
presented by

Restoring the CPA to CNL

Mark Fahey (for Don Maxwell)Mark Fahey (for Don Maxwell)

2

• Why?

• How?

• Database Layout

• Populating the Database

• Job Failures

• Uses of Database

• Issues

• Future

3

ORNL ALPS Accounting Database
Implementation

• Why?
− Need for same functionality that existed in CPA (Catamount)

• Accounting
− Statistics
− Number of failed jobs, etc.

• Troubleshooting
− Site scripts used to determine which application is causing problems on a

given node at a given time
− Detecting orphaned reservations

• How?
− Use SEC (Simple Event Correlator) to watch the MOAB event logs

• SEC (realtime) approach needed to support troubleshooting tools
• Start and End records call perl script which populates database tables
• Perl script gathers information from 5 different sources

− MOAB event logs
− TORQUE accounting logs
− MOAB partition logs
− ALPS apsched logs
− Syslogs

Database Organization

• Mostly modeled after the CPA database
− Jobs

• Job table
• Job processor table
• Job failure table

− ALPS
• ALPS table
• ALPS processor table
• Potentially multiple apruns in a job
• Tied to Job table using keys

4

Job Tables
CREATE TABLE job_accounting (

 hostname VARCHAR(80),

 reservation_id BIGINT UNSIGNED NOT NULL,

 session_id BIGINT UNSIGNED NOT NULL,

 queue VARCHAR(80),

 job_id VARCHAR(80),

 job_name VARCHAR(80),

 job_duration INTEGER UNSIGNED,

 walltime INTEGER UNSIGNED,

 account VARCHAR(80),

 uid VARCHAR(64) NOT NULL,

 exec_host VARCHAR(80),

 create_time DATETIME NOT NULL,

 destroy_time DATETIME,

 job_err INTEGER UNSIGNED,

 num_of_compute_processors INTEGER UNSIGNED NOT NULL,

 num_of_service_processors INTEGER UNSIGNED NOT NULL,

 cleaned_by ENUM ('client', 'ras'),

 INDEX (hostname, reservation_id, session_id)

) TYPE=InnoDB;

5

Job Tables (cont’d)

CREATE TABLE job_accounting_processor_list (
 hostname VARCHAR(80),
 reservation_id BIGINT UNSIGNED NOT NULL,
 session_id BIGINT UNSIGNED NOT NULL,
 processor_id INTEGER UNSIGNED NOT NULL,
 INDEX (hostname, reservation_id, session_id),
 PRIMARY KEY (hostname, reservation_id, session_id,

processor_id),
 FOREIGN KEY (hostname, reservation_id, session_id)

REFERENCES job_accounting(hostname, reservation_id,
session_id) ON UPDATE CASCADE

) TYPE=InnoDB;

6

ALPS Tables
CREATE TABLE alps_accounting (
 hostname VARCHAR(80),
 apid BIGINT UNSIGNED NOT NULL,
 reservation_id BIGINT UNSIGNED NOT NULL,
 session_id BIGINT UNSIGNED NOT NULL,
 login_processor INTEGER UNSIGNED NOT NULL,
 process_id INTEGER UNSIGNED NOT NULL,
 command VARCHAR(255),
 create_time DATETIME NOT NULL,
 destroy_time DATETIME,
 num_of_compute_processors INTEGER UNSIGNED NOT NULL,
 num_of_service_processors INTEGER UNSIGNED NOT NULL,
 exit_info VARCHAR(255),
 INDEX (hostname, reservation_id, session_id),
 PRIMARY KEY (hostname, apid),
 FOREIGN KEY (hostname, reservation_id, session_id) REFERENCES

job_accounting(hostname, reservation_id, session_id) ON UPDATE CASCADE
) TYPE=InnoDB;

7

ALPS Tables (cont’d)

