the request is put into and taken out of the Portals layer 
allows the problem to be seen in much clearer light and 
prevents underlying layers from being falsely accused. 

The fix to this issue required Lustre and not the 
Portals LND to be altered. Lustre was changed so that it 
would yield to the process scheduler periodically to 
ensure the lower layers could process their incoming 
messages. The Lustre threads, LNET threads and Portals 
LND threads now share the CPU fairly enough to prevent 
message backlogs from occurring at any of the layers. 

 

4. Interactions with XT subsystems 

While Lustre certainly had internal issues related to 
scale, it can also cause problems with other system 
components. This is extremely evident when Lustre is 
under duress and operating outside normal parameters. 
The CPU utilization of the Lustre server kernel threads 
can affect other services running on those nodes. Also, 
Lustre is widely known to be verbose in its error 
messages, and the Cray RAS and Management System 
(CRMS) console network must bear the brunt of these 
messages. 

 

4.1. Service node heartbeat 
The most basic method by which Cray XT systems 

detect the health of Linux service nodes is through the 
Resiliency Communication Agent (RCA) heartbeat. The 

heartbeat service consists of multiple parts, most operating 
in the CRMS network with a host resident application that 
provides data to the control network processes. The host 
resident application is a Linux kernel thread that updates a 
known location in memory with an increasing value. This 
value indicates that the node is functioning well enough to 
schedule processes. The control network processes 
monitor this location and ensure the value continues to 
increase. If the value stops incrementing for long enough, 
a determination is made that the node has collapsed and 
node death messages are sent. This death is then reflected 
in the system status commands. 

Lustre servers also operate largely through Linux 
kernel threads. In the particular instance where the CPU 
was being consumed with UUID list processing, the RCA 
kernel threads were not scheduled with enough frequency 
to prevent the node from being marked down. Several 
workarounds have been used to monitor this false status 
change and to mark the node back to an operational state 
by using alternate means of detecting node health. Several 
Lustre and kernel paths have also been augmented to 
trigger the heartbeat value increase, helping to keep the 
node alive even under heavy computation. This remains a 
tricky issue as several instances have been recorded where 
the Lustre server is in such a CPU bound state that 
nothing can prove the node is up and operational and it is 
declared truly dead.  

 

4.2. Console error messages 
The path over which Lustre error messages are passed 

from both compute and service nodes is via the L0 
console and the CRMS network. Lustre is notorious for 
generating at least one error message when any request 
exceeds its timeout. Often these timeout messages are 
accompanied by Lustre service status change messages or 
other debugging data. Considering the case where 19,000 
clients each send 160 connect messages and 75% of them 
timeout, there are at least 240 messages output per client 
for a total message count of 4,650,000. These messages 
are all generated at nearly the same time and the CRMS 
network as a whole was unable to cope. The resulting loss 
of the CRMS network disabled the same mechanisms by 
which the machine can be controlled. The effect on the 
Cray XT was unique due to a combined console and 
command-control network.  

Certainly improving the CRMS network to cope with 
misbehaving subsystems is paramount to stability, but 
Lustre is not free of responsibility. Lustre needs to respect 
the boundaries of the system and to contain itself during 
the events that are likely to generate huge volumes of 
console traffic.  An examination of customer console logs 
was performed to get a list of the worst offending error 
messages. These messages were reworked or removed 
entirely. Lustre was also modified to impose an overall 
rate based limit on the number of error messages to 
provide a final layer of protection against future storms. 
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5. Looking forward 

Certainly these scaling problems have been 
challenging, but the outcome has proven satisfactory. 
Lustre has been stretched to accommodate the large Cray 
XT configurations and is able to provide a relatively 
stable system service.  Scaling the Cray XT has provided 
a wealth of information on how Lustre handles load and 
where it is likely to encounter problems. Lustre timeouts 
and the operations they cover have been and will continue 
to be the culprits affecting system stability at scale. 
Certainly the system configuration can exacerbate the 
issues, but uncovering the problems is an important step in 
continuing to improve the Lustre file system. Appreciating 
the structure of Lustre provides a system level perspective 
that allows for better understanding of potential issues at 
scale, and will supply the context through which future 
systems can be engineered with Lustre in mind. 

