Stabilizing Lustre at Scale on the Cray XT

Nicholas Henke, Cray Inc.

ABSTRACT: The Cray XT uses Lustre to provide a critical system resource and has
provided a unique set of scaling challenges for Lustre. In highlighting the unique
attributes of the Cray XT for Lustre, this paper discusses the problems encountered when
Lustre is pushed into new frontiers. Using illustrative failure scenarios, | present the
mechanisms in Lustre that fail and the root cause of the issues. Solving these problems
provides information and insight that will benefit future Cray XT system deployments,
especially as the size and complexity of Cray XT systemsincreases.

KEYWORDS: XT, Lustre

1. Introduction

With the deployment of large Cray XT systems, much
is demanded of Lustre. Lustre provides the pardilel
system and I/O capabilities for applications anersisThe
stability of Lustre is a key system component thas a
direct effect on overall system stability and proility.
While the Lustre file system is designed to provide
unprecedented metadata and I/O performance ratbge at
scale of the most demanding high performance cangput
platforms, [1] pushing it to the very large scalehe Cray
XT can result in a myriad of problems.

The Cray XT has pushed the boundaries of system
scale and will continue to do so. Increased compatie
counts, memory speed and high speed network batidwid
require that the storage subsystem keep pace while
maintaining a balanced system configuration. These
features of the XT require a unique view on stainig
system services, demanding that we understand how
Lustre operates at scale and the nature of itsrésl Only
armed with such knowledge can the system as a vii®le
engineered with Lustre success in mind.

The difficulty in providing a stable Lustre offegron
the Cray XT starts with making an order of magrétud
jump in scale from Lustre’s traditional Linux clastroots.
Increases of this size require that fundamental
assumptions are broken and fixing the architectifren
requires complex changes. Also, differing customer
requirements result in system configuration charthas
impact Lustre in a sometimes subtle manner. Lutstedf

is a difficult product to administer and triage. tBied
knowledge of the internal workings coupled with the
ability to sift through mountains of error messagase
needed find the root cause of issues.

It is the unique characteristics of the Cray XTttha
provide the platform for discovering the weaknesises
Lustre related to scale. The Cray XT is also théy on
system of its size where a Lustre client is usethfevery
compute node. The scale and density of storageg/sarra
needed to balance processing power are also grpwing
resulting in Lustre server configurations that afagsh
through previous boundaries. This combination ctesy
attributes delivers a truly impressive load on teisthis
pressure exposes Lustre code paths that do nat wedl
and illuminates the vulnerable points in the Lustre
implementation.

This paper discusses the framework by which Lustre
manages scale related data, the manner in which its
reliability mechanisms are exceeded, and how the
breakdown of either results in an unstable systdsing
real world issues seen while bringing up a Craywth
over 19,000 compute cores running Catamount and 320
TB of storage, we will take a look at the critidalstre
subsystems involved and how the failures affectesl t
system as a whole. We then discuss how the gained
knowledge and understanding of Lustre provides for
better system configuration and allows us to lomkend
find areas of improvement as new hardware, scate an
system features progress.

CUG 2008Proceedings 1 of 6

2. Overview of Lustre

Fundamentally, Lustre is internally organized as a
distributed client-server network application. Resps are
generated on clients, sent to servers and replies a
returned. The Lustre servers are responsible for
maintaining resource usage and connection data&oh
of these clients. Each client is represented ¢os#trvers
at two different levels, Lustre Networking (LNET) the
lower level and Lustre at the top. Each of thesera
maintains a request timeout that provides health@eer
status.

2.1. Connection representation

At the LNET layer, each network interface is
assigned a network ID (NID). On the Cray XT, this
translates directly to the NID from Portals, witlp@cess
ID being used to differentiate multiple applicasoon the
same processer in Catamount Virtual Node (CVN) and
LibLustre. For each of the compute clients, thera peer-
to-peer LNET connection maintained with each of the
Lustre server nodes.

At the Lustre layer, the clients represent theneselv
to the Lustre services as a Universally Unique ftifien
(UUID). Each client maintains a connection to each
individual Lustre service, namely those of an Objec
Storage Target (OST) and Metadata Target (MDT)is Th
results in the client keeping multiple service cections
on top of each LNET connection.

