

CUG 2008 Proceedings 1 of 6

Stabilizing Lustre at Scale on the Cray XT

Nicholas Henke, Cray Inc.

ABSTRACT: The Cray XT uses Lustre to provide a critical system resource and has
provided a unique set of scaling challenges for Lustre. In highlighting the unique
attributes of the Cray XT for Lustre, this paper discusses the problems encountered when
Lustre is pushed into new frontiers. Using illustrative failure scenarios, I present the
mechanisms in Lustre that fail and the root cause of the issues. Solving these problems
provides information and insight that will benefit future Cray XT system deployments,
especially as the size and complexity of Cray XT systems increases.

KEYWORDS: XT, Lustre

1. Introduction

With the deployment of large Cray XT systems, much

is demanded of Lustre. Lustre provides the parallel file
system and I/O capabilities for applications and users. The
stability of Lustre is a key system component that has a
direct effect on overall system stability and productivity.
While the Lustre file system is designed to provide
unprecedented metadata and I/O performance rates at the
scale of the most demanding high performance computing
platforms, [1] pushing it to the very large scale of the Cray
XT can result in a myriad of problems.

The Cray XT has pushed the boundaries of system
scale and will continue to do so. Increased compute node
counts, memory speed and high speed network bandwidth
require that the storage subsystem keep pace while
maintaining a balanced system configuration. These
features of the XT require a unique view on stabilizing
system services, demanding that we understand how
Lustre operates at scale and the nature of its failures. Only
armed with such knowledge can the system as a whole be
engineered with Lustre success in mind.

The difficulty in providing a stable Lustre offering on
the Cray XT starts with making an order of magnitude
jump in scale from Lustre’s traditional Linux cluster roots.
Increases of this size require that fundamental
assumptions are broken and fixing the architecture often
requires complex changes. Also, differing customer
requirements result in system configuration changes that
impact Lustre in a sometimes subtle manner. Lustre itself

is a difficult product to administer and triage. Detailed
knowledge of the internal workings coupled with the
ability to sift through mountains of error messages are
needed find the root cause of issues.

It is the unique characteristics of the Cray XT that
provide the platform for discovering the weaknesses in
Lustre related to scale. The Cray XT is also the only
system of its size where a Lustre client is used from every
compute node. The scale and density of storage arrays
needed to balance processing power are also growing,
resulting in Lustre server configurations that also push
through previous boundaries. This combination of system
attributes delivers a truly impressive load on Lustre. This
pressure exposes Lustre code paths that do not scale well
and illuminates the vulnerable points in the Lustre
implementation.

This paper discusses the framework by which Lustre
manages scale related data, the manner in which its
reliability mechanisms are exceeded, and how the
breakdown of either results in an unstable system. Using
real world issues seen while bringing up a Cray XT with
over 19,000 compute cores running Catamount and 320
TB of storage, we will take a look at the critical Lustre
subsystems involved and how the failures affected the
system as a whole. We then discuss how the gained
knowledge and understanding of Lustre provides for
better system configuration and allows us to look for and
find areas of improvement as new hardware, scale and
system features progress.

CUG 2008 Proceedings 2 of 6

2. Overview of Lustre

Fundamentally, Lustre is internally organized as a
distributed client-server network application. Requests are
generated on clients, sent to servers and replies are
returned. The Lustre servers are responsible for
maintaining resource usage and connection data for each
of these clients. Each client is represented to the servers
at two different levels, Lustre Networking (LNET) at the
lower level and Lustre at the top. Each of these layers
maintains a request timeout that provides health and peer
status.

2.1. Connection representation
At the LNET layer, each network interface is

assigned a network ID (NID). On the Cray XT, this
translates directly to the NID from Portals, with a process
ID being used to differentiate multiple applications on the
same processer in Catamount Virtual Node (CVN) and
LibLustre. For each of the compute clients, there is a peer-
to-peer LNET connection maintained with each of the
Lustre server nodes.

At the Lustre layer, the clients represent themselves
to the Lustre services as a Universally Unique Identifier
(UUID). Each client maintains a connection to each
individual Lustre service, namely those of an Object
Storage Target (OST) and Metadata Target (MDT). This
results in the client keeping multiple service connections
on top of each LNET connection.

