Presented at the Cray User Group Conference, Helsinki, Finland, May 2008

Modeling the Impact of Checkpoints on Next-Generation Systems

Ron A. Oldfield* Sarala Arunagiri’

Maria Ruiz Varela®

Abstract

The next generation of capability-class, massively par-
allel processing (MPP) systems is expected to have hun-
dreds of thousands of processors. For application-driven,
periodic checkpoint operations, the state-of-the-art does
not provide a solution that scales to next-generation sys-
tems. We demonstrate this by using mathematical mod-
eling to compute a lower bound of the impact of these
approaches on the performance of applications executed
on three massive-scale, in-production, DOE systems and
a theoretical petaflop system. We also adapt the model
to investigate a proposed optimization that makes use of
“lightweight” storage architectures and overlay networks
to overcome the storage system bottleneck. Our results in-
dicate that (1) as we approach the scale of next-generation
systems, traditional checkpoint/restart approaches will in-
creasingly impact application performance, accounting for
over 50% of total application execution time; (2) although
our alternative approach improves performance, it has lim-
itations of its own; and (3) there is a critical need for
new approaches to checkpoint/restart that allow continu-
ous computing with minimal impact on the scalability of
applications.

*Sandia National Laboratories. Sandia is a multiprogram labora-
tory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy under contract DE-AC04-
94AL85000.

"The University of Texas at El Paso. Work at UTEP is supported by
the Department of Energy under Grant No. DEFG02-04ER25622, Sandia
National Laboratories under Contract No. 579987 (PR 882412), and an
IBM SUR grant.

*IBM TJ Watson Research Center

$0ak Ridge National Laboratory. This research is sponsored by the
Office of Advanced Scientific Computing Research; U.S. Department of
Energy. The work was performed at the Oak Ridge National Laboratory,
which is managed by UT-Battelle, LLC under Contract No. De-ACO5-
000R22725.

Patricia J. Teller'
Rolf Riesen™*

Seetharami Seelam®

Philip C. Roth®

1. Introduction

Today’s high-end massively parallel processing (MPP)
systems have tens of thousands of compute nodes. For ex-
ample, consider the following MPP systems currently in
use at three Department of Energy (DOE) laboratories. The
“Red Storm” system, a Cray XT3 machine at Sandia Na-
tional Laboratories (SNL) [6], has over ten thousand com-
pute nodes; “Jaguar”, a Cray XT3/4 hybrid machine at Oak
Ridge National Laboratory (ORNL), has more than eleven
thousand compute nodes; and the IBM BlueGene/L [33]
at Lawrence Livermore National Laboratory (LLNL), has
over sixty-four thousand compute nodes. All of these ma-
chines are expected to be the computation target of large-
scale applications that consume large fractions of the sys-
tem. For example, 80% of the compute-node hours of Red
Storm are allocated to applications that use a minimum of
40% of the compute nodes.

The massive scale of current and next-generation MPP
systems and their supported applications present signifi-
cant challenges related to fault tolerance. Some challenges
arise because current “in-practice” approaches to fault tol-
erance do not match well with the expected demands or us-
age models of these systems. For example, the most com-
monly used approach to fault tolerance is “checkpoint-to-
disk”. Using this approach, an application (or system) peri-
odically outputs to disk an amount of data that is sufficient
to restart the application after a failure. As the size of appli-
cations grow with the number of compute nodes on which
they execute, the cost of the checkpoint-to-disk approach
increases due to a combination of three reasons. First, sci-
entific applications (in particular, applications at the DOE
laboratories) often use a large fraction of the memory avail-
able on each of the compute nodes, preventing the use of
client-side caching to overlap computation and I/O. Sec-
ond, without caching, the rate at which checkpoint data can
be output is, at best, the speed of the storage system, which
is typically an order of magnitude slower than the intercon-
nection network. Third, as the number of employed com-
pute nodes increases, so does the probability of application
failure; this causes the application to checkpoint more fre-

quently. The compounding effect of the increase in check-
point data and the increase in the frequency of checkpoint
operations with the number of employed compute nodes re-
sults in checkpoint operations for large-scale applications
that generate bursts of I/O that can overwhelm an I/O sys-
tem and severely impact the execution time of the appli-
cation. The significance of these points is illustrated by
the fact that even on today’s systems, the I/O generated
by checkpoints consumes nearly 80% of the total I/O us-
age [23]. Given the expense of the checkpoint-to-disk ap-
proach and the trends to develop systems of ever-increasing
size, the community must seriously evaluate alternatives to
traditional disk-based checkpointing.

The checkpoint-to-memory approach [31] is one such
alternative. Its goal is to reduce the application exe-
cution time associated with checkpoint operations, i.e.,
the perceived checkpