
Pamgen, a Parallel Finite-Element Mesh Generation Library

David Hensinger, Sandia National Laboratories;

ABSTRACT: Generating quadrilateral and hexahedral finite-element meshes is
a serious bottleneck for large parallel simulations. When mesh generation is limited to
serial machines and element counts approach a billion, this bottleneck becomes a
roadblock. To surmount this barrier a parallel mesh generation library (Pamgen) has
been developed that allows on-the-fly scalable generation of finite element meshes for
several simple geometries. It has been used to generate more that 1.1 billion elements on
17,576 processors. The mesh generation strategy used in this implementation will be
presented

KEYWORDS: Finite Element, Mesh Generation

1. Introduction

To overcome the challenge of producing multi-
million finite element meshes for simulations using more
than 1000 processors a library has been developed that
produces each processor's mesh as an early step of the
analysis execution. The specification for these meshes is
provided by terse instructions within the analysis input
decks. This allows analysts to change the resolution of a
simulation by altering a few parameters. It also allows
them to execute their simulations on an arbitrary number
of processors without requiring any pre-processing.

The mesh generation proceeds through steps of
decomposition, local element creation, and
communication information generation. The final product
of the library is a data structure that can be passed to an
analysis code in the place of a mesh input file. Currently
the library is limited to generating meshes of domains with
cylindrical, tubular, and block shapes. Substantial control
is allowed over the element density within these shapes.
Boundary condition application regions can be specified
on the surfaces and interior of the mesh .

Development of this capability revealed that the
parallel mesh generation process can be reduced to
answering a set of questions:

● What is the total number of elements?
● What processor does any element reside on?
● What is an element's connectivity?
● What are a node's coordinate values?
The answers to these questions can be leveraged to

find:
● Which elements are on any particular processor.

● Which elements border an element.
● Which elements are on processor borders.
● Which nodes are shared on processor boundaries.

 Resolving these questions inductively, without resolution
to communication, is essential for preserving scalability.
Once a framework for posing and answering these
questions for a particular geometry is established,
expanding the capability to support additional geometries
is straightforward.

2. Enabling /Limiting Assumptions

All Processors Have Identical Information
Every processor has all the information required to

generate the entire mesh. Since each processor has the
same information, it is capable of calculating the answer
to any mesh related question and communication is
unnecessary. This reliance on calculation requires the
next assumption.

All Processor are Identical (except for their ids)
If it can be assumed that each processor will produce

the same results from identical calculations we can
perform calculations identically instead of distributing the
result of a single calculation or averaging the results of
multiple calculations.

Communication is Unavailable
Assuming communication is unavailable guarantees

the parallel scalability of the library. All calculations are
made locally without resorting to inter-processor queries.
This does limit the use mesh-wide iterative strategies such
as of elliptic smoothers. Eschewing communication also
significantly aids testing and development. It makes it

CUG 2008 Proceedings 1 of 5

possible to test the library in serial by generating the mesh
for processor n of a total of m.

Meshes Consist of Structured Block Topologies
Limiting the topologies of the meshes that could be

generated enables algebraic calculations of all mesh
topology.

The topologies of the finite element meshes was
limited to one or more blocks of elements with a
� regular� or � structured� topology. For those meshes that
consisted of more than one structured block there were a
limited number of ways for the blocks to connect with
each other.

Within a structured block, calculation of an element's
connectivity depended on knowing only the extents of the
structured block and the � i,j,k� indices of the element's
primary node.

3. Execution Stages

Since communication is unavailable, the mesh
generation process can be discussed in terms of a single
processor.

Information Distribution
The mesh generation process begins with each

processor receiving a terse description of the mesh's
geometry and topology. This information is first used to
calculate total quantities for the mesh such as the number
of nodes, elements, edges, and faces. From this it can be
determined if there is a possibility of exceeding the
address space available for generating the mesh.

Decomposition
An identical decomposition calculation is performed

on each processor. The most generally successful of the
available decomposition strategies performs a bisection
decomposition on the topological structured blocks of
mesh. The result of this decomposition is a method for
determining the processor location of any element of the
mesh. Using this method, a list is compiled of all elements
local to the processor.

� Serial� Information Generation
The � serial� information consists of the nodal

geometry and connectivity of each element local to the
processor. This is produced by walking the list of local
elements and compiling a list of local nodes using
information about from the structured block topology and
individual element connectivity. This list of nodes is then
made unique and the indices of the unique nodes are used
to populate the connectivity array of the local element
blocks. The coordinates of the local nodes are calculated
based on their topological indices in the structured block
and the geometric description.

