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ABSTRACT: Generating quadrilateral and hexahedral finite-element meshes is  
a serious bottleneck for large parallel simulations. When mesh generation is limited to  
serial  machines  and  element  counts  approach  a  billion,  this  bottleneck  becomes  a  
roadblock.  To surmount  this barrier a  parallel  mesh generation  library (Pamgen) has 
been developed that allows on-the-fly  scalable generation of  finite  element meshes for  
several simple geometries. It has been used to generate more that 1.1 billion elements on  
17,576  processors.  The  mesh  generation  strategy  used  in  this  implementation  will  be  
presented
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1. Introduction

To  overcome  the  challenge  of  producing  multi-
million finite element meshes for simulations using more 
than 1000 processors  a  library has been developed  that 
produces  each processor's  mesh as  an early step  of  the 
analysis execution. The specification for these meshes is 
provided  by terse  instructions  within the  analysis  input 
decks. This allows analysts to change the resolution of a 
simulation  by altering  a  few parameters.  It  also  allows 
them to execute their simulations on  an arbitrary number 
of processors without requiring any pre-processing.

The  mesh  generation  proceeds  through  steps  of 
decomposition,  local  element  creation,  and 
communication information generation. The final product 
of the library is a data structure that can be passed to an 
analysis code in the place of a mesh input file. Currently 
the library is limited to generating meshes of domains with 
cylindrical, tubular, and block shapes. Substantial control 
is allowed over the element density within these shapes. 
Boundary condition application  regions can be specified 
on the surfaces and interior of the mesh .

Development  of  this  capability  revealed  that  the 
parallel  mesh  generation  process  can  be  reduced  to 
answering a set of questions:

● What is the total number of elements?
● What processor does any element reside on?
● What is an element's connectivity?
● What are a node's coordinate values?
The answers to these questions can be leveraged to 

find:
● Which elements are on any particular processor.

● Which elements border an element.
● Which elements are on processor borders.
● Which nodes are shared on processor boundaries.

 Resolving these questions inductively, without resolution 
to communication, is essential for preserving scalability. 
Once  a  framework  for  posing  and  answering  these 
questions  for  a  particular  geometry  is  established, 
expanding the capability to support additional geometries 
is straightforward.

2. Enabling /Limiting Assumptions 

All Processors  Have Identical Information
Every processor  has  all  the information required  to 

generate  the  entire  mesh.  Since  each  processor  has  the 
same information, it is capable of calculating the answer 
to  any  mesh  related  question  and  communication  is 
unnecessary.   This  reliance  on  calculation  requires  the 
next assumption. 

All Processor are Identical (except for their ids)
If it can be assumed that each processor will produce 

the  same  results  from  identical  calculations  we  can 
perform calculations identically instead of distributing the 
result  of a single calculation or  averaging the results of 
multiple calculations.

Communication is Unavailable
Assuming communication  is  unavailable  guarantees 

the parallel scalability of the library.  All calculations are 
made locally without resorting to inter-processor queries. 
This does limit the use mesh-wide iterative strategies such 
as of elliptic smoothers.  Eschewing communication also 
significantly  aids  testing  and  development.  It  makes  it 
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possible to test the library in serial by generating the mesh 
for processor n of a total of m. 

Meshes Consist of Structured Block Topologies
Limiting the topologies of the meshes that could be 

generated  enables  algebraic  calculations  of  all  mesh 
topology.  

The  topologies  of  the  finite  element  meshes  was 
limited  to  one  or  more  blocks  of   elements  with  a 
� regular�  or � structured�  topology. For those meshes that 
consisted of more than one structured block there were a 
limited  number of  ways for  the  blocks to  connect  with 
each other.

Within a structured block, calculation of an element's 
connectivity depended on knowing only the extents of the 
structured block and the � i,j,k�  indices of  the element's 
primary node. 

3. Execution Stages

Since  communication  is  unavailable,  the  mesh 
generation process can be discussed in terms of a single 
processor.  

Information Distribution
The  mesh  generation  process  begins  with  each 

processor  receiving  a  terse  description  of  the  mesh's 
geometry and topology.  This information is first used to 
calculate total quantities for the mesh such as the number 
of nodes, elements, edges, and faces. From this it can be 
determined  if  there  is  a  possibility  of  exceeding  the 
address space available for generating the mesh.

Decomposition
An identical decomposition calculation is performed 

on each processor. The most generally successful of the 
available  decomposition  strategies  performs  a  bisection 
decomposition  on  the  topological  structured  blocks  of 
mesh. The result of  this decomposition is  a  method for 
determining the processor location of any element of the 
mesh. Using this method, a list is compiled of all elements 
local to the processor.

� Serial�  Information Generation
The  � serial�  information  consists  of  the  nodal 

geometry and connectivity of  each element local  to  the 
processor.  This is  produced by walking the list  of local 
elements  and  compiling  a  list  of  local  nodes  using 
information about from the structured block topology and 
individual element connectivity. This list of nodes is then 
made unique and the indices of the unique nodes are used 
to  populate  the  connectivity  array  of  the  local  element 
blocks. The coordinates of the local nodes are calculated 
based on their topological indices in the structured block 
and the geometric description.