2.2. Timeouts

To allow for peer and service health detection and
other resiliency features, Lustre employs a numbier
timeouts. These timeouts bound request servicestiarel
exceeding them results in peer or service statasggs.

LNET timeouts are used to determine if the
underlying network driver and hardware is functi@ni
properly and if the remote peer is responsive @i tET
layer. This means that message traffic is procggdind
the remote peer is handling that traffic. Exceedihg
timeout results in an error message being logget aan
return up the stack to Lustre indicating the regeesid
not be serviced.

Lustre timeouts provide service responsiveness
information and indicate when a service is down and
resiliency mechanisms need to be used to recor th
service. There is a core Lustre timeout relatesetwicing
normal I/O requests calledbd_timeout. On large Cray
XT systems, this timeout is set to 300 seconds. laige
majority of the timeouts in Lustre use this valuectly or
reduce it by some factor for quality of services@as. An
example of one such reduced timeout is the timéuatt
covers initial client to service connection reqaesith a
value of obd timeout/20, or 15 seconds. When Lustre

request timeouts are exceeded, Lustre also logsrran
and starts retrying the request to the originaviserand
any failover partners configured. The default
configuration of Lustre provides those requestd
retried indefinitely until some outside force intenes.

There are also timeouts covering the server tatclie
communications. Excluding direct responses to tlien
requests, the asynchronous messages sent fromea ger
client allow resource information gathering andemtigal
revocation. The timeouts covering these asynchr®nou
requests are often quite short as well, allowinghare
responsive quality of service and ensuring forward
progress when resources are under contention.

3. Scaling challenges

The system configuration is a key factor in
determining how 1/O load will be distributed acrabe
Lustre servers. With the storage array densityeising,
the layout of the storage devices becomes critical.
Typically, a storage array is split into severabital
devices of which one or more is exported to eac$trieu
server. Each one of these devices becomes a L@S{fe

At the time, Lustre required the maximum size of an
OST to be 2 TB. With 320 TB of storage, this resilin
160 OSTs. The system configuration called for 2(eCh
Storage Server (OSS) nodes, resulting in 8 OSTORS.
The machine also has about 9,500 dual core prosgsso
providing a total of 19,000 compute cores and leustr
clients.

This system configuration of 8 OSTs per OSS
coupled with the large Lustre client count wasdhtalyst
in very interesting scaling issues with Lustre. Tiret
problem to be discussed is that of RPC load and thav
ratio increased that load over the threshold oflthstre
timeouts. The second is the effect on the Lustreess of
trying to process this load and what steps weressary
to ensure that Lustre continued to process requestsr
extreme resource utilization.

3.1. Lustre RPC load and processing

As discussed in the Lustre overview section, each
client maintains a connection for each Lustre serin
the configuration. In the case we are using asnaing
example, this resulted in each client having 8 eatinns
to the Lustre OSTs on each of the 20 OSS nodesa for
total of 160 connections per client. With 19,00@&ms,
this is 3,040,000 connections in total. Each OS&ersaw
152,000 connections.

The initial test application used, simpleio [2], sva
simple indeed but performed basic operations that
simulate a large class of HPC applications. It egeunp a
unique file per process, wrote and read a smatepaf
data to verify I/O functionality and then closeé fiie.

CUG 2008Proceedings 2 of 6

With an application running in the Catamount
operating system and the LibLustre client, oneheffirst
actions performed at application launch is the taufite
system mount. Each client sends a single conneubtee
procedure call (RPC) to the Lustre services toupethe
connections that will be used for file 1/0. In the
configuration at hand, this is a nearly instantaiseo
generation of 3,040,000 connect RPCs. The Lustre
timeout for each of these requests is 15 secordsijring
that each OSS process the messages at a ratel@310,
requests per second to keep from exceeding thetime

There were two factors which prevented the Lustre
servers from achieving these rates and preventigy t
simple 19,000 node job from completing. The timeout
used for messages was far too short, and the data
structures used to store per Lustre service coimect
information were not scaling well.

3.2. Lustretimeouts

The result of the 15 second Lustre connect timeout
being exceeded was the job going into a cycle o€ RP
retries. These subsequent retries would also titneou
preventing any real forward progress and creating a
further backlog on the Lustre servers. The serdatsot
know the RPCs sitting in its incoming queue hadnbee
abandoned by their respective clients and woulehgit
to process them. This storm of message retries also
prevented accurate data from being collected osdheer
side to help in problem diagnosis. The net effdcthes
was a loss of the Lustre subsystem as a wholesethers
were saturated to the point where virtually no Mas
progressing.