2.2. Timeouts
To allow for peer and service health detection and

other resiliency features, Lustre employs a number of
timeouts. These timeouts bound request service times, and
exceeding them results in peer or service status changes.

LNET timeouts are used to determine if the
underlying network driver and hardware is functioning
properly and if the remote peer is responsive at the LNET
layer. This means that message traffic is proceeding, and
the remote peer is handling that traffic. Exceeding the
timeout results in an error message being logged and a
return up the stack to Lustre indicating the request could
not be serviced.

Lustre timeouts provide service responsiveness
information and indicate when a service is down and
resiliency mechanisms need to be used to recover that
service. There is a core Lustre timeout related to servicing
normal I/O requests called obd_timeout. On large Cray
XT systems, this timeout is set to 300 seconds. The large
majority of the timeouts in Lustre use this value directly or
reduce it by some factor for quality of service reasons. An
example of one such reduced timeout is the timeout that
covers initial client to service connection requests with a
value of obd_timeout/20, or 15 seconds. When Lustre

request timeouts are exceeded, Lustre also logs an error
and starts retrying the request to the original service and
any failover partners configured. The default
configuration of Lustre provides those requests will be
retried indefinitely until some outside force intervenes.

There are also timeouts covering the server to client
communications. Excluding direct responses to client
requests, the asynchronous messages sent from a server to
client allow resource information gathering and potential
revocation. The timeouts covering these asynchronous
requests are often quite short as well, allowing a more
responsive quality of service and ensuring forward
progress when resources are under contention.

3. Scaling challenges

The system configuration is a key factor in
determining how I/O load will be distributed across the
Lustre servers. With the storage array density increasing,
the layout of the storage devices becomes critical.
Typically, a storage array is split into several logical
devices of which one or more is exported to each Lustre
server. Each one of these devices becomes a Lustre OST.

At the time, Lustre required the maximum size of an
OST to be 2 TB. With 320 TB of storage, this resulted in
160 OSTs. The system configuration called for 20 Object
Storage Server (OSS) nodes, resulting in 8 OSTs per OSS.
The machine also has about 9,500 dual core processors,
providing a total of 19,000 compute cores and Lustre
clients.

This system configuration of 8 OSTs per OSS
coupled with the large Lustre client count was the catalyst
in very interesting scaling issues with Lustre. The first
problem to be discussed is that of RPC load and how this
ratio increased that load over the threshold of the Lustre
timeouts. The second is the effect on the Lustre servers of
trying to process this load and what steps were necessary
to ensure that Lustre continued to process requests under
extreme resource utilization.

3.1. Lustre RPC load and processing
As discussed in the Lustre overview section, each

client maintains a connection for each Lustre service in
the configuration. In the case we are using as a running
example, this resulted in each client having 8 connections
to the Lustre OSTs on each of the 20 OSS nodes, for a
total of 160 connections per client. With 19,000 clients,
this is 3,040,000 connections in total. Each OSS node saw
152,000 connections.

The initial test application used, simpleio [2], was
simple indeed but performed basic operations that
simulate a large class of HPC applications. It opened up a
unique file per process, wrote and read a small piece of
data to verify I/O functionality and then closed the file.

CUG 2008 Proceedings 3 of 6

With an application running in the Catamount
operating system and the LibLustre client, one of the first
actions performed at application launch is the Lustre file
system mount. Each client sends a single connect remote
procedure call (RPC) to the Lustre services to set up the
connections that will be used for file I/O. In the
configuration at hand, this is a nearly instantaneous
generation of 3,040,000 connect RPCs. The Lustre
timeout for each of these requests is 15 seconds, requiring
that each OSS process the messages at a rate of 10,133
requests per second to keep from exceeding the timeout.

There were two factors which prevented the Lustre
servers from achieving these rates and preventing this
simple 19,000 node job from completing. The timeout
used for messages was far too short, and the data
structures used to store per Lustre service connection
information were not scaling well.