The  lists  of  nodes  and  element  faces  to  which 
boundary  conditions  may be  applied  are  also  collected 
during the � serial�  information generation.

� Parallel�  Information Generation
The � parallel�  information consists of lists of nodes 

on  processor  boundaries  that  correspond  to  identically 
ordered lists on neighboring processors.

This  information  is  gathered  by  visiting  the  local 
elements and exploiting the local topology information to 
calculate  the  ids  of  all  elements connected  to  the  local 
element by a face, edge, or corner. These are the element's 
element neighbors. The decomposition information is then 
exploited  to  calculate  the  processor  of  each  element 
neighbor. If the element neighbor is local no further action 
is taken. If the element is on an adjacent processor, then 
the face, edge, or corner nodes through which that element 
is connected are placed in a list that corresponds to the 
neighboring  processor.  After  this  process  has  been 
completed  for  all  local  elements,  the  lists  of  nodes are 
sorted  by  the  nodes'  unique  global  id.  This  results  in 
corresponding  synchronized  node  lists  on  adjacent 
processors.

Geometric Transformations
The  final  step  in  the  mesh  generation  is  the 

application of arbitrary geometric transformations. While 
the  topological  limitations  on  the  mesh  are  driven  by 
difficulty  in  calculating   element  connectivities,  the 
geometric  limitations  are  driven  by  the  difficulty  of 
producing terse descriptions of complex geometries.  This 
limitation on geometric complexity is somewhat alleviated 
by allowing arbitrary geometric modifications.

The terse mesh description can be associated with a 
user  provided  subroutine  that  is  evaluated  using  each 
node's original (based on terse specification) coordinates 
to  calculate  new  nodal  coordinates.  This  general 
geometric  transformation  allows  distortion  of  the  terse 
geometry description into arbitrary shapes.

4. Library Interface Implementation

The library is accessed through its API in two stages, 
mesh creation and mesh query.

Mesh Creation Interface
Meshes are  created  within the  library by the client 

program through a single function call:

int Create_Pamgen_Mesh(char * mesh_description,
                    int dimension,
                    int rank,
                    int num_procs);

It  creates  a  representation  of  the  mesh  with 
dimensionality  dimension for  the  processor  of  the 
specified  rank out of the total  num_procs.  It returns an 
enumerated error code.  

The mesh_description input variable points to a null 
terminated  string  that  holds  a  terse  description  of  the 
desired mesh. Examples of this description are given in a 
following section.
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 Mesh Query Interface
A mesh may be queried only after it has been created. 

All of the mesh query functions of the Pamgen library are 
based on the EXODUS II [1]  and NEMESIS [2]  APIs. 
These  APIs  were  written  to  standardize  a  platform 
independent interface for writing and reading binary mesh 
specification files.  NEMESIS is a parallel  extension of 
the serial EXODUS II API the Pamgen function names are 
formed  by  prefixing  the  EXODUS  II  or  NEMESIS 
functions names with im_.  The remainder of the function 
signature and operation remains unchanged.

The client program builds up its model of the local 
finite  element  mesh  and  inter-processor  communication 
information through a sequence of query functions. Initial 
functions  provide  the  number  of  local  nodes,  elements, 
node sets, and side sets. Subsequent functions provide the 
connectivity  of  the  local  elements  the  local  nodes' 
coordinates.  Additional  query  functions  provide  inter-
processor communication information.

Complete documentation of  the query functions  are 
available in reference [3]. 

5. Capabilities

Topologies
Pamgen  can  create  meshes  with  the  following 

topologies:
● Cubes
● Solid Cylinders
● Hollow Cylinders

Geometries
Pamgen allows terse descriptions of cube,  cylinder, 

partial  cylinder,  partial  solid  cylinder,  and  solid 
cylindrical shapes. 

Geometry Modification
A user supplied function may be supplied to apply a 

general  transformation  to  the  standard  available  forms. 
The  function  is  delimited  by double  quotes  and  allows 
most of the functionality of the � C�  language.

Boundary Conditions
Regions of the mesh may be called out for boundary 

condition application in the form of node sets and side 
sets. Node sets are lists of nodes, and side sets are lists of 
element faces. Node sets and side sets may be specified on 
any exterior face, edge, or corner of a mesh. They may 
also be called out on the face edge or corner of material 
blocks within the a mesh.

Decompositions
There  are  several  decomposition  options  available 

within Pamgen. All of them are simple enough to require 
no communication or iteration.

The  default  decomposition  optimally  bisects 
repeatedly.  This decomposition is  most successful when 
the number of processors is the product of multiple prime 
numbers. 

A sequential decomposition is available that assigns 
an equal number of elements to each processor  in their 
numerical  order.  This  is  guaranteed  to  produce  poor 
decompositions  for  large  numbers  of  processors,  but  it 
may be optimal for small numbers of processors.  

A  user  determined  decomposition  is  available  by 
which  the  number  of  processors  in  each  topological 
direction  is  supplied  by  the  user.  The  product  of  the 
number  of  processors  in  each  direction  must  equal  the 
total number of processors.