As is often done when timeouts are exceeded, the
action taken was to increase the Lusibel timeout to
600 seconds and to increase the ratio of Lustrenexn
RPC timeouts tmbd_timeout/2 or 300 seconds. This was
a time period sufficient to provide data on theveesside
processing as well as preventing the timeout alviese
The simpleio application was now able to pass thinou
this Lustre service connect phase. Data collectidd this
new timeout showed that it took 214 seconds to gs®c
these incoming connect messages, requiring a furthe
analysis of the issue.

3.3. UUID Data structures

Examination of the profiling data for Lustre server
code processing indicated a significant amountroé tin
routines that verified a client was not already remrted.
This code was scanning a linked list of client USland
comparing each against the UUID in the connectesgu
This algorithm results in M/2 comparisons for each
connect request, where M is the number of clielnesady
connected. For the 19,000 node system and an apiptic
run spanning the entire machine, it generated D800®0
total comparisons for each Lustre service or
1,444,000,000 comparisons for each 8 OSTs Lustuweise

node. Given such a large percentage of time wastspe
doing these comparisons, it was clear a fix wasleee¢o
help reduce the overall connection processing.

The solution for this issue was to use a hash table
keyed on the UUID. The hash table is configuredh 28
allowable keys, reducing the number of comparistns
M/128. For our example, this now generates 11,017
comparisons per service or 88,134 comparisons @ée.n
Additional improvements were made that allowed
simpleio to run on 19,000 cores in under 60 secdmufs
an initial successful run of 11 minutes.

3.4. Configuration impact

To illustrate the liability of the system configticm
in these scaling issues, we compare the connectionts
and RPC processing rates for a Cray XT of a sinsilze.
Using our running example configuration as systenwvé
compare it to system B with 288 TB of storage sp=ali¢
into 144 OSTs on 72 OSS nodes with 23,000 Lustre
clients. This system B only requiraahd_timeout tuning
to 600s to get simpleio to run.

The configuration of system B generated a total of
3,312,000 connections and 46,000 connections pdr OS
compared to the 3,040,000 total connections and0DB2
connections per OSS for system A. The total nunafer
connections is higher, but the lower OST per OSk ra
spreads them out over more OSS nodes, reducing the
individual server load greatly. The RPC procesgsiaig
for a Lustre mount also illustrates the load déferes.
System B needs to be 3,067 requests per seconchoednp
to the 10,133 requests per second in system A, a&r
fold reduction compared to the system in our rugnin
example.

In order to provide additional load reduction beyon
the Lustre code changes mentioned above, SysterasA w
eventually reconfigured with 4 OSTs per OSS. To
facilitate this change, Lustre was altered to allaw
maximum OST size of 8 TB. This reduced the numlfer o
connections per OSS to 76,000 and the RPC progessin
rate to 5,066 requests per second.

3.5. Second order effects of RPC processing

While the system was able to handle the load from
simpleio, running applications that performed large
amounts of 1/0O uncovered other issues. Applicativase
able to trigger errors in the Portals Lustre NetBriver
(LND) indicating that Portals was not servicing ueqts
in the 50 second timeout set by the LND. The
investigation into this uncovered a surprising effef the
CPU usage associated with the UUID list traversal a
comparisons.

The mechanics of incoming message processing in
Lustre largely resembles a pipeline structure. &hare
three distinct software layers that each take inngm
requests interrupts and add them to a queue for

CUG 2008Proceedings 3 of 6

processing. Each layer then uses separate prodegseals

a message off the queue and run it through request
handling, often resulting in a incoming requesgiinipt to

the layer above it. These three layers are Porthis,
Portals LND and LNET.

Timeouts at the Portals LND layer typically meaa th
remote host has gone away, or there is some proislem
the underlying network that is preventing messagtia
from flowing. Using the low-level Portals trace
information, it was discovered that messages weréng
fine and there was no appreciable delay in the ortw
Further investigation showed the requests were gbein
passed up to and accumulating in the Portals LNEugqu
on the order of tens of thousands of messageseffbet
of this backlog of messages was to starve the eepeer
of credits by which it could send messages. The
aforementioned CPU usage was all happening in the
Lustre layer, starving the Portals LND and LNET redr
threads from running and preventing message priocess
that would have returned credits.