3.2. Lustre timeouts
The result of the 15 second Lustre connect timeout

being exceeded was the job going into a cycle of RPC
retries. These subsequent retries would also timeout,
preventing any real forward progress and creating a
further backlog on the Lustre servers. The servers did not
know the RPCs sitting in its incoming queue had been
abandoned by their respective clients and would attempt
to process them. This storm of message retries also
prevented accurate data from being collected on the server
side to help in problem diagnosis. The net effect of this
was a loss of the Lustre subsystem as a whole; the servers
were saturated to the point where virtually no I/O was
progressing.

As is often done when timeouts are exceeded, the
action taken was to increase the Lustre obd_timeout to
600 seconds and to increase the ratio of Lustre connect
RPC timeouts to obd_timeout/2 or 300 seconds. This was
a time period sufficient to provide data on the server side
processing as well as preventing the timeout and retries.
The simpleio application was now able to pass through
this Lustre service connect phase. Data collected with this
new timeout showed that it took 214 seconds to process
these incoming connect messages, requiring a further
analysis of the issue.

3.3. UUID Data structures
Examination of the profiling data for Lustre server

code processing indicated a significant amount of time in
routines that verified a client was not already connected.
This code was scanning a linked list of client UUIDs and
comparing each against the UUID in the connect request.
This algorithm results in M/2 comparisons for each
connect request, where M is the number of clients already
connected. For the 19,000 node system and an application
run spanning the entire machine, it generated 180,500,000
total comparisons for each Lustre service or
1,444,000,000 comparisons for each 8 OSTs Lustre server

node. Given such a large percentage of time was spent
doing these comparisons, it was clear a fix was needed to
help reduce the overall connection processing.

The solution for this issue was to use a hash table
keyed on the UUID. The hash table is configured with 128
allowable keys, reducing the number of comparisons to
M/128. For our example, this now generates 11,017
comparisons per service or 88,134 comparisons per node.
Additional improvements were made that allowed
simpleio to run on 19,000 cores in under 60 seconds from
an initial successful run of 11 minutes.

3.4. Configuration impact
To illustrate the liability of the system configuration

in these scaling issues, we compare the connection counts
and RPC processing rates for a Cray XT of a similar size.
Using our running example configuration as system A, we
compare it to system B with 288 TB of storage space split
into 144 OSTs on 72 OSS nodes with 23,000 Lustre
clients. This system B only required obd_timeout tuning
to 600s to get simpleio to run.

The configuration of system B generated a total of
3,312,000 connections and 46,000 connections per OST
compared to the 3,040,000 total connections and 152,000
connections per OSS for system A. The total number of
connections is higher, but the lower OST per OSS ratio
spreads them out over more OSS nodes, reducing the
individual server load greatly. The RPC processing rate
for a Lustre mount also illustrates the load differences.
System B needs to be 3,067 requests per second compared
to the 10,133 requests per second in system A, over a 3
fold reduction compared to the system in our running
example.

In order to provide additional load reduction beyond
the Lustre code changes mentioned above, System A was
eventually reconfigured with 4 OSTs per OSS. To
facilitate this change, Lustre was altered to allow a
maximum OST size of 8 TB. This reduced the number of
connections per OSS to 76,000 and the RPC processing
rate to 5,066 requests per second.

3.5. Second order effects of RPC processing
While the system was able to handle the load from

simpleio, running applications that performed large
amounts of I/O uncovered other issues. Applications were
able to trigger errors in the Portals Lustre Network Driver
(LND) indicating that Portals was not servicing requests
in the 50 second timeout set by the LND. The
investigation into this uncovered a surprising effect of the
CPU usage associated with the UUID list traversal and
comparisons.

The mechanics of incoming message processing in
Lustre largely resembles a pipeline structure. There are
three distinct software layers that each take incoming
requests interrupts and add them to a queue for

CUG 2008 Proceedings 4 of 6

processing. Each layer then uses separate processes to pull
a message off the queue and run it through request
handling, often resulting in a incoming request interrupt to
the layer above it. These three layers are Portals, the
Portals LND and LNET.

Timeouts at the Portals LND layer typically mean the
remote host has gone away, or there is some problem in
the underlying network that is preventing message traffic
from flowing. Using the low-level Portals trace
information, it was discovered that messages were moving
fine and there was no appreciable delay in the network.
Further investigation showed the requests were being
passed up to and accumulating in the Portals LND queue
on the order of tens of thousands of messages. The effect
of this backlog of messages was to starve the remote peer
of credits by which it could send messages. The
aforementioned CPU usage was all happening in the
Lustre layer, starving the Portals LND and LNET kernel
threads from running and preventing message processing
that would have returned credits.

