
Zest: The Maximum Reliable Terabytes Per Second Storage for
Petascale Systems

Paul Nowoczynski, Nathan Stone, Jared Yanovich, Jason Sommerfield

Pittsburgh Supercomputing Center

ABSTRACT: The PSC has developed a prototype distributed file system infrastructure
that vastly accelerates aggregated write bandwidth on large compute platforms. Write
bandwidth, more than read bandwidth, is the dominant bottleneck in HPC I/O scenarios
due to writing checkpoint data, visualization data and post-processing (multi-stage)
data. We have prototyped a scalable solution on the Cray XT3 compute platform that
will be directly applicable to future petascale compute platforms having of order 106

cores. Our design emphasizes high-efficiency scalability, low-cost commodity
components, lightweight software layers, end-to-end parallelism, client-side caching
and software parity, and a unique model of load-balancing outgoing I/O onto high-
speed intermediate storage followed by asynchronous reconstruction to a 3rd-party
parallel file system.

KEYWORDS: Parallel Application Checkpoint, Parallel I/O, Petascale Storage, Client-
side Raid, High-performance commodity storage, Terabytes per second.

1. Introduction

Computational power in modern High Performance
Computing (HPC) platforms is rapidly increasing.
Moore� s Law alone accounts for doubling processing
power roughly every 18 months. But a historical analysis
of the fastest computing platforms by Top500.org shows
a doubling of compute power in HPC systems roughly
every 14 months, so that the first petaflop computing
platform is expected in late 2008. This accelerated
growth trend is due largely to an increase in the number
of processing cores; the current fastest computer has
roughly 256K cores. An increase in the number of cores
imposes two types of burdens on the storage subsystem:
larger data volume and more requests. The data volume
increases because the physical memory per core is
generally kept balanced resulting in a larger aggregate
data volume, on the order of petabytes for petascale
systems. But more cores also mean more file system
clients, more I/O requests to the storage servers and
ultimately more seeking of the back-end storage media
while storing that data. This will result in higher
observed latencies and lower overall I/O performance.

Today, HPC sites implement parallel file systems
comprised of an increasing number of distributed storage
nodes. However, in the current environment, disk
bandwidth performance greatly lags behind that of CPU,
memory, and interconnects. This means that as the
number of clients continues to increase and outpace the
performance improvement trends of storage devices,
larger and larger storage systems will be necessary to
accommodate the equivalent I/O workload. Through our
analysis of prospective multi-terabyte/sec storage
architectures we have concluded that increasing the
bandwidth efficiency of constituent disks is essential to
reeling in the rising cost of large parallel storage systems
and minimizing the number of storage system
components.

It is common wisdom that disks in large parallel storage
systems only expose a portion of their aggregate spindle
bandwidth to the application. Optimally, the only
bandwidth loss in the storage system would come from
redundancy overhead. Today, however, in realistic HPC

CUG 2008 Proceedings 1 of 6

scenarios the modules used to compose parallel storage
systems generally attain < 50% of their aggregate spindle
bandwidth. There are several possible culprits which
may be responsible for this degradation, of them, only
one need be present to negatively impact performance:
the aggregate spindle bandwidth is greater than the
bandwidth of the connecting bus; the raid controller's
parity calculation engine output is slower than the
connecting bus; and sub-optimal LBA request ordering
caused by the filesystem. The first two factors are direct
functions of the storage controller and may be rectified
by matched input and output bandwidths from host to
disk. The last factor, which is essentally 'seek' overhead,
is more difficult to overcome because of the
codependence of the disk layer and filesystem on the
simple linear block interface. The raid layer further
complicates matters by incorporating several spindles
into the same block device address range and forcing
them to be managed in strict unison.

Zest attempts to increase per-spindle efficiency through a
design which implements performance-wise data
placement as opposed to those which are more friendly to
today's filesystem metadata schemas. Data stored by Zest
is done via the fastest mode available to the server
without concern to file fragmentation or provisions for
storing global metadata. As a result, the current
implementation of Zest has no application-level read
support. Instead it serves as a transitory cache which
copies its data into a full-featured filesystem at a non-
critical time. This method is well suited for application
checkpoint data because immediate readback capabiliies
are generally not needed.