A  random  decomposition  is  also  available.  This 
strategy  assigns  elements  randomly  to  processors.  It  is 
very useful  for  testing the  robustness  of  inter-processor 
communication strategies.

6. Examples

The  following  examples  show  the  terse  mesh 
description  passed  to  the  Pamgen  library  and  an 
illustration of the resulting mesh. Complete documentation 
of the Pamgen interface is available in reference [3].

A 3D hexahedral mesh domain consisting of eight 
different material blocks with element sizes graded in 
the � Y�  coordinate direction. 

mesh
  brick
    numz 2
      zblock 1 2. interval 5
      zblock 2 8. interval 4
    numx 2
      xblock 1 5.0 interval 5
      xblock 2 5.0 interval 5
    numy 2
      yblock 1 10. first size 1. last size .1
      yblock 2 10. first size .1 last size 1.
  end
end
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A ninety degree section of a solid cylinder with the 
center filled by two transition blocks of elements.

mesh
  radial trisection
    trisection blocks, 2
    zmin -0.00075
    numz 1
      zblock 1 1. interval 4
    numr 3
      rblock 1 2.0 interval 4
      rblock 2 3.0 interval 4
      rblock 3 4.0 interval 4
    numa 1
      ablock 1 90. interval 12
  end
end

A 2D mesh consisting of nine material blocks that is 
transformed using a user supplied function.   

mesh
  rectilinear
    nx = 10
    ny = 10
    bx = 3
    by = 3
    gmin = -1.0 -1.0
    gmax = 1.0 1.0
  end
  user defined geometry transformation
    "
      double r = sqrt(inxcoord*inxcoord 
+inycoord*inycoord);
      double theta = atan2(inycoord,inxcoord);
      if(r > 0.5)
      {
  theta = theta + (3.14159 / 4.0)*((r-0.5)/0.5);
      outxcoord = r*cos(theta);
      outycoord = r*sin(theta);
      }
    "
  end
end
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A 3D solid cylinder that is decomposed for eight 
processors by explicitly specifying the number of cuts to  
make in the � j�  topological direction.

mesh
  radial trisection
    trisection blocks, 4
    numz 1
      zblock 1 4.0 interval 1
    numr 3
      rblock 1 2. interval 4
      rblock 2 3. interval 4
      rblock 3 5. interval 4
    numa 1
      ablock 1 360. interval 32
  end
  decomposition strategy
    numprocs j, 8
  end
end

7. Availability and Distribution

The Pamgen library is available under the terms of 
the GNU Lesser General Public License.  It is distributed 
as  a  component  under  the  Trilinos  Library Distribution 
System. It may be found at: 

http://trilinos.sandia.gov/packages/pamgen

References

[1] L. A. Schoof and V. R. Yarberry. EXODUS II: A 
Finite Element Data Model. Technical report 
SAND92-2137, Sandia National Laboratories, 
Albuquerque, NM, November 1995.

[2] G. L. Hennigan, M. St. John, and J. N. Shadid. 
NEMESIS I: A set of functions for describing 
unstructured finite-element data on parallel 
computers. Technical report, Sandia National 
Laboratories, Albuquerque, NM, May 1998.

[3] D. M. Hensinger, R. A. Drake, J. G. Foucar, and T. A. 
Gardiner. Pamgen, A Library for Parallel 
Generation of Simple Finite Element Meshes. 
Technical report SAND08-1933, Sandia National 
Laboratories, Albuquerque, NM, April 2008

Acknowledgments

Thanks to Chris Garasi for asking forcefully for big 
quality meshes. Thanks to Tom  Gardiner for the bisection 
decomposition routines in Pamgen.  

About the Author

David  Hensinger  dmhensi@sandia.gov is  a  staff 
member  at  Sandia  Nation  Laboratories  in  the 
Computational Shock and Multi-Physics group. P.O. Box 
5800, Albuquerque NM,  87185-0378

 

CUG 2008 Proceedings 5 of 5

mailto:dmhensi@sandia.govare
http://trilinos.sandia.gov/packages/pamgen

	1. Introduction
	2. Enabling /Limiting Assumptions 
	All Processors  Have Identical Information
	All Processor are Identical (except for their ids)
	Communication is Unavailable
	Meshes Consist of Structured Block Topologies

	3. Execution Stages
	Information Distribution
	Decomposition
	“Serial” Information Generation
	“Parallel” Information Generation
	Geometric Transformations

	4. Library Interface Implementation
	Mesh Creation Interface
	 Mesh Query Interface

	5. Capabilities
	Topologies
	Geometries
	Geometry Modification
	Boundary Conditions
	Decompositions

	6. Examples
	A 3D hexahedral mesh domain consisting of eight different material blocks with element sizes graded in the “Y” coordinate direction. 
	A ninety degree section of a solid cylinder with the center filled by two transition blocks of elements.
	A 2D mesh consisting of nine material blocks that is transformed using a user supplied function.   
	A 3D solid cylinder that is decomposed for eight processors by explicitly specifying the number of cuts to make in the “j” topological direction.

	7. Availability and Distribution
	References
	Acknowledgments
	About the Author
	 