The lists of nodes and element faces to which
boundary conditions may be applied are also collected
during the � serial� information generation.

� Parallel� Information Generation
The � parallel� information consists of lists of nodes

on processor boundaries that correspond to identically
ordered lists on neighboring processors.

This information is gathered by visiting the local
elements and exploiting the local topology information to
calculate the ids of all elements connected to the local
element by a face, edge, or corner. These are the element's
element neighbors. The decomposition information is then
exploited to calculate the processor of each element
neighbor. If the element neighbor is local no further action
is taken. If the element is on an adjacent processor, then
the face, edge, or corner nodes through which that element
is connected are placed in a list that corresponds to the
neighboring processor. After this process has been
completed for all local elements, the lists of nodes are
sorted by the nodes' unique global id. This results in
corresponding synchronized node lists on adjacent
processors.

Geometric Transformations
The final step in the mesh generation is the

application of arbitrary geometric transformations. While
the topological limitations on the mesh are driven by
difficulty in calculating element connectivities, the
geometric limitations are driven by the difficulty of
producing terse descriptions of complex geometries. This
limitation on geometric complexity is somewhat alleviated
by allowing arbitrary geometric modifications.

The terse mesh description can be associated with a
user provided subroutine that is evaluated using each
node's original (based on terse specification) coordinates
to calculate new nodal coordinates. This general
geometric transformation allows distortion of the terse
geometry description into arbitrary shapes.

4. Library Interface Implementation

The library is accessed through its API in two stages,
mesh creation and mesh query.

Mesh Creation Interface
Meshes are created within the library by the client

program through a single function call:

int Create_Pamgen_Mesh(char * mesh_description,
 int dimension,
 int rank,
 int num_procs);

It creates a representation of the mesh with
dimensionality dimension for the processor of the
specified rank out of the total num_procs. It returns an
enumerated error code.

The mesh_description input variable points to a null
terminated string that holds a terse description of the
desired mesh. Examples of this description are given in a
following section.

CUG 2008 Proceedings 2 of 5

 Mesh Query Interface
A mesh may be queried only after it has been created.

All of the mesh query functions of the Pamgen library are
based on the EXODUS II [1] and NEMESIS [2] APIs.
These APIs were written to standardize a platform
independent interface for writing and reading binary mesh
specification files. NEMESIS is a parallel extension of
the serial EXODUS II API the Pamgen function names are
formed by prefixing the EXODUS II or NEMESIS
functions names with im_. The remainder of the function
signature and operation remains unchanged.

The client program builds up its model of the local
finite element mesh and inter-processor communication
information through a sequence of query functions. Initial
functions provide the number of local nodes, elements,
node sets, and side sets. Subsequent functions provide the
connectivity of the local elements the local nodes'
coordinates. Additional query functions provide inter-
processor communication information.

Complete documentation of the query functions are
available in reference [3].

5. Capabilities

Topologies
Pamgen can create meshes with the following

topologies:
● Cubes
● Solid Cylinders
● Hollow Cylinders

Geometries
Pamgen allows terse descriptions of cube, cylinder,

partial cylinder, partial solid cylinder, and solid
cylindrical shapes.

Geometry Modification
A user supplied function may be supplied to apply a

general transformation to the standard available forms.
The function is delimited by double quotes and allows
most of the functionality of the � C� language.

Boundary Conditions
Regions of the mesh may be called out for boundary

condition application in the form of node sets and side
sets. Node sets are lists of nodes, and side sets are lists of
element faces. Node sets and side sets may be specified on
any exterior face, edge, or corner of a mesh. They may
also be called out on the face edge or corner of material
blocks within the a mesh.

Decompositions
There are several decomposition options available

within Pamgen. All of them are simple enough to require
no communication or iteration.

The default decomposition optimally bisects
repeatedly. This decomposition is most successful when
the number of processors is the product of multiple prime
numbers.

A sequential decomposition is available that assigns
an equal number of elements to each processor in their
numerical order. This is guaranteed to produce poor
decompositions for large numbers of processors, but it
may be optimal for small numbers of processors.

A user determined decomposition is available by
which the number of processors in each topological
direction is supplied by the user. The product of the
number of processors in each direction must equal the
total number of processors.

A random decomposition is also available. This
strategy assigns elements randomly to processors. It is
very useful for testing the robustness of inter-processor
communication strategies.

6. Examples

The following examples show the terse mesh
description passed to the Pamgen library and an
illustration of the resulting mesh. Complete documentation
of the Pamgen interface is available in reference [3].