To compound the problem, the Portals LND timeout
was actually covering the time it took to send ssage,
including receiving enough credits from the rempéer
and not just the time on the wire. This generatddlse
indication of the problem, requiring significant tda
gathering and analysis to realize the misdirection.
Addition of a timestamp into the LNET messages when
the request is put into and taken out of the Poitafer
allows the problem to be seen in much clearer layid
prevents underlying layers from being falsely aecus

The fix to this issue required Lustre and not the
Portals LND to be altered. Lustre was changed abith
would vyield to the process scheduler periodically t
ensure the lower layers could process their incgmin
messages. The Lustre threads, LNET threads andl®ort
LND threads now share the CPU fairly enough to enév
message backlogs from occurring at any of the tayer

4. Interactionswith XT subsystems

While Lustre certainly had internal issues related
scale, it can also cause problems with other system
components. This is extremely evident when Lus§e i
under duress and operating outside normal parasneter
The CPU utilization of the Lustre server kerneletuis
can affect other services running on those nodéso, A
Lustre is widely known to be verbose in its error
messages, and the Cray RAS and Management System
(CRMS) console network must bear the brunt of these
messages.

4.1. Service node heartbeat

The most basic method by which Cray XT systems
detect the health of Linux service nodes is throthgh
Resiliency Communication Agent (RCA) heartbeat. The

heartbeat service consists of multiple parts, rapstating
in the CRMS network with a host resident applicatioat
provides data to the control network processes. Hdst
resident application is a Linux kernel thread tlpadates a
known location in memory with an increasing valtiis
value indicates that the node is functioning wabhegh to
schedule processes. The control network processes
monitor this location and ensure the value consnte
increase. If the value stops incrementing for lengugh,
a determination is made that the node has collapsdd
node death messages are sent. This death is tiertad
in the system status commands.

Lustre servers also operate largely through Linux
kernel threads. In the particular instance wheee GiPU
was being consumed with UUID list processing, ti@AR
kernel threads were not scheduled with enough &equ
to prevent the node from being marked down. Several
workarounds have been used to monitor this falatist
change and to mark the node back to an operatstatd
by using alternate means of detecting node heaéteral
Lustre and kernel paths have also been augmented to
trigger the heartbeat value increase, helping &pkine
node alive even under heavy computation. This nesnai
tricky issue as several instances have been retaevdere
the Lustre server is in such a CPU bound state that
nothing can prove the node is up and operatiorndlitais
declared truly dead.

4.2. Console error messages

The path over which Lustre error messages are gpasse
from both compute and service nodes is via the LO
console and the CRMS network. Lustre is notoriows f
generating at least one error message when angsequ
exceeds its timeout. Often these timeout messages a
accompanied by Lustre service status change message
other debugging data. Considering the case whe@Q9
clients each send 160 connect messages and 73%nof t
timeout, there are at least 240 messages outputlipet
for a total message count of 4,650,000. These messa
are all generated at nearly the same time and R
network as a whole was unable to cope. The regulbiss
of the CRMS network disabled the same mechanisms by
which the machine can be controlled. The effecttton
Cray XT was unique due to a combined console and
command-control network.

Certainly improving the CRMS network to cope with
misbehaving subsystems is paramount to stability, b
Lustre is not free of responsibility. Lustre ne¢éalsespect
the boundaries of the system and to contain ithaling
the events that are likely to generate huge volunfes
console traffic. An examination of customer coerslolgs
was performed to get a list of the worst offendergor
messages. These messages were reworked or removed
entirely. Lustre was also modified to impose anralle
rate based limit on the number of error messages to
provide a final layer of protection against futsterms.

CUG 2008Proceedings 4 of 6

5. Looking forward

Certainly these scaling problems have been
challenging, but the outcome has proven satisfgctor
Lustre has been stretched to accommodate the Grage
XT configurations and is able to provide a reldiive
stable system service. Scaling the Cray XT hasiged
a wealth of information on how Lustre handles |@audl
where it is likely to encounter problems. Lustmadbuts
and the operations they cover have been and wiliruae
to be the culprits affecting system stability atalsc
Certainly the system configuration can exacerbat t
issues, but uncovering the problems is an impogtag in
continuing to improve the Lustre file system. Appaging
the structure of Lustre provides a system levespective
that allows for better understanding of potentssiues at
scale, and will supply the context through whiclufa
systems can be engineered with Lustre in mind.

