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ABSTRACT: The PSC has developed a prototype distributed file system infrastructure  
that vastly accelerates aggregated write bandwidth on large compute platforms.  Write  
bandwidth, more than read bandwidth, is the dominant bottleneck in HPC I/O scenarios  
due  to  writing  checkpoint  data,  visualization  data  and  post-processing  (multi-stage)  
data.  We have prototyped a scalable solution on the Cray XT3 compute platform that  
will  be directly applicable to future petascale compute platforms having of order 106 

cores.   Our  design  emphasizes  high-efficiency  scalability,  low-cost  commodity  
components,  lightweight  software  layers,  end-to-end  parallelism,  client-side  caching  
and software  parity,  and a unique  model  of  load-balancing  outgoing  I/O onto high-
speed  intermediate  storage  followed  by  asynchronous  reconstruction  to  a  3rd-party 
parallel file system.  
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1. Introduction

Computational  power  in  modern  High  Performance 
Computing  (HPC)  platforms  is  rapidly  increasing. 
Moore� s  Law  alone  accounts  for  doubling  processing 
power roughly every 18 months.  But a historical analysis 
of the fastest computing platforms by Top500.org shows 
a doubling  of  compute  power  in  HPC systems  roughly 
every  14  months,  so  that  the  first  petaflop  computing 
platform  is  expected  in  late  2008.   This  accelerated 
growth trend is due largely to an increase in the number 
of  processing  cores;  the  current  fastest  computer  has 
roughly 256K cores.  An increase in the number of cores 
imposes two types of burdens on the storage subsystem: 
larger data volume and more requests.  The data volume 
increases  because  the  physical  memory  per  core  is 
generally  kept  balanced  resulting  in  a  larger  aggregate 
data  volume,  on  the  order  of  petabytes  for  petascale 
systems.   But  more  cores  also  mean  more  file  system 
clients,  more  I/O  requests  to  the  storage  servers  and 
ultimately  more  seeking of  the back-end storage  media 
while  storing  that  data.   This  will  result  in  higher 
observed latencies and lower overall I/O performance.

Today,  HPC  sites  implement  parallel  file  systems 
comprised of an increasing number of distributed storage 
nodes.   However,  in  the  current  environment,  disk 
bandwidth performance greatly lags behind that of CPU, 
memory,  and  interconnects.  This  means  that  as  the 
number of clients continues to increase and outpace the 
performance  improvement  trends  of  storage  devices, 
larger  and  larger  storage  systems  will  be  necessary  to 
accommodate the equivalent I/O workload.  Through our 
analysis  of  prospective  multi-terabyte/sec  storage 
architectures  we  have  concluded  that  increasing  the 
bandwidth efficiency of constituent  disks  is essential  to 
reeling in the rising cost of large parallel storage systems 
and  minimizing  the  number  of  storage  system 
components.  

It is common wisdom that disks in large parallel storage 
systems only expose a portion of their aggregate spindle 
bandwidth  to  the  application.   Optimally,  the  only 
bandwidth loss in the storage system would come from 
redundancy overhead.  Today, however,  in realistic HPC 
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scenarios the modules used to compose parallel  storage 
systems generally attain < 50% of their aggregate spindle 
bandwidth.   There  are  several  possible  culprits  which 
may  be  responsible  for  this  degradation,  of  them,  only 
one  need  be  present  to  negatively  impact  performance: 
the  aggregate  spindle  bandwidth  is  greater  than  the 
bandwidth  of  the  connecting  bus;   the  raid  controller's 
parity  calculation  engine  output  is  slower  than  the 
connecting bus;  and sub-optimal LBA request ordering 
caused by the filesystem.  The first two factors are direct 
functions of the storage controller and may be rectified 
by  matched  input  and  output  bandwidths  from host  to 
disk.  The last factor, which is essentally 'seek' overhead, 
is   more  difficult  to  overcome  because  of  the 
codependence  of  the  disk  layer  and  filesystem  on  the 
simple  linear  block  interface.   The  raid  layer  further 
complicates  matters  by  incorporating  several  spindles 
into  the  same  block  device  address  range  and  forcing 
them to be managed in strict unison.