To compound the problem, the Portals LND timeout
was actually covering the time it took to send a message,
including receiving enough credits from the remote peer
and not just the time on the wire. This generated a false
indication of the problem, requiring significant data
gathering and analysis to realize the misdirection.
Addition of a timestamp into the LNET messages when
the request is put into and taken out of the Portals layer
allows the problem to be seen in much clearer light and
prevents underlying layers from being falsely accused.

The fix to this issue required Lustre and not the
Portals LND to be altered. Lustre was changed so that it
would yield to the process scheduler periodically to
ensure the lower layers could process their incoming
messages. The Lustre threads, LNET threads and Portals
LND threads now share the CPU fairly enough to prevent
message backlogs from occurring at any of the layers.

4. Interactions with XT subsystems

While Lustre certainly had internal issues related to
scale, it can also cause problems with other system
components. This is extremely evident when Lustre is
under duress and operating outside normal parameters.
The CPU utilization of the Lustre server kernel threads
can affect other services running on those nodes. Also,
Lustre is widely known to be verbose in its error
messages, and the Cray RAS and Management System
(CRMS) console network must bear the brunt of these
messages.

4.1. Service node heartbeat
The most basic method by which Cray XT systems

detect the health of Linux service nodes is through the
Resiliency Communication Agent (RCA) heartbeat. The

heartbeat service consists of multiple parts, most operating
in the CRMS network with a host resident application that
provides data to the control network processes. The host
resident application is a Linux kernel thread that updates a
known location in memory with an increasing value. This
value indicates that the node is functioning well enough to
schedule processes. The control network processes
monitor this location and ensure the value continues to
increase. If the value stops incrementing for long enough,
a determination is made that the node has collapsed and
node death messages are sent. This death is then reflected
in the system status commands.

Lustre servers also operate largely through Linux
kernel threads. In the particular instance where the CPU
was being consumed with UUID list processing, the RCA
kernel threads were not scheduled with enough frequency
to prevent the node from being marked down. Several
workarounds have been used to monitor this false status
change and to mark the node back to an operational state
by using alternate means of detecting node health. Several
Lustre and kernel paths have also been augmented to
trigger the heartbeat value increase, helping to keep the
node alive even under heavy computation. This remains a
tricky issue as several instances have been recorded where
the Lustre server is in such a CPU bound state that
nothing can prove the node is up and operational and it is
declared truly dead.

4.2. Console error messages
The path over which Lustre error messages are passed

from both compute and service nodes is via the L0
console and the CRMS network. Lustre is notorious for
generating at least one error message when any request
exceeds its timeout. Often these timeout messages are
accompanied by Lustre service status change messages or
other debugging data. Considering the case where 19,000
clients each send 160 connect messages and 75% of them
timeout, there are at least 240 messages output per client
for a total message count of 4,650,000. These messages
are all generated at nearly the same time and the CRMS
network as a whole was unable to cope. The resulting loss
of the CRMS network disabled the same mechanisms by
which the machine can be controlled. The effect on the
Cray XT was unique due to a combined console and
command-control network.

Certainly improving the CRMS network to cope with
misbehaving subsystems is paramount to stability, but
Lustre is not free of responsibility. Lustre needs to respect
the boundaries of the system and to contain itself during
the events that are likely to generate huge volumes of
console traffic. An examination of customer console logs
was performed to get a list of the worst offending error
messages. These messages were reworked or removed
entirely. Lustre was also modified to impose an overall
rate based limit on the number of error messages to
provide a final layer of protection against future storms.

CUG 2008 Proceedings 5 of 6

5. Looking forward

Certainly these scaling problems have been
challenging, but the outcome has proven satisfactory.
Lustre has been stretched to accommodate the large Cray
XT configurations and is able to provide a relatively
stable system service. Scaling the Cray XT has provided
a wealth of information on how Lustre handles load and
where it is likely to encounter problems. Lustre timeouts
and the operations they cover have been and will continue
to be the culprits affecting system stability at scale.
Certainly the system configuration can exacerbate the
issues, but uncovering the problems is an important step in
continuing to improve the Lustre file system. Appreciating
the structure of Lustre provides a system level perspective
that allows for better understanding of potential issues at
scale, and will supply the context through which future
systems can be engineered with Lustre in mind.