A 3D hexahedral mesh domain consisting of eight
different material blocks with element sizes graded in
the � Y� coordinate direction.

mesh
 brick
 numz 2
 zblock 1 2. interval 5
 zblock 2 8. interval 4
 numx 2
 xblock 1 5.0 interval 5
 xblock 2 5.0 interval 5
 numy 2
 yblock 1 10. first size 1. last size .1
 yblock 2 10. first size .1 last size 1.
 end
end

CUG 2008 Proceedings 3 of 5

A ninety degree section of a solid cylinder with the
center filled by two transition blocks of elements.

mesh
 radial trisection
 trisection blocks, 2
 zmin -0.00075
 numz 1
 zblock 1 1. interval 4
 numr 3
 rblock 1 2.0 interval 4
 rblock 2 3.0 interval 4
 rblock 3 4.0 interval 4
 numa 1
 ablock 1 90. interval 12
 end
end

A 2D mesh consisting of nine material blocks that is
transformed using a user supplied function.

mesh
 rectilinear
 nx = 10
 ny = 10
 bx = 3
 by = 3
 gmin = -1.0 -1.0
 gmax = 1.0 1.0
 end
 user defined geometry transformation
 "
 double r = sqrt(inxcoord*inxcoord
+inycoord*inycoord);
 double theta = atan2(inycoord,inxcoord);
 if(r > 0.5)
 {
 theta = theta + (3.14159 / 4.0)*((r-0.5)/0.5);
 outxcoord = r*cos(theta);
 outycoord = r*sin(theta);
 }
 "
 end
end

CUG 2008 Proceedings 4 of 5

A 3D solid cylinder that is decomposed for eight
processors by explicitly specifying the number of cuts to
make in the � j� topological direction.

mesh
 radial trisection
 trisection blocks, 4
 numz 1
 zblock 1 4.0 interval 1
 numr 3
 rblock 1 2. interval 4
 rblock 2 3. interval 4
 rblock 3 5. interval 4
 numa 1
 ablock 1 360. interval 32
 end
 decomposition strategy
 numprocs j, 8
 end
end

7. Availability and Distribution

The Pamgen library is available under the terms of
the GNU Lesser General Public License. It is distributed
as a component under the Trilinos Library Distribution
System. It may be found at:

http://trilinos.sandia.gov/packages/pamgen

References

[1] L. A. Schoof and V. R. Yarberry. EXODUS II: A
Finite Element Data Model. Technical report
SAND92-2137, Sandia National Laboratories,
Albuquerque, NM, November 1995.

[2] G. L. Hennigan, M. St. John, and J. N. Shadid.
NEMESIS I: A set of functions for describing
unstructured finite-element data on parallel
computers. Technical report, Sandia National
Laboratories, Albuquerque, NM, May 1998.

[3] D. M. Hensinger, R. A. Drake, J. G. Foucar, and T. A.
Gardiner. Pamgen, A Library for Parallel
Generation of Simple Finite Element Meshes.
Technical report SAND08-1933, Sandia National
Laboratories, Albuquerque, NM, April 2008

Acknowledgments

Thanks to Chris Garasi for asking forcefully for big
quality meshes. Thanks to Tom Gardiner for the bisection
decomposition routines in Pamgen.

About the Author

David Hensinger dmhensi@sandia.gov is a staff
member at Sandia Nation Laboratories in the
Computational Shock and Multi-Physics group. P.O. Box
5800, Albuquerque NM, 87185-0378

CUG 2008 Proceedings 5 of 5

mailto:dmhensi@sandia.govare
http://trilinos.sandia.gov/packages/pamgen

	1. Introduction
	2. Enabling /Limiting Assumptions
	All Processors Have Identical Information
	All Processor are Identical (except for their ids)
	Communication is Unavailable
	Meshes Consist of Structured Block Topologies

	3. Execution Stages
	Information Distribution
	Decomposition
	“Serial” Information Generation
	“Parallel” Information Generation
	Geometric Transformations

	4. Library Interface Implementation
	Mesh Creation Interface
	 Mesh Query Interface

	5. Capabilities
	Topologies
	Geometries
	Geometry Modification
	Boundary Conditions
	Decompositions

	6. Examples
	A 3D hexahedral mesh domain consisting of eight different material blocks with element sizes graded in the “Y” coordinate direction.
	A ninety degree section of a solid cylinder with the center filled by two transition blocks of elements.
	A 2D mesh consisting of nine material blocks that is transformed using a user supplied function.
	A 3D solid cylinder that is decomposed for eight processors by explicitly specifying the number of cuts to make in the “j” topological direction.

	7. Availability and Distribution
	References
	Acknowledgments
	About the Author
	