Zest attempts to increase per-spindle efficiency through a 
design  which  implements  performance-wise  data 
placement as opposed to those which are more friendly to 
today's filesystem metadata schemas.  Data stored by Zest 
is  done  via  the  fastest  mode  available  to  the  server 
without  concern  to  file  fragmentation  or  provisions  for 
storing  global  metadata.   As  a  result,  the  current 
implementation  of  Zest  has  no  application-level  read 
support.   Instead  it  serves  as  a  transitory  cache  which 
copies  its  data  into  a  full-featured  filesystem at  a  non-
critical time.  This  method is well suited for application 
checkpoint data because immediate readback capabiliies 
are generally not needed.

2.  Design Concepts

The Zest  checkpoint  I/O system employs three primary 
concepts  to  achieve  its  performance  target  of  90% 
aggregate spindle bandwidth.  

2a. Relatively Non-Deterministic Data Placement
Zest  is  designed  to  perform  sequential  I/O  whenever 
possible.   To  achieve  a  high  degree  of  sequentiality, 
Zest's block allocation scheme is not determined by data 
offset  or  the  file  object  identifier  but  rather  the  next 
available  block  on  the  disk.   Additionally,  the 
sequentiality of the allocation scheme is not affected by 
the number of clients, the degree of randomization within 
the incoming data  streams,  or  the RAID attributes  (i.e. 
parity position) of the block.  Because it minimizes seeks, 
this simple,  non-deterministic  data placement method is 
extremely effective for presenting sequential data streams 
to the spindle.    It should be noted that a block's parity 
position  does  restrict  the  number  of  disks  which  may 
handle it.  This is the only determinism maintained in the 

write process and is necessary to uphold the semantics of 
the Raid scheme.

Prior  to  the  advent  of  petascale  computing  this  data 
storage method would be considered prohibitive because 
it  destroys two inferential systems which are critical to 
today's  parallel  I/O  infrastructures:  the  object-based 
parallel file system metadata schema and the block-level 
RAID parity group association.  RAID systems infer that 
every same numbered block within the respective set of 
spindles  are  bound  together  to  form  a  protected  unit. 
This  method is  effective  because  only  the  address  of  a 
failed  block  is  needed  to  determine  the  location  of  its 
protection unit 'cohorts' with no further state being stored.
Despite this inferential advantage, we contend that strict 
parity  clustering  can  be  detrimental  to  performance 
because  it  pushes  data  to  specific  regions  on  specific 
disks.

Object-based parallel file systems use file-object maps to 
describe the location of a file's data.  These maps are key 
components  to  the  efficiency  of  the  object-storage 
method because they allow for arbitrary amounts of data 
to be indexed by a very small  data structure composed 
merely of an ordered list of storage servers and a stride. 
In  essence,  the  map describes  the  location  of  the  file's 
sub-files and the number of bytes which may be accessed 
before  proceeding  to  the  subfile  or  stripe.  Besides  the 
obvious advantages in the area of metadata storage, there 
are several caveats of this method.  The most obvious  is 
that  the  sub-files  are  the  static  products  of  the  object 
metadata  model  which  was  designed  with  its  own 
efficiency in mind.  The result is an overly deterministic 
data  placement  method in  which  by forcing  I/O into  a 
specific  sub-file,  increases  complexity  at  the  spindle 
because  the  backing  filesystem's  block  allocation 
schemes  cannot  guarantee  sequentiality  in  the  face  of 
thousands or millions of simultaneous IO streams. 