2. Design Concepts

The Zest checkpoint I/O system employs three primary
concepts to achieve its performance target of 90%
aggregate spindle bandwidth.

2a. Relatively Non-Deterministic Data Placement
Zest is designed to perform sequential I/O whenever
possible. To achieve a high degree of sequentiality,
Zest's block allocation scheme is not determined by data
offset or the file object identifier but rather the next
available block on the disk. Additionally, the
sequentiality of the allocation scheme is not affected by
the number of clients, the degree of randomization within
the incoming data streams, or the RAID attributes (i.e.
parity position) of the block. Because it minimizes seeks,
this simple, non-deterministic data placement method is
extremely effective for presenting sequential data streams
to the spindle. It should be noted that a block's parity
position does restrict the number of disks which may
handle it. This is the only determinism maintained in the

write process and is necessary to uphold the semantics of
the Raid scheme.

Prior to the advent of petascale computing this data
storage method would be considered prohibitive because
it destroys two inferential systems which are critical to
today's parallel I/O infrastructures: the object-based
parallel file system metadata schema and the block-level
RAID parity group association. RAID systems infer that
every same numbered block within the respective set of
spindles are bound together to form a protected unit.
This method is effective because only the address of a
failed block is needed to determine the location of its
protection unit 'cohorts' with no further state being stored.
Despite this inferential advantage, we contend that strict
parity clustering can be detrimental to performance
because it pushes data to specific regions on specific
disks.

Object-based parallel file systems use file-object maps to
describe the location of a file's data. These maps are key
components to the efficiency of the object-storage
method because they allow for arbitrary amounts of data
to be indexed by a very small data structure composed
merely of an ordered list of storage servers and a stride.
In essence, the map describes the location of the file's
sub-files and the number of bytes which may be accessed
before proceeding to the subfile or stripe. Besides the
obvious advantages in the area of metadata storage, there
are several caveats of this method. The most obvious is
that the sub-files are the static products of the object
metadata model which was designed with its own
efficiency in mind. The result is an overly deterministic
data placement method in which by forcing I/O into a
specific sub-file, increases complexity at the spindle
because the backing filesystem's block allocation
schemes cannot guarantee sequentiality in the face of
thousands or millions of simultaneous IO streams.

2b. Client-side Parity Calculation
In order to prevent potential server-side raid bottlenecks,
Zest places the parity generation and checksumming
workload onto the clients. The HPC resource, which is
the source of the I/O, has orders of magnitude more
memory bandwidth and CPU cycles at its disposal than
that of the storage servers. Placing the parity workload
onto the client CPUs saves the storage system from
requiring costly raid controllers and guarantees that parity
generation will not impede performance.

2c. No Leased Locks
To minimize network RPC overhead; features which
induce blocking; and the complexity of the IO servers;
Zest purposely does not use leased locks. Instead, it
ensures the integrity of intra-page, unaligned writes
performed by multiple clients. Typically, filesystem

CUG 2008 Proceedings 2 of 6

caches are page-based and therefore a global lock is
needed to ensure the update atomicity of a page. Zest
does not use such a method, instead it uses vector-based
write buffers. One possible caveat of this method is that
Zest cannot guarantee transactional ordering for
overlapping writes. Since it is uncommon for large
parallel HPC applications to write into overlapping file
offsets we do not feel that this is a fatal drawback.

3. Server Design

The Zest I/O server, otherwise known as a zestion,
appears as a storage controller / file server hybrid.
Similar to a controller, the zestion manages I/O to each
drive as a seperate device. I/O is not done into a virtual
lun of multiple disks or volumes but rather to each disk.
In the vein of a file server, the zestion is aware of file
inodes and file extents. This combination of behaviors
enables Zest to interact with a filesystem in a way which
does not inhibit performance.

The zestion is composed of several subsystems which are
described here.