As the Cray XT continues to evolve, it is important
that we continue to look at ways in which Lustre will grow
and how we can overcome new challenges. In particular,
Compute Node Linux (CNL) changes nearly all of the
Lustre client software stack and operating system. CNL
brings the Lustre client being used on the Cray XT to that
of a Linux based operating system. There are several
tradeoffs between Catamount with LibLustre and Linux
with the Lustre client that are directly related to scale. By
understanding the differences in the Lustre client
semantics, we can identify areas of concern with relation
to scale.

5.1. Compute Node Linux
In Catamount and LibLustre, the life of the Lustre

client is tied directly to the life of the application. Lustre
is mounted at application start up and is unmounted at
application death. Catamount is unable to take exclusive
Lustre locks that live across system call boundaries as the
operating system does not provide for interruption and is
unable to processes asynchronous events from the Lustre
servers in finite time. CNL provides the Lustre client as a
system service; the client lives from node boot until the
node is shut down. CNL also does not suffer the
limitations with respect to asynchronous Lustre requests,
allowing locks to be taken on various resources. These
locks are a new resource that is distributed across the
system, and as such the assumptions around lock behavior
and revocation are subject to breaking under the extremes
of scale [3].

Lock related RPCs are also covered by timeouts,
typically obd_timeout/15 or 20 seconds for typically
configured Cray XT systems. Given our experience with a
similar timeout for Lustre service connect messages,
encountering issues in this area is entirely foreseeable.
While we can adjust these timeouts to allow for longer

request servicing times, we need to ensure that we are not
adversely affecting important quality of service
guarantees. This becomes even more important as system
scale is increased to where component failures become
more typical than exception.

All of the Lustre timeouts need to balance between
handling load and reasonable detection of node status. A
new feature, Adaptive Timeouts [4], is slated to help deal
with this delicate balancing act. It should allow base
timeouts to be set at a small value to allow rapid health
detection but provide a mechanism by which these
timeouts can be expanded to cover the actual system
needs based on load and observed request response times.
It is also with Adaptive Timeouts that Cray might be able
to inject external system status into the timeout value
providing a path by which we can use RCA heartbeat and
other subsystems to enhance Lustre’s knowledge of
system state.

Although CNL does increase the number of
distributed Lustre resources in use, the move to Linux
running on the entire multi-core processor provides for a
significant reduction in the number of Lustre clients. This
reduces the largest scaling component in the client to
service connection and server RPC processing rate
calculations. For systems with dual core processors, this
effectively halves the RPC load on the Lustre servers.
Initial system configurations for quad core processors do
not show the socket count growing significantly, allowing
the Lustre client count to stabilize while still increasing
the computing power of the machine.

Acknowledgments

The author would like to highlight the immense
amount of help that has enabled this paper. In particular,
the wonderful folks in Cray Software Product Support
(SPS) and the site analysts have provided immeasurable
help with problem diagnosis and data collection. Many
folks in Cray Software Development have been
instrumental in discussing whole system impact, expected
behaviour and potential solutions. The engineers in the
Lustre Group at Sun provided in-depth help with data
analysis and problem resolution. The author would also
like to thank his lovely wife for tolerating him.

References

1. Lustre File system.
http://www.sun.com/software/products/lustre

2. Shane Canon, Don Maxwell, Josh Lothian, Kenneth
Matney, Makia Minich, H. Sarp Oral, Jeffrey
Becklehimer, Cathy Willis "XT7? Integrating and
Operating a Conjoined XT3+XT4 System", CUG
2007.

CUG 2008 Proceedings 6 of 6

3. Peta-Scale I/O with the Lustre file system.
http://www.sun.com/software/products/lustre/docs/Pet
a-Scale_wp.pdf

4. ibid

About the Author

Nicholas Henke is a Software Engineer with Cray Inc.
He can be reached by E-Mail at nic@cray.com.