2b. Client-side Parity Calculation
In order to prevent potential server-side raid bottlenecks, 
Zest  places  the  parity  generation  and  checksumming 
workload onto the clients.  The HPC resource, which is 
the  source  of  the  I/O,   has  orders  of  magnitude  more 
memory bandwidth and CPU cycles at its disposal than 
that of the storage servers.  Placing the parity workload 
onto  the  client  CPUs  saves  the  storage  system  from 
requiring costly raid controllers and guarantees that parity 
generation will not impede performance.  

2c. No Leased Locks
To  minimize  network  RPC  overhead;  features  which 
induce blocking; and the complexity of the  IO servers; 
Zest  purposely  does  not  use  leased  locks.   Instead,  it 
ensures  the  integrity  of  intra-page,  unaligned  writes 
performed  by  multiple  clients.   Typically,  filesystem 
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caches  are  page-based  and  therefore  a  global  lock  is 
needed to ensure  the update atomicity  of a page.   Zest 
does not use such a method, instead it uses vector-based 
write buffers.  One possible caveat of this method is that 
Zest  cannot  guarantee  transactional  ordering  for 
overlapping  writes.   Since  it  is  uncommon  for  large 
parallel  HPC applications  to write  into overlapping file 
offsets we do not feel that this is a fatal drawback.

3.  Server Design

The  Zest  I/O  server,  otherwise  known  as  a  zestion, 
appears  as  a  storage  controller  /  file  server  hybrid. 
Similar to a controller,  the  zestion manages I/O to each 
drive as a seperate device.  I/O is not done into a virtual 
lun of multiple disks or volumes but rather to each disk. 
In the vein of a file  server,  the  zestion is aware of file 
inodes and file extents.     This combination of behaviors 
enables Zest to interact with a filesystem in a way which 
does not inhibit performance.

The zestion is composed of several subsystems which are 
described here.

3a. Networking and RPC Stack
Zest  uses  a  modified  version  of  the  LNET  and ptlrpc  
libraries found in the Lustre filesystem.  There are several 
reasons for this, the primary being the need to maintain 
capability with  LNET routers for use on the  Cray XT3.  
Presently, Zest  supports  both  usermode  LNET drivers 
(tcplnd  and  uptlld).   On  the  zestion,  the tcplnd  is  the 
functional  equivalent  to  kernel  mode  Lustre ksocklnd.  
Some modifications were made to  tcplnd for supporting 
multi-rail configurations, per-interface statistics,  and the 
enabling of server-mode.  

After  further  investigation into the  Lustre rpc library it 
was  decided to adopt the implementation because of its 
proven  robustness,  performance,  and  logical  integration 
with  the  LNET/Portals  API.   Ptlrpc also  provides  a 
service  layer  abstraction  which  aids  in  the  creation  of 
multi-threaded network servers.   Zest makes use of this 
service  layer  to  establish  two  RPC  services:   IO  and 
metadata.  The Zest IO and metadata services are groups 
of  symmetric  threads  which  process  all  client  RPCs. 
Metadata  RPCs  are  not  concerned  with  bulk  data 
movement but instead interface with the  zestion's inode 
cache and with the namespace of the accompanying full-
featured filesystems.   The IO service  is  responsible for 
pulling  data  buffers  from the  clients  and  passing  them 
into the write processing queues called raid vectors.

3b. Disk I/O Subsystem
The Zest disk I/O subsytem assigns one thread for each 
valid  disk  as  determined  by  the  configuration  system. 
Disk numbers are assigned at format time and are stored 
within the Zest superblock.  Each disk thread is the sole 

authority for his disk, it duties include:  performing reads 
and writes, io request scheduling,  rebuilding active data 
lost due to disk failure, freespace management and block 
allocation,  tracking of bad blocks, and statistics keeping.

