
Zest I/O
Paul Nowoczynski, Jared Yanovich

Advanced Systems, Pittsburgh Supercomputing Center

Cray Users Group, Helsinki, May 8th, 2008

What is Zest?
“Parallel storage system designed to accelerate application

checkpointing on large compute platforms.”

 Designed to expose 90% of the total disk spindle bandwidth to the
application in a reliable fashion.

 “Write-only” intermediate store with no application read capability.

 End-to-end design, from client software down to the individual IO
nodes' disks.

 Emphasizes the use of commodity hardware.

Zest - Who & When

 Designed by the PSC Advanced Systems Group
(Nowoczynski, Yanovich, Stone, Sommerfield).

 Design work began in September '06.

 Initial development took about one year.

 Prototype stabilized in Fall of '07.

 SC '07 Storage Challenge

 Currently most major features are implemented and in test.

Goal and Motivations
Obtain the highest possible bandwidth for reliable application

checkpointing at a relatively low cost. Why?

 Disk drive performance is being out-paced by the other system
components which is leading to disproportional IO costs.

 In the largest machines memory capacity has increased about 25x
over the last 7 years, while disk speeds have increased about 4x
over the period.

 Today's I/O systems do not deliver a high-percentage of spindle
bandwidth to the application.

Why Target Checkpointing?
Optimizing checkpoint operations can increase the overall

computational efficiency of the machine.
...Time not spent in I/O is probably time 'better spent'.

 Application blocks while checkpointing is in progress.

 Increase in write I/O bandwidth allows to machine to spend
more time doing real work.

 Maximize “compute time / wall time” ratio

Why Target Checkpointing?
Checkpoint operations have characteristics that create

interesting opportunities for optimization:

 Generally write dominant and accounts for most of the total
I/O load.

 'N' checkpoint writes for every 1 read.

 Periodic

 Heavy bursts followed by long latent periods.

 Data does not need to be immediately available for reading.

 The dominant I/O activity on most HPC resources!

Symbiosis: Zest + Checkpointing

Zest aims to provide the application with extremely
fast snapshotting capabilities.

In turn, Zest relies on the characteristics of the CP
procedure to do its job effectively.

 No need for application read support

 Time for post-processing snapshotted data between
snapshots.

Today's Throughput Problems

Goal is to expose 90% of the spindle bandwidth to the
application. What prevents I/O systems from
achieving this now?
 Aggregate spindle bandwidth is higher than the bandwidth of

the controller or the connecting bus.

 Raid controller (parity calculation) may be a bottleneck.

 Disk seeks

If an I/O system could overcome these performance inhibitors then 90%
would be within reach.

Today's Throughput Problems

Of the three primary performance inhibitors, disk
seeks are perhaps most difficult to squash.

 By nature, supercomputers have many I/O threads which are
simultaneously accessing a backend filesystem on an I/O server.

 For redundancy purposes, backend filesystems are
conglomerations of disks. In most cases, a group of drives will
be involved in the processing of a single I/O request. Competing
requests actually cause entire drive groups to seek.

To make matters worse..

Today's Throughput Problems

The evolution of multi-core processors is drastically
increasing the number of possible I/O consumers in
today's HPC systems.

Increasing core counts exacerbate disk seeks by adding more
execution elements into the mix which means:

 Greater number of I/O requests.

 Higher degree of request randomization seen by the I/O
server.

Top 500, Number of Cores vs. Time

Zest Write Techniques
Zest uses several methods to minimize seeking and

optimize write performance.

 Each disk is controlled by single I/O thread which
heavily sequentializes incoming requests.

 Relative, non-deterministic data placement. (RNDDP)

 Client generated parity.

Zest Write Techniques

 Disk I/O Thread
... fairly straightforward

 Exclusive access prevents thrashing.

 Has a rudimentary scheduler for managing read requests from
the syncer threads.

 Maintains a map of free and used blocks and is able to place
any data block at any address

 Pulls incoming data blocks from a single or multiple queues
called “Raid Vectors”.

Zest Write Techniques

What is a Raid Vector?
“A queue from which a disk or set of disks may process incoming write requests

for a given raid type without violating the recovery semantics of the raid.
The raid type is determined by the client.”

Given a 16-drive Zest server, a request for a:

 '3+1 raid5' would result in 4 Raid Vectors (RV) each with 4 subscribing
disks.