3a. Networking and RPC Stack
Zest uses a modified version of the LNET and ptlrpc
libraries found in the Lustre filesystem. There are several
reasons for this, the primary being the need to maintain
capability with LNET routers for use on the Cray XT3.
Presently, Zest supports both usermode LNET drivers
(tcplnd and uptlld). On the zestion, the tcplnd is the
functional equivalent to kernel mode Lustre ksocklnd.
Some modifications were made to tcplnd for supporting
multi-rail configurations, per-interface statistics, and the
enabling of server-mode.

After further investigation into the Lustre rpc library it
was decided to adopt the implementation because of its
proven robustness, performance, and logical integration
with the LNET/Portals API. Ptlrpc also provides a
service layer abstraction which aids in the creation of
multi-threaded network servers. Zest makes use of this
service layer to establish two RPC services: IO and
metadata. The Zest IO and metadata services are groups
of symmetric threads which process all client RPCs.
Metadata RPCs are not concerned with bulk data
movement but instead interface with the zestion's inode
cache and with the namespace of the accompanying full-
featured filesystems. The IO service is responsible for
pulling data buffers from the clients and passing them
into the write processing queues called raid vectors.

3b. Disk I/O Subsystem
The Zest disk I/O subsytem assigns one thread for each
valid disk as determined by the configuration system.
Disk numbers are assigned at format time and are stored
within the Zest superblock. Each disk thread is the sole

authority for his disk, it duties include: performing reads
and writes, io request scheduling, rebuilding active data
lost due to disk failure, freespace management and block
allocation, tracking of bad blocks, and statistics keeping.

In order to ensure proper RAID semantics, the disk I/O
system interacts with a set of queues called raid vectors.
This construct exists to ensure that write blocks of
differing parity positions are not stored onto the same
disk. Raid vectors are filled with write buffers by the
Rpc stack, who appropriately places incoming buffers
into their respective queues. Disks are assigned to raid
vectors based on their number. Given a 16-disk zestion, a
3+1 RAID scheme would create four raid vector queues
where disks[0-3] were assigned to queue0, disks[4-7] to
queue1, and so on. This configuration allows for
multiple drives to process write requests from a single
queue. The result of this design is a pull-based I/O
system where incoming I/O's are handled by the devices
which are ready to accept them. Devices which are slow
naturally take less work and devices recognized as failed,
remove themselves from all raid vector queues. In order
to be present on multiple raid vectors, disk I/O threads
have the ability to simultaneously block on multiple input
sources. This capability allows for each disk thread to
accept write I/O requests on behalf of many raid schemes
and read requests from the syncer and parity
regeneration subsystems (described below).

The disk I/O subsystem may be configured to use one of
three access modes: scsi generic, block, or file. The scsi
generic mode provides a zero-copy I/O path to the disk,
we have found this mode to be extremely efficient. The
'file' mode is useful for testing and debugging on
workstations which do not have multiple disk drives
available for Zest use.

3c. Syncer and File Reconstruction
At present, Zest does not support globally-stored file
metadata therefore it relies on copying its data into a full-
featured filesystem to present the data for readback. In
practice this accompanying filesystem exists on the same
physical storage and the copy process occurs after the
checkpoing process has completed.

Upon storing an entire parity group stream from a client,
the completed parity group is passed into the syncer's
work queue. From there the syncer issues a read request
to each disk holding a member of the parity group. The
disk I/O thread services this read request once all of the
write queues are empty. Once the read I/O is completed,
the read request handle is passed back the syncer. From
there it is written to the full-feature filesystem via a
pwrite syscall (the io vector parameters necessary for the
system pwrite were provided by the client and stored
adjacently to the file data). When the entire parity group

CUG 2008 Proceedings 3 of 6

has been copied out, the syncer instructs the disk threads
to schedule reclamation for each of the synced blocks.
This process occurs only after all members of the parity
group have been copied out.

The syncer, and other Zest 'read' clients, are required to
perform a checksum on the data returned from the disk.
This checksum protects the data and it associated
metadata (primarily the describing io vectors). In the
event of a checksum failure, the block is scheduled to be
rebuilt through the parity regeneration service.