In order to ensure proper RAID semantics, the disk I/O 
system interacts with a set of queues called raid vectors.  
This  construct  exists  to  ensure  that  write  blocks  of 
differing  parity  positions  are  not  stored  onto  the  same 
disk.   Raid  vectors are filled  with  write  buffers  by the 
Rpc  stack,  who  appropriately  places  incoming  buffers 
into their respective queues.   Disks are assigned to raid 
vectors based on their number.  Given a 16-disk zestion, a 
3+1 RAID scheme would create four  raid vector queues 
where disks[0-3] were assigned to queue0, disks[4-7] to 
queue1,  and  so  on.   This  configuration  allows  for 
multiple drives to process write  requests from a  single 
queue.   The  result  of  this  design  is  a  pull-based  I/O 
system where incoming I/O's are handled by the devices 
which are ready to accept them.  Devices which are slow 
naturally take less work and devices recognized as failed, 
remove themselves from all raid vector queues.  In order 
to be present on multiple  raid vectors,  disk I/O threads 
have the ability to simultaneously block on multiple input 
sources.   This capability allows for each disk thread to 
accept write I/O requests on behalf of many  raid schemes 
and  read  requests  from  the  syncer and  parity  
regeneration subsystems (described below).

The disk I/O subsystem may be configured to use one of 
three access modes:  scsi generic, block, or file.  The scsi 
generic mode provides a zero-copy I/O path to the disk, 
we have found this mode to be extremely efficient.  The 
'file'  mode  is  useful  for  testing  and  debugging  on 
workstations  which  do  not  have  multiple  disk  drives 
available for Zest use.

3c. Syncer and File Reconstruction
At  present,  Zest  does  not  support  globally-stored  file 
metadata therefore it relies on copying its data into a full-
featured filesystem to present the data for readback.  In 
practice this accompanying filesystem exists on the same 
physical  storage  and  the  copy  process  occurs  after  the 
checkpoing process has completed.  

Upon storing an entire parity group stream from a client, 
the  completed  parity  group  is  passed  into  the  syncer's 
work queue.  From there the syncer issues a read request 
to each disk holding a member of the parity group.  The 
disk I/O thread services this read request once all of the 
write queues are empty.  Once the read I/O is completed, 
the read request handle is passed back the syncer.  From 
there  it  is  written  to  the  full-feature  filesystem  via  a 
pwrite syscall (the io vector parameters necessary for the 
system  pwrite  were  provided  by  the  client  and  stored 
adjacently to the file data).  When the entire parity group 
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has been copied out, the syncer instructs the disk threads 
to schedule  reclamation for each of the synced blocks. 
This process occurs only after all members of the parity 
group have been copied out.

The syncer, and other Zest 'read' clients, are required to 
perform a checksum on the data returned from the disk. 
This  checksum  protects  the  data  and  it  associated 
metadata  (primarily  the  describing  io  vectors).   In  the 
event of a checksum failure, the block is scheduled to be 
rebuilt through the parity regeneration service.

3d. Parity Declustering and Regeneration
Zest's parity system is responsible for two primary tasks: 
storing declustered parity state and the reconstruction of 
failed blocks.  

Prior  to  being  passed  to  the  syncer process,  completed 
parity groups are handed to the parity declustering service 
where  they  are  stored  to  a  solid-state  device  (parity  
device).  Parity device addressing is based on the disk and 
block numbers of the newly written blocks.  Indexing the 
parity device by disk and block number allows for inquiry 
on  behalf  of  corrupt  blocks  where  the  only  known 
information  are  the  disk  and  block  numbers.   This  is 
necessary for handling the case of a corrupt Zest block. 
The parity group structure is a few hundred bytes in size 
and  lists  all  members  of  the  protection  unit.   For  each 
member in the parity group, the structure is copied to that 
member's respective parity device address.

During  normal  operation,  the  parity  device is  being 
updated  in  conjunction  with  incoming  writes  in  an 
asynchronous manner by the  parity device thread.  This 
operation  is  purposely  asynchronous  to  minimize 
blocking  in  the  disk  I/O  thread's  main  routine.   As  a 
result, the parity device is not the absolute authority on 
parity  group state.   Instead,  the on-disk structures  have 
precedence  in  determining  the  state  of  the  declustered 
parity  groups.   Currently  at  boot  time,  active  parity 
groups are joined by a group finding operation and the 
parity  device is  verified  against  this  collection.   In  the 
event of a failed disk, the parity device is relied upon as 
the authority for the failed disk's blocks.  In the future this 
fsck-like operation will be supplemented with a journal.

