

CUG 2008 HELSINKI · MAY 5-8, 2008 CROSSING THE BOUNDARIES

Stabilizing Lustre at Scale on the Cray XT

Nicholas Henke Cray Inc.

Introduction

Lustre as a system resource

The XT is unique

Compute core count & Lustre clients

Storage density

How does Lustre affect system stability?

System downtime or job loss

Lustre Connections and Timeouts

LNET

NID to NID peer connections

Lustre

🌞 UUID

Client to service connections

Multiple ride on single LNET connection

LNET Timeouts

provides for hardware health and progress

Lustre Timeouts

Service responsiveness

Trigger for resend and failover

obd_timeout of 300s

Other timeouts determined from this value

Scaling Challenges Overview

Configuration

- Storage density and OSTs
- OST per OSS ratio
 - Only place to change load balance
- Compute node count
 - Lustre clients on each

Example configuration
 320 TB in 160 OSTs on 20 OSS
 9,500 sockets, 19,000 compute cores
 19,000 lustre clients on CVN

Lustre RPC Load and Processing

Simpleio

Open, write, read, close to unique file per process

Mount timeouts

- # 152,000 connections per OSS, 3.04M total connections
- 4 15 second Lustre timeout
- Requires OSS processing rate of 10,133 RPCs/sec

Timeout adjustment

- 300s for connect, 600s for I/O
- Observed processing rate was ~700 RPCs/sec
 - 214s to process connect

RPC Processing, cont'd

UUID searches

- Check done for each new connection to prevent duplicates
- Scans linked-list, compares each UUID
- Each OST performs 180,500,000 comparisons for 19,000 client job
 - 1,444,000,000 comparisons per OSS with 8 OSTs

Hash table

- 🌞 128 keys
- Down to 11,017 comparisons per OST
 - ▶ 88,134 per OSS

Configuration Implications

Compared to similar size system

 23,000 clients, 288 TB on 144 OSTs on 72 TB

 8 OSTs per OSS was the tipping point

 Effectively trebling processing load

 System was reconfigured to help relieve problem

 8 TB max LUNs and OSTs
 Used 4TB, dropped OST count to 80
 4 OSTs per OSS

 Failover doubles the ratio

 16 OSTs per OSS would drastically reduce failover success

2nd Order Effects

Heavy I/O jobs show Portals timeouts from Lustre UUID fixes not in place yet, just tuned timeouts

Portals traces show no problems

Lustre not getting LND credits
 Messages stuck in Portals -> LND queue
 Lustre threads taking all of CPU

Lustre threads yield to scheduler

Add timestamp to LND messages Prevent false subsystem errors

Interactions with XT Subsystems

RCA Heartbeat

Lustre threads stealing all cycles

RCA thread not able to schedule reliably

- Bump priority of RCA thread
 - Add "tickles" in hot Lustre and kernel paths

Console messages

- Lustre is chatty on errors
- Load is similar to RPC generation
- Flooded CRMS network, lost control of machine

Future protection

- CRMS flood protection
- Lustre message rate limiting & quieting

On the Horizon

Learning from experiences # "Thinking in Lustre"

Lustre: CVN to CNL

🌞 CVN

- No locks
- Client per core
- 🌞 CNL
 - Locks and their timeouts
 - Client per node
- Adaptive Timeouts

Neat feature, but need to verify it scales

Lustre Isn't So Bad...

…It is what we do to it!

The late Richard Gisselquist had it right from the beginning "Lustre Is the Name of a Software Product

For Jim who thought I couldn't complete this without mentioning General Custer

Called up in the lustre muster For duty as a lustre buster, He began.

Taking aim at lustre cluster, He unleashed the lustre thruster He tested.

Quieting the lustre bluster Tarnishing the lustre luster, He found fault."