3d. Parity Declustering and Regeneration
Zest's parity system is responsible for two primary tasks:
storing declustered parity state and the reconstruction of
failed blocks.

Prior to being passed to the syncer process, completed
parity groups are handed to the parity declustering service
where they are stored to a solid-state device (parity
device). Parity device addressing is based on the disk and
block numbers of the newly written blocks. Indexing the
parity device by disk and block number allows for inquiry
on behalf of corrupt blocks where the only known
information are the disk and block numbers. This is
necessary for handling the case of a corrupt Zest block.
The parity group structure is a few hundred bytes in size
and lists all members of the protection unit. For each
member in the parity group, the structure is copied to that
member's respective parity device address.

During normal operation, the parity device is being
updated in conjunction with incoming writes in an
asynchronous manner by the parity device thread. This
operation is purposely asynchronous to minimize
blocking in the disk I/O thread's main routine. As a
result, the parity device is not the absolute authority on
parity group state. Instead, the on-disk structures have
precedence in determining the state of the declustered
parity groups. Currently at boot time, active parity
groups are joined by a group finding operation and the
parity device is verified against this collection. In the
event of a failed disk, the parity device is relied upon as
the authority for the failed disk's blocks. In the future this
fsck-like operation will be supplemented with a journal.

4. Client Design and Implementation

The Zest client currently exists as both a FUSE (file
system in user-space) mount and a statically linkable
library. The latter, used primarily for the Cray XT3, is
similar to the liblustre library in that it is single-threaded.
It should be recognized that the Zest system is not
optimized for single client performance but rather large
multitudes of parallel clients. Therefore it stands to
reason that despite zestions being equally accessible by
all compute processors, the zest client does not stripe its

output across zestions. Instead, the group of client
processors are evenly distributed across the set of
zestions. We expect to make use of this behavior to
implement checkpoint bandwidth provisioning for mixed
workloads.

4a. Parity and Checksum Calculation
As described above, the Zest client is tasked with
calculating parity on its outgoing data stream and
performing a 64-bit checksum on each write buffer and
associated metadata. Performing these calculation on the
client distributes this workload across a larger number of
cores and optimizes the compute resource performance as
a whole by allowing the zestions to focus on data
throughput.

The Zest parity system is configurable by the client based
on the degree of protection sought by the application and
the hardware located at the server. At present, Zest
gracefully handles only single device failures through
RAID5. Both Zest server and client are equipped to
handle short write streams where the number of buffers in
the stream is smaller than the requested raid scheme.

4b. Write Aggregation
The client aggregates small I/Os into its vector-based
cache buffers on a per file-descriptor basis. Designed to
work on an MPP machine such as the Cray XT3, Zest
assigns a small number of data buffers to each file
descriptor. These buffers can hold any offset within the
respective file though a maximum number of fragments
(vectors) per buffer is enforced. This maximum is
determined at zestion format time and is directly
contigent on the number of io vectors which can be stored
in the metadata region of a Zest block. Typically we
have configured this maximum to 16 meaning that a
client may fill a write buffer until either its capacity is
consumed or the maximum number of fragments has
been reached.

4c. Client to Server Data Transfer
The elemental transfer mode from client to server is pull-
based, implemented via LNetGet(). As write buffers are
consumed, they are placed into a rpc set and the zestion is
instructed to schedule the retrieval of the buffer. The rpc
set is a functional construct of the lustre ptlrpc library
which allows groups of semantically related rpc requests
to be managed as a single operation. This fits nicely with
Zest's concept of parity groups, hence, the zest client
assigns an rpc set to each active parity group.

Ensuring the viability of the client's parity groups
requires the client to hold it buffers until the entire group
(or rpc set) has been acknowledged by the zestion. Zest
supports both write-back and write-through server
caching, the protocol for acknowledgement hinges

CUG 2008 Proceedings 4 of 6

around the caching policy requested by the client.
Depending on the size of the write() request and the
availability of buffers, zero-copy or buffer-copy mode
may be used.