4.  Client Design and Implementation

The  Zest  client  currently  exists  as  both  a  FUSE (file 
system  in  user-space)  mount  and  a  statically  linkable 
library.  The latter, used primarily for the  Cray XT3, is 
similar to the liblustre library in that it is single-threaded. 
It  should  be  recognized  that  the  Zest  system  is  not 
optimized for single client  performance but rather large 
multitudes  of  parallel  clients.   Therefore  it  stands  to 
reason that  despite  zestions  being equally  accessible by 
all compute processors, the zest client does not stripe its 

output  across  zestions.  Instead,  the  group  of  client 
processors  are  evenly  distributed  across  the  set  of 
zestions.  We  expect  to  make  use  of  this  behavior  to 
implement checkpoint bandwidth provisioning for mixed 
workloads.
 
4a. Parity and Checksum Calculation
As  described  above,  the  Zest  client  is  tasked  with 
calculating  parity  on  its  outgoing  data  stream  and 
performing a 64-bit checksum on each write buffer and 
associated metadata.  Performing these calculation on the 
client distributes this workload across a larger number of 
cores and optimizes the compute resource performance as 
a  whole  by  allowing  the  zestions to  focus  on  data 
throughput. 

The Zest parity system is configurable by the client based 
on the degree of protection sought by the application and 
the  hardware  located  at  the  server.   At  present,  Zest 
gracefully  handles  only  single  device  failures  through 
RAID5.   Both  Zest  server  and  client  are  equipped  to 
handle short write streams where the number of buffers in 
the stream is smaller than the requested raid scheme.

4b. Write Aggregation
The  client  aggregates  small  I/Os  into  its  vector-based 
cache buffers on a per file-descriptor basis.  Designed to 
work on an MPP machine  such  as the  Cray XT3, Zest 
assigns  a  small  number  of  data  buffers  to  each  file 
descriptor.  These buffers can hold  any offset within the 
respective file though a maximum number of fragments 
(vectors)  per  buffer  is  enforced.   This  maximum  is 
determined  at  zestion format  time  and  is  directly 
contigent on the number of io vectors which can be stored 
in  the  metadata  region  of  a  Zest  block.   Typically  we 
have  configured  this  maximum  to  16  meaning  that  a 
client  may fill  a write  buffer  until  either  its  capacity is 
consumed  or  the  maximum  number  of  fragments  has 
been reached.

4c. Client to Server Data Transfer
The elemental transfer mode from client to server is pull-
based, implemented via  LNetGet().  As write buffers are 
consumed, they are placed into a rpc set and the zestion is 
instructed to schedule the retrieval of the buffer.  The rpc  
set is  a  functional  construct  of  the  lustre  ptlrpc  library 
which allows groups of semantically related rpc requests 
to be managed as a single operation.  This fits nicely with 
Zest's  concept  of  parity  groups,  hence,  the  zest  client 
assigns an rpc set to each active parity group.  

Ensuring  the  viability  of  the  client's  parity  groups 
requires the client to hold it buffers until the entire group 
(or rpc set) has been acknowledged by the zestion.   Zest 
supports  both  write-back  and  write-through  server 
caching,  the  protocol  for  acknowledgement  hinges 
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around  the  caching  policy  requested  by  the  client. 
Depending  on  the  size  of  the  write() request  and  the 
availability  of  buffers,  zero-copy  or  buffer-copy  mode 
may be used.  

One pivotal advantage of relative non-deterministic data  
placement is  that  it  allows  Zest  clients  to  send  parity 
groups  to  any  zestion within  the  storage  network.  The 
result is that, in the event of a server failure, a client may 
resend an entire parity group to any other  zestion.   We 
predict  that  this  feature  will  be  extremely  valuable  in 
large  parallel  storage  networks  because  it  allows  for 
perfect  rebalancing  of  I/O  workloads  in  the  event  of 
server node  failures and therefore eliminates the creation 
of hot spots.