 '7+1 raid5' -> 8 RVs @2 disks

 '15+1 raid5' -> 16 RVs @1 disk

1 P2 3

4 5 6 7 P2 31

1 2 7 8 9 10 11 12 13 14 15 P3 4 5 6

Raid Vectors
3+1
7+1

15+1

Disk Drives

Zest Write Techniques - RNDDP

Zest's methods for optimizing write throughput:
 Each disk is controlled by single I/O thread which heavily

sequentializes incoming requests.

 Relative, non-deterministic data placement.
(RNDDP)

 Client generated parity.

Zest Write Techniques

Relative, non-deterministic data placement (RNDDP)
.. a bit more complicated

RNDDP enables highly sequential disk access by:

 Allowing for any disk in a RaidVector to process any block in
that vector.

 Enabling the IO thread to place the block at the location of his
choosing.

Performance is not negatively impacted by the number of clients or
the degree of randomization within the incoming data streams.

Repercussions of RNDDP

What is the cost of doing RNDDP?
... Increasing entropy allows for more flexibility but more bookkeeping is required.

RNDDP destroys two inferential systems, one we care about
the other is not as critical (right now).

 Block level Raid is no longer semantically relevant.

 Metadata overhead is extremely high!

Repercussions of RNDDP

Management of Declustered Parity Groups
...The result of “putting the data anywhere we please”.

 A parityGroup handle is assigned to track the progress of a parity group (a
set of related data blocks and parity block) as it propagates through the
system.

 Data and parity blocks are tagged with unique identifiers that prove their
association.

 Important for determining status upon system reboot.

 Blocks are not scheduled to be 'freed' until the entire parity group has been
'synced' (Syncing will be covered shortly).

Repercussions of RNDDP
Declustered Parity Groups - Parity Device

A special device is used to store parity group information, generically
named “parity device”.

 Parity device is a flash drive in which every block on the Zest server has a
slot.

 I/O to the parity device is highly random.

 Once the location of all parity group members is known, the parityGroup
handle is written 'N' times to the parity device (where 'N' is the parity group
size).

 Failed blocks may find their parity group members by accessing the failed
block's parity device slot and retrieving his parityGroup handle.

Repercussions of RNDDP

Metadata Management
... Where did I put that offset??

Object-based parallel file systems (i.e. Lustre) use file-object maps to describe
the location of a file's data.

 Map is composed of the number of stripes, the stride, and the starting
stripe.

 Given this map, the location of any file offset may be computed.

RNDDP dictates that Zest has no such construct!

 Providing native read support would require the tracking of a file's
offset, length pairs.

RNDDP: Interesting New Capabilities

Zest's data placement methods provide interesting
feature possibilities...

Since any parity group may be written to any I/O server:

 I/O bandwidth partitioning on a per-job basis is trivial.

 Failure of a single I/O server does not create a hot-spot in the
storage network.

 Requests bound for the failed node may be evenly redistributed
to the remaining nodes.

Zest Write Techniques

Zest's methods for optimizing write throughput:
 Each disk is controlled by single I/O thread which heavily

sequentializes incoming requests.

 Relative, non-deterministic data placement. (RNDDP)

 Client generated parity.

Zest Write Techniques

Client Generated Parity (and Crc)
To prevent the IO Server's raid system from being a bottleneck,

redundancy information is computed at the client and handed to
the server for writing.

 Data blocks are Crc'd and later verified by the Zest server during
the post-processing phase.

 Data verification can be accomplished without read back of the
entire parity group.

Placing these actions on the client greatly reduces the load on the
Zest server at checkpoint time.

Clients

Rpc ThreadsRaid
Vector

Disk
Threads

Post-checkpoint Processing

Checkpointing is inherently a periodic process. After
a CP iteration has completed, Zest rapidly
synchronizes the data with the full-featured
filesystem (Lustre).

 This procedure, called 'Syncing', is primed when completed
parity groups are queued for read-back but does not actually
begin until the I/O threads are finished with their write
workloads.

 The 'syncer' consists of a set of threads which issue the read
requests to Zest and then perform writes into Lustre.

Zest Syncer

To better understand the syncing procedure one must
know how Zest correlates its block data with that of
the user's file.

Specifically, we need to know:

 Which blocks are associated with a given Lustre file?

 Where block data belongs with respect to the Lustre file?

Quick jump to metadata..

Zest Metadata Management
How does Zest handle file metadata?
 Zest files are 'objects' identified by their Lustre inode number.