CREATE TABLE alps_accounting_processor_list (

 hostname VARCHAR(80),

 apid BIGINT UNSIGNED NOT NULL,

 processor_id INTEGER UNSIGNED NOT NULL,

 PRIMARY KEY (hostname, apid, processor_id),

 INDEX (hostname, apid),

 FOREIGN KEY (hostname, apid) REFERENCES
alps_accounting(hostname, apid)

) TYPE=InnoDB;

8

Job Failure Table

9

CREATE TABLE job_failure (
 hostname VARCHAR(80),
 reservation_id BIGINT UNSIGNED NOT NULL,
 session_id BIGINT UNSIGNED NOT NULL,
 job_id VARCHAR(80),
 fail_time DATETIME NOT NULL,
 category ENUM ('hardware', 'software'),
 reason ENUM ('user', 'system'),
 description VARCHAR(80),
 text VARCHAR(512),
 INDEX (hostname, reservation_id, session_id),
 FOREIGN KEY (hostname, reservation_id, session_id)
REFERENCES job_accounting(hostname, reservation_id,
session_id) ON UPDATE CASCADE
) TYPE=InnoDB;

ORNL ALPS Database

10

JOB ALPS

ALPS

JOB
Processor

ALPS
Processor

ORNL ALPS Database
(cont’d)

11

JOB

JOB
Failure

ORNL ALPS Database Sources

MOAB
Start

Record

populate_alps_tables.pl

R
E
S
I
D

N
I
D
S

Job Accounting
Table

Job Accounting
Processor List

Table

Q
S

U
B

D
A

T
A

R
E

S
I

D

R
E
S

I
D

N
I
D
S

Job Accounting Table

SEC
(Simple Event Correlator)

J
O
B
I
D

C
R
E
A
T
I
O
N

Q
S
U
B
D
A
T
A

S
E

S
S

I
D

S
E
S
S

I
D

ORNL ALPS Database Sources

SEC
(Simple Event

Correlator)

MOAB End
Record

RESID populate_alps_tables.pl

A
P

I
D
S

ALPS
apsched

Logs
syslogs

A
P

I
D

S

A
P

N
I

D
S

Job Accounting
Table

ALPS
Processor List

Table

S
E
S
S
I
D

A
P
N

I
D
S

J
O

B
I

D

R
E
S

I
D

T
I

M
E

S

C
M

D
P

I
D

L
O

G
I

N

J
O

B
E

N
D

SY
SL
O
G
D
AT
A

ALPS
Accounting

Table

A
P

I
D
S

ALPS Accounting Table

JOBID

S
E

S
S

I
D

SESSID

JOBEND
R
E
S
I
D

13

Job Failures
• Primary focus to this point has been hardware failures

− SEC watching console/netwatch/consumer logs
on SMW
• Failure records generated

− Date/Time
− Node
− Category (hardware/software)
− Reason (user/system)
− Description (e.g.)

• Machine Check Exception
• Seastar Heartbeat Fault
• Kernel Panic
• Seastar Lockup
• Link Inactive
• Out of Memory

• Using Job tables, exact job killed by hardware
event is found and job failure record created

14

Job Failures
• Catastrophic errors (link inactive/SCSI errors) are

handled by determining from the database what was
running at the time the event happened. Failure
records are then generated for each job.

• Many SEC rule dependencies developed to attempt
to capture the real issue when multiple events are
seen for one problem.

• Further work
− Capturing errors from aprun

• aprun wrapper has been developed
− Save the exit status of each aprun command
− Update the ALPS table exit_info field

• Could this instead be tied into xtok (node health)
via a userexit?

15

Job Failures
• A nice outcome to all this work was the development

of a concise machine status

16

2008-04-18 20:49:58 Machine Boot
2008-04-19 16:05:07 Node c25-0c0s4n0 Machine Check Exception Bank 4 Status fe0020003f080813 Addr 1f0092ac0
2008-04-19 16:05:59 Node c25-0c0s4n0 SeaStar Heartbeat Fault Explicit Portals firmware panic - Check the opteron
2008-04-20 00:43:57 Node c17-2c2s6n1 Machine Check Exception Bank 4 Status fe46200085080813 Addr 178062c40
2008-04-20 00:44:11 Node c17-2c2s6n1 SeaStar Heartbeat Fault Explicit Portals firmware panic - Check the opteron
2008-04-20 02:39:12 Node c11-3c0s2n3 Machine Check Exception Bank 4 Status fe5fa00094080813
2008-04-20 02:39:22 Node c11-3c0s2n3 Heartbeat Fault with No Seastar Heartbeat Fault
2008-04-20 05:47:57 Node c30-3c1s1n0 Heartbeat Fault with No Seastar Heartbeat Fault
2008-04-20 09:30:10 Node c30-3c1s1n0 Kernel Panic pop
2008-04-20 12:05:29 Node c23-2c0s5n2 SeaStar Heartbeat Fault Explicit Portals firmware panic - Check the opteron
2008-04-20 19:41:10 Node c10-2c0s5n0 Machine Check Exception Bank 4 Status fc03a000aa080a13 Addr 15910e600
2008-04-20 19:41:51 Node c10-2c0s5n0 SeaStar Heartbeat Fault Explicit Portals firmware panic - Check the opteron
2008-04-20 19:44:27 Node c29-0c2s1n0 SeaStar Heartbeat Fault Explicit Portals firmware panic - Check the opteron
2008-04-20 22:16:42 Recv Sequence Error c10-2c0s4s0l2 c10-2c0s5s0l3
2008-04-20 22:16:42 Link Inactive c10-2c0s4s0l2 c10-2c0s5s0l3
2008-04-20 22:18:24 Machine Shutdown

What can be done with all this data?
• Daily troubleshooting

− Tools can be written to query the database

17

[2008-05-01 00:39:48][c25-1c1s0n0]Kernel panic - not syncing: Machine check  console message

> find_job [2008-05-01 00:39:48][c25-1c1s0n0]  utility to find the job that was impacted
Searching for job on 9888 at time 2008-05-01 00:39:48...

*************************** 1. row *************************
 hostname: jaguar
 reservation_id: 174
 session_id: 15397
 queue: batch
 job_id: 333801
 job_name: ibtc12000_s3000_N4
 job_duration: NULL
 walltime: 3600
 account: stf006bf
 uid: rsankar
 exec_host: yod9
 create_time: 2008-05-01 00:32:06
 destroy_time: 2008-05-01 00:41:27
 job_err: 0
num_of_compute_processors: 12000
num_of_service_processors: 0
 cleaned_by: NULL
 hostname: jaguar
 reservation_id: 174
 session_id: 15397
 processor_id: 9888

What can be done with all this data?

• Statistical analysis of failures by category
− Which failures are killing more jobs?
− Size distribution of jobs being killed
− Possibilities are endless

18

Issues

• Database key require multiple fields
− Reservation ids cannot be primary since ids

repeat at each reboot
− Session ids are just pids of TORQUE mom

processes, so they repeat
− Job ids repeat after a crash (a currently running

job gets rerun)
− All three certainly provide a level of uniqueness

but some records have not loaded

• Numerous data sources error prone
− Requires tweaking to coordinate timestamps

among various log files
− Log files can miss data under heavy load or

due to bugs in various systems

19

Requirements/Desires/Promises

• Hooks in ALPS to retrieve this information in a
reasonable way that doesn’t involve 5 sources, log
files, etc.

• Desirable that Cray create and populate a database,
but if not, at least provide the information so that the
customer can do as they wish

• Cray has committed to providing a unique PAGG in
UNICOS/lc 2.1
− Should solve the unique key problem

• Other discussions at CUG regarding long-term
system management issues

20

• Contact:
− Don Maxwell
− maxwellde@ornl.gov