As the Cray XT continues to evolve, it is important
that we continue to look at ways in which Lustrd giow
and how we can overcome new challenges. In paaticul
Compute Node Linux (CNL) changes nearly all of the
Lustre client software stack and operating syst€iL
brings the Lustre client being used on the CraytXThat
of a Linux based operating system. There are skvera
tradeoffs between Catamount with LibLustre and kinu
with the Lustre client that are directly relatedstrale. By
understanding the differences in the Lustre client
semantics, we can identify areas of concern witdtiomn
to scale.

5.1. Compute Node Linux

In Catamount and LibLustre, the life of the Lustre
client is tied directly to the life of the appliaat. Lustre
is mounted at application start up and is unmourted
application death. Catamount is unable to takeusict
Lustre locks that live across system call boundaaie the
operating system does not provide for interrupton is
unable to processes asynchronous events from tieelu
servers in finite time. CNL provides the Lustresali as a
system service; the client lives from node boofiluhe
node is shut down. CNL also does not suffer the
limitations with respect to asynchronous Lustreussis,
allowing locks to be taken on various resourcesesth
locks are a new resource that is distributed actbss
system, and as such the assumptions around lockvioeh
and revocation are subject to breaking under tieees
of scale [3].

Lock related RPCs are also covered by timeouts,
typically obd timeout/15 or 20 seconds for typically
configured Cray XT systems. Given our experiendd @i
similar timeout for Lustre service connect messages
encountering issues in this area is entirely farabte.
While we can adjust these timeouts to allow forgken

request servicing times, we need to ensure thare/aot
adversely affecting important quality of service
guarantees. This becomes even more important &snsys
scale is increased to where component failures rbeco
more typical than exception.

All of the Lustre timeouts need to balance between
handling load and reasonable detection of nodesstat
new feature, Adaptive Timeouts [4], is slated ttprdeal
with this delicate balancing act. It should allovask
timeouts to be set at a small value to allow rémedlth
detection but provide a mechanism by which these
timeouts can be expanded to cover the actual system
needs based on load and observed request resjioase t
It is also with Adaptive Timeouts that Cray migl able
to inject external system status into the timeoalus
providing a path by which we can use RCA heartbeat
other subsystems to enhance Lustre’'s knowledge of
system state.

Although CNL does increase the number of
distributed Lustre resources in use, the move taowki
running on the entire multi-core processor proviftgsa
significant reduction in the number of Lustre ctenrhis
reduces the largest scaling component in the client
service connection and server RPC processing rate
calculations. For systems with dual core procesdbis
effectively halves the RPC load on the Lustre gmstve
Initial system configurations for quad core prooessdo
not show the socket count growing significantlypaing
the Lustre client count to stabilize while stillcheasing
the computing power of the machine.

Acknowledgments

The author would like to highlight the immense
amount of help that has enabled this paper. Inquéat,
the wonderful folks in Cray Software Product Suppor
(SPS) and the site analysts have provided immealsura
help with problem diagnosis and data collection.nia
folks in Cray Software Development have been
instrumental in discussing whole system impacteetgd
behaviour and potential solutions. The engineersha
Lustre Group at Sun provided in-depth help withadat
analysis and problem resolution. The author wouddb a
like to thank his lovely wife for tolerating him.

References

1. Lustre File system.
http://Mmww.sun.com/software/products/lustre

2. Shane Canon, Don Maxwell, Josh Lothian, Kenneth
Matney, Makia Minich, H. Sarp Oral, Jeffrey
Becklehimer, Cathy Willis "XT7? Integrating and
Operating a Conjoined XT3+XT4 SystenCUG
2007.

CUG 2008Proceedings 5 of 6

3. Peta-Scale I/O with the Lustre file system.
http://www.sun.com/software/products/lustre/docs/Pe

a-Scale_wp.pdf

4. ibid

About the Author

Nicholas Henke is a Software Engineer with Cray Inc
He can be reached by E-Mail at nic@cray.com.

CUG 2008Proceedings 6 of 6