As the Cray XT continues to evolve, it is important 
that we continue to look at ways in which Lustre will grow 
and how we can overcome new challenges. In particular, 
Compute Node Linux (CNL) changes nearly all of the 
Lustre client software stack and operating system. CNL 
brings the Lustre client being used on the Cray XT to that 
of a Linux based operating system. There are several 
tradeoffs between Catamount with LibLustre and Linux 
with the Lustre client that are directly related to scale. By 
understanding the differences in the Lustre client 
semantics, we can identify areas of concern with relation 
to scale. 

 

5.1. Compute Node Linux 
In Catamount and LibLustre, the life of the Lustre 

client is tied directly to the life of the application. Lustre 
is mounted at application start up and is unmounted at 
application death. Catamount is unable to take exclusive 
Lustre locks that live across system call boundaries as the 
operating system does not provide for interruption and is 
unable to processes asynchronous events from the Lustre 
servers in finite time. CNL provides the Lustre client as a 
system service; the client lives from node boot until the 
node is shut down. CNL also does not suffer the 
limitations with respect to asynchronous Lustre requests, 
allowing locks to be taken on various resources. These 
locks are a new resource that is distributed across the 
system, and as such the assumptions around lock behavior 
and revocation are subject to breaking under the extremes 
of scale [3].  

Lock related RPCs are also covered by timeouts, 
typically obd_timeout/15 or 20 seconds for typically 
configured Cray XT systems. Given our experience with a 
similar timeout for Lustre service connect messages, 
encountering issues in this area is entirely foreseeable. 
While we can adjust these timeouts to allow for longer 

request servicing times, we need to ensure that we are not 
adversely affecting important quality of service 
guarantees. This becomes even more important as system 
scale is increased to where component failures become 
more typical than exception.  

All of the Lustre timeouts need to balance between 
handling load and reasonable detection of node status. A 
new feature, Adaptive Timeouts [4], is slated to help deal 
with this delicate balancing act. It should allow base 
timeouts to be set at a small value to allow rapid health 
detection but provide a mechanism by which these 
timeouts can be expanded to cover the actual system 
needs based on load and observed request response times. 
It is also with Adaptive Timeouts that Cray might be able 
to inject external system status into the timeout value 
providing a path by which we can use RCA heartbeat and 
other subsystems to enhance Lustre’s knowledge of 
system state.  

Although CNL does increase the number of 
distributed Lustre resources in use, the move to Linux 
running on the entire multi-core processor provides for a 
significant reduction in the number of Lustre clients. This 
reduces the largest scaling component in the client to 
service connection and server RPC processing rate 
calculations. For systems with dual core processors, this 
effectively halves the RPC load on the Lustre servers. 
Initial system configurations for quad core processors do 
not show the socket count growing significantly, allowing 
the Lustre client count to stabilize while still increasing 
the computing power of the machine.  

 

Acknowledgments 

The author would like to highlight the immense 
amount of help that has enabled this paper. In particular, 
the wonderful folks in Cray Software Product Support 
(SPS) and the site analysts have provided immeasurable 
help with problem diagnosis and data collection. Many 
folks in Cray Software Development have been 
instrumental in discussing whole system impact, expected 
behaviour and potential solutions. The engineers in the 
Lustre Group at Sun provided in-depth help with data 
analysis and problem resolution. The author would also 
like to thank his lovely wife for tolerating him.  

References 

1. Lustre File system. 
http://www.sun.com/software/products/lustre 
 

2. Shane Canon, Don Maxwell, Josh Lothian, Kenneth 
Matney, Makia Minich, H. Sarp Oral, Jeffrey 
Becklehimer, Cathy Willis "XT7? Integrating and 
Operating a Conjoined XT3+XT4 System", CUG 
2007. 
 



 
CUG 2008 Proceedings 6 of 6 

 

3. Peta-Scale I/O with the Lustre file system. 
http://www.sun.com/software/products/lustre/docs/Pet
a-Scale_wp.pdf 

 
4. ibid  

About the Author 

Nicholas Henke is a Software Engineer with Cray Inc. 
He can be reached by E-Mail at nic@cray.com.  