One pivotal advantage of relative non-deterministic data
placement is that it allows Zest clients to send parity
groups to any zestion within the storage network. The
result is that, in the event of a server failure, a client may
resend an entire parity group to any other zestion. We
predict that this feature will be extremely valuable in
large parallel storage networks because it allows for
perfect rebalancing of I/O workloads in the event of
server node failures and therefore eliminates the creation
of hot spots.

5. Server Fault Handling

5a. Media Error Handling
All Zest data and metadata are protected by a 64-bit
checksum used to detect media errors. On 'read' the
zestion verifies the checksum to ensure that the block has
not been compromised. When a bad block is found its
parity group information is located via a lookup into a
separate device. The parity device is a solid state
memory device whose purpose is to maintain the parity
group structure for every block on the system. Any Zest
block's parity group descriptor is located via a unique
address composed of the block's disk and block
identifiers. Since the IO pattern to the parity device is
essentially random it has been outfitted with a small
solid-state disk. Currently an 8 million block Zest system
requires a 4 gigabyte parity device. The parity device
update path is asynchronous and therefore, if needed, the
entire device may be reconstructed during file system
check.

5b. Run-time Disk Failures
Since the Zest system manages RAID and file-objects,
handling of disk failures only requires that volatile blocks
are rebuilt. Zest has full knowledge of the disk's contents
so old or unused blocks are not considered for rebuilding.
During the course of normal operation, Zest maintains
lists and indexes of all blocks being used within the
system. In the event of a disk failure, the set of blocks
who have not been synchronized or whose parity group
cohorts have not been synchronized will be rebuilt. Here
the parity device will be used to determine the failed
block's parity group cohorts. It must be noted that, at this
time, Zest cannot recover from simultaneous failure of a
parity device and a data disk.

5c. File System Check and Boot-time Failures
On boot, the file system check analyzes the system's
parity groups and schedules the synchronization of
volatile blocks. If a disk fails in the start-up phase any

volatile blocks which it may have been holding are
located during the fsck process and rebuilt.

5c. Multi-pathing and Failover
Zest servers support pairwise dynamic fail-over through
disk multi-pathing, disk UUID identification, and Linux-
HA software. Zestion fail-over pairs are configured to
recognize each others disks through the global
configuration file. Since zest clients are able to resubmit
writes to other zestions, the fail-over procedure is not as
fragile or imminent as one might expect. The primary
post fail-over activity is to examine the partner's disks in
search of non-synchronized data and process that data
through the syncer.

6. Zest within the Cray XT3 Environment

Adapting the Cray XT3 I/O environment, the Zest server
cluster is located on an InfiniBand cloud external to the
machine. The Cray SIO nodes act as a gateway between
the XT3's internal network and the Zest servers. Lustre
LNET routing services are run on each of the SIO nodes
to route traffic from Seastar compute interconnect to the
external InfiniBand network, providing seamless
connectivity from compute processors to the external
Zest storage and services.

To achieve compatibility with the Lustre routing service,
Zest's networking library is largely based on Lustre's
LNET and RPC subsystems. The Zest server uses a
modified TCP-based Lustre networking driver with
additional support for InfiniBand sockets-direct protocol.
Since Zest is a user mode service, it does not have access
to the native, kernel-mode InfiniBand Lustre driver so
SDP was chosen for its convenient path into the
InfiniBand interface.

7. Zest Performance Results

Here are preliminary performance results from a single
12-disk zestion. Both the PSC Cray XT3 and a small
linux cluster we used as client systems. The zestion's
drives are SATA-2 and operate at a sustained rate of
75MB/s. The maximum observed performance of the
entire set of disks, tested with scsi generic io, was
900MB/s. The zestion self-test, which utilizes the I/O
codepath, without using the rpc layer, measured a
sustained back-end bandwith rate of 840MB/s.