5.  Server Fault Handling

5a. Media Error Handling
All  Zest  data  and  metadata  are  protected  by  a  64-bit 
checksum  used  to  detect  media  errors.   On  'read'  the 
zestion verifies the checksum to ensure that the block has 
not been compromised.  When a bad block is found its 
parity  group information  is  located via a  lookup into a 
separate  device.   The  parity  device is  a  solid  state 
memory device whose purpose is to maintain the parity 
group structure for every block on the system.  Any Zest 
block's  parity  group  descriptor  is  located  via  a  unique 
address  composed  of  the  block's  disk  and  block 
identifiers.   Since the IO pattern to the parity device is 
essentially  random  it  has  been  outfitted  with  a  small 
solid-state disk.  Currently an 8 million block Zest system 
requires  a  4  gigabyte  parity  device.   The parity  device 
update path is asynchronous and therefore, if needed, the 
entire  device  may  be  reconstructed  during  file  system 
check.  

5b. Run-time Disk Failures
Since  the  Zest  system manages  RAID and file-objects, 
handling of disk failures only requires that volatile blocks 
are rebuilt.  Zest has full knowledge of the disk's contents 
so old or unused blocks are not considered for rebuilding. 
During  the  course  of  normal  operation,  Zest  maintains 
lists  and  indexes  of  all  blocks  being  used  within  the 
system.  In the event of a disk failure, the set of blocks 
who have not been synchronized or whose parity group 
cohorts have not been synchronized will be rebuilt.  Here 
the  parity  device  will  be  used  to  determine  the  failed 
block's parity group cohorts.  It must be noted that, at this 
time, Zest cannot recover from simultaneous failure of a 
parity device and a data disk.  

5c. File System Check and Boot-time Failures
On  boot,  the  file  system  check  analyzes  the  system's 
parity  groups  and  schedules  the  synchronization  of 
volatile blocks.  If a disk fails in the start-up phase any 

volatile  blocks  which  it  may  have  been  holding  are 
located during the fsck process and rebuilt.

5c. Multi-pathing and Failover
Zest servers support pairwise dynamic fail-over through 
disk multi-pathing, disk UUID identification, and Linux-
HA software.   Zestion fail-over  pairs  are configured to 
recognize  each  others  disks  through  the  global 
configuration file.  Since zest clients are able to resubmit 
writes to other  zestions, the fail-over procedure is not as 
fragile  or  imminent  as one might  expect.   The primary 
post fail-over activity is to examine the partner's disks in 
search  of  non-synchronized  data  and  process  that  data 
through the syncer.

6.  Zest within the Cray XT3 Environment

Adapting the Cray XT3 I/O environment, the Zest server 
cluster is located on an InfiniBand cloud external to the 
machine.  The Cray SIO nodes act as a gateway between 
the  XT3's  internal network and the Zest servers.  Lustre  
LNET routing services are run on each of the SIO nodes 
to route traffic from Seastar compute interconnect to the 
external  InfiniBand  network,  providing  seamless 
connectivity  from  compute  processors  to  the  external 
Zest storage and services.  

To achieve compatibility with the Lustre routing service, 
Zest's  networking  library  is  largely  based  on  Lustre's 
LNET  and  RPC  subsystems.   The  Zest  server  uses  a 
modified  TCP-based  Lustre  networking  driver  with 
additional support for InfiniBand sockets-direct protocol. 
Since Zest is a user mode service, it does not have access 
to  the  native,  kernel-mode  InfiniBand  Lustre  driver  so 
SDP  was  chosen  for  its  convenient  path  into  the 
InfiniBand interface.