 On create, files are first made in the Lustre filesystem then hard-linked into
an immutable section of the namespace. The inode number is used to create
the path into the Zest immutable namespace.

 The identifier is returned to the client who is then responsible for presenting
it to the server on a per-write basis.

 Besides the data, the client sends the list of io vectors needed to describe the
write buffer.

 The identifier and the io vectors are written alongside the data buffer onto
disk.

...Back to the Zest Syncer

When the syncer receives a completed read request from an
I/O thread, the request contains:

 The file identifier.

 The io vectors which describe the buffer.

 The data itself.

The syncer opens the Lustre file via its immutable pathname link
based on the file id and issues writes as determined by the io
vectors.

Zest Reliability

Zest provides reliability on par with a typical HPC I/O
system.

 Data redundancy through Raid.

 Recoverability via multi-homed disk configuration.

Zest supports hardware configurations such as the
following..

4

4

4

4

4

4

4

4
Disk Drive Shelves

Zest I/O Node
Dual Qual-Core

Service and I/O

SAS Links

PCIe

 No single point of failure

IB Links SATA drives

Zest Reliability

 Scalable Unit

Zest Reliability Features
 Support for failover pairs.

 Zest superblocks are tagged with UUIDs to avoid confusion in shared
disk configurations.

 On reboot, corrupt or missing data is rebuilt,
unsynchronized data is rectified.

 Certain modes of disk failure are easily detected and their
I/O thread is quarantined.

 'Fast rebuild' is supported.

 When a disk fails, the Zest server has an list, in memory, of all the active
blocks. Those blocks can rebuilt immediately without scanning the
entire set.

Zest Networking and RPC

Zest was originally conceived to run on a XT system.
Therefore it would use the service nodes as 'routers' to the
external storage network.

For this reason we chose to use the Lustre Networking and
RPC libraries so that Zest would be compatible with the
LNET routing code (which is responsible for moving data
between the compute nodes and external I/O nodes).

Zest Networking and RPC

... Bad news.

Zest runs in usermode, currently it can only utilize the
tcplnd and the ptllnd.

We need the equivalent of 'UK Bridge'
. This feature will arrive soon with the introduction of user

mode lustre services.

Zest Performance – Test
Description

 Test consisted of sequentially writing from each PE into a
separate file.

 Clients used a 5+1 Raid5 parity scheme (17% overhead)

 The number of Zest disks used was based upon the best observed
incoming network bandwidth

 Two sets of results:

 Clients on linux cluster (IB sockets-direct)

 Clients running on an XT3 (IB ipoib)**

**No sockets-direct protocol on the XT3 SIO/routers

 Seems to be a problem when creating an sdp socket from kernel mode.

Zest Performance

Zest Server Hardware

 2 x 4 Core Intel Processors

 Multiple PCI-e Busses

 2 Sas Controllers

 2 IB Interfaces (SDR)

 16 Drives
 Test uses 12 drives to match network bandwidth (~1GB/s)

Zest Performance - Single Disk (~75MB/s)

Zest Performance – Disk

By itself, the Zest backend can easily reach 90%
efficiency.

 12 disks@840MB/s

 16 disks@1100MB/s

 Very low CPU utilization due to zero-copy
 About 5% of 8 cores.

Zest Performance – Linux cluster

 Best case (120pe's), application saw
75% of spindle bandwidth.

 If parity overhead is ignored the
transfer rate represents 89.6% of the
spindle bandwidth!

16pe 40pe 60pe 100pe 120pe

0

100

200

300

400

500

600

700

800

900

App BW

(MB/s)

App BW +

Parity

Zest Performance - XT3

16pe 128pe 256pe

0

50

100

150

200

250

300

350

400

450

App BW

(MB/s)

App BW +

Parity

 Best case (16pe's), application saw
38% of spindle bandwidth.

 Ahh! The graph is going the wrong
way? It's the network..

 Ipoib is not as efficient as
sockets-direct protocol.

 Ipoib 100pe test on the linux
cluster got 280MB/s.

Zest Performance - XT3

From a previous benchmark.

 Ignore the bandwidth..
(Test utilized only a single
Ipoib interface.)

 Zest server shows
consistent performance up
to 2k clients.

Conclusions

Zest system design shows strong potential for providing low-
cost, high-performance parallel I/O configurations

Network drivers need work!

 Sockets-direct protocol is not a good long term solution.

 Access to the kernel mode Lustre drivers will arrive soon.

Global Metadata Support?