To date, the best numbers are attained when using the
linux cluster as a client. This is due to the use of the
Infiniband sockets-direct protocol as the transport. We
have not been successful running the Lustre ksocklnd
with sockets-direct so tests performed from the Cray XT3
have relied on IP over Infiniband (IPoIB). The IPoIB
path is significantly inferior to the sockets-direct

CUG 2008 Proceedings 5 of 6

protocol. It should be noted that these tests did not utilize
zero-copy socket-direct protocol.

Figure P0 shows that in the best case, 120 client threads,
the end-to-end throughput of the zestion was 89.6% of the
aggregate spindle bandwidth. However the application,
using a RAID5 5+1, which incurs a 17% overhead, saw
75% of the aggregate. lt can be safely extrapolated that
had the application used an 11+1 parity stripe, ~82% of
the aggregate would have been realized. This result
shows that more work must be done to eliminate the 8%
loss to server overhead. It also demonstrates that the
application observed bandwidth is largely dependent on
the raid scheme used by the client.

Figure P1shows Zest performance when using the Cray
XT3 as a client. This XT3 client test shows that IpoIB is
not an effective interconnect. We are assured that IPoIB
is the culprit because equally poor results were observed
while using this mode on the linux cluster (280MB/s
from 100pe's). As described above in Section 6, the test
used several Cray SIO as Lnet routers. The routers were
configured to use IPoIB since sockets-direct was not
available. In an attempt to maximize throughput, the
zestion employed multiple IpoIB interfaces. These
interfaces were joined into the same Lnet network
through the multi-rail feature which we added into the
Lnet tclpnd.

10. Conclusion and Future Development
Zest is designed to facilitate fast parallel I/O for the
largest production systems currently conceived
(petascale) and it includes features like configurable
client-side parity calculation, multi-level checksums, and
implicit load-balancing within the server. It requires no
hardware RAID controllers, and is capable of using lower
cost commodity components (disk shelves filled with
SATA drives). We minimize the impact of many client
connections, many I/O requests and many file system
seeks upon the backend disk performance and in so doing
leverage the performance strengths of each layer of the
subsystem.

In the future we aim to improve network performance by
leveraging the upcoming Lustre LNET user to kernel
mode bridging module. This module provides LNET api
compatibility to userspace applications therefore it should
be easily adapted by Zest. It is our hope that using the
native Lnet RDMA drivers will substantially increase
efficiency and throughput.

Much contemplation has been given to the development
of a global-metadata system for Zest. At this time
(Spring '08), the high-level design has been considered
and at least one key data structure has been implemented
for this purpose. It is most likely, however, that
immediate efforts will be put forth into stabilization and
performance improvements of the present transitory
caching system.

About the Authors

Paul Nowoczynski, Jared Yanovich, Nathan Stone,
and Jason Sommerfield are members of the Pittsburgh
Supercomputing Center's Advanced Systems Group.

CUG 2008 Proceedings 6 of 6

Figure P0: Linux Cluster: Sockets-direct
protocol, Client Raid 5+1. (Y-Axis is MB/s)

16pe 40pe 60pe 100pe 120pe
0

100

200

300

400

500

600

700

800

900

App BW
(MB/s)

App BW +
Parity

Firgure P1: Cray XT3, IPoIB protocol, Client
Raid 5+1. (Y-axis is MB/s)

16pe 128pe 256pe
0

50

100

150

200

250

300

350

400

450

App BW
(MB/s)
App BW +
Parity

	1. Introduction
	2. Design Concepts
	3. Server Design
	4. Client Design and Implementation
	4c. Client to Server Data Transfer

	5. Server Fault Handling
	6. Zest within the Cray XT3 Environment
	7. Zest Performance Results
	Here are preliminary performance results from a single 12-disk zestion. Both the PSC Cray XT3 and a small linux cluster we used as client systems. The zestion's drives are SATA-2 and operate at a sustained rate of 75MB/s. The maximum observed performance of the entire set of disks, tested with scsi generic io, was 900MB/s. The zestion self-test, which utilizes the I/O codepath, without using the rpc layer, measured a sustained back-end bandwith rate of 840MB/s.

	About the Authors