7.  Zest Performance Results

Here are preliminary performance results  from a single 
12-disk  zestion.   Both  the  PSC Cray  XT3 and a small 
linux cluster  we used as client  systems.   The zestion's  
drives  are  SATA-2  and  operate  at  a  sustained  rate  of 
75MB/s.   The  maximum  observed  performance  of  the 
entire  set  of  disks,  tested  with  scsi  generic  io,  was 
900MB/s.   The  zestion  self-test,  which  utilizes  the  I/O 
codepath,  without  using  the  rpc  layer,  measured  a 
sustained back-end bandwith rate of 840MB/s.

To date,  the best  numbers  are  attained  when using  the 
linux cluster  as a client.   This  is  due to  the use  of  the 
Infiniband sockets-direct  protocol  as the transport.   We 
have  not  been  successful  running  the  Lustre  ksocklnd 
with sockets-direct so tests performed from the Cray XT3 
have  relied  on  IP over  Infiniband (IPoIB).   The IPoIB 
path  is  significantly  inferior  to  the  sockets-direct 
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protocol.  It should be noted that these tests did not utilize 
zero-copy socket-direct protocol.

Figure P0 shows that in the best case, 120 client threads, 
the end-to-end throughput of the zestion was 89.6% of the 
aggregate spindle bandwidth.   However the application, 
using a RAID5 5+1, which incurs a 17% overhead, saw 
75% of the aggregate.  lt can be safely extrapolated that 
had the application used an 11+1 parity stripe, ~82% of 
the  aggregate  would  have  been  realized.   This  result 
shows that more work must be done to eliminate the 8% 
loss  to  server  overhead.   It  also  demonstrates  that  the 
application observed bandwidth is largely dependent on 
the raid scheme used by the client.

Figure  P1shows Zest performance when using the Cray 
XT3 as a client.  This XT3 client test shows that IpoIB is 
not an effective interconnect.  We are assured that IPoIB 
is the culprit because equally poor results were observed 
while  using  this  mode  on  the  linux  cluster  (280MB/s 
from 100pe's).   As described above in Section 6, the test 
used several Cray SIO as Lnet routers.  The routers were 
configured  to  use  IPoIB  since  sockets-direct  was  not 
available.   In  an  attempt  to  maximize  throughput,  the 
zestion employed  multiple  IpoIB  interfaces.   These 
interfaces  were  joined  into  the  same  Lnet  network 
through  the  multi-rail  feature  which  we added  into  the 
Lnet tclpnd. 

10. Conclusion and Future Development
Zest  is  designed  to  facilitate  fast  parallel  I/O  for  the 
largest  production  systems  currently  conceived 
(petascale)  and  it  includes  features  like  configurable 
client-side parity calculation, multi-level checksums, and 
implicit load-balancing within the server.  It requires no 
hardware RAID controllers, and is capable of using lower 
cost  commodity  components  (disk  shelves  filled  with 
SATA drives).  We minimize the impact of many client 
connections,  many  I/O  requests  and  many  file  system 
seeks upon the backend disk performance and in so doing 
leverage the performance strengths of each layer  of the 
subsystem.  

In the future we aim to improve network performance by 
leveraging  the  upcoming  Lustre  LNET user  to  kernel 
mode bridging module.  This module provides LNET  api 
compatibility to userspace applications therefore it should 
be easily adapted by Zest.  It is our hope that using the 
native  Lnet  RDMA drivers  will  substantially  increase 
efficiency and throughput.

Much contemplation has been given to the development 
of  a  global-metadata  system  for  Zest.   At  this  time 
(Spring '08),  the high-level  design has  been considered 
and at least one key data structure has been implemented 
for  this  purpose.   It  is  most  likely,  however,  that 
immediate efforts will be put forth into stabilization and 
performance  improvements  of  the  present  transitory 
caching system.
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Figure P0:  Linux Cluster: Sockets-direct 
protocol, Client Raid 5+1. (Y-Axis is MB/s)
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Firgure P1: Cray XT3, IPoIB protocol, Client  
Raid 5+1.  (Y-axis is MB/s)
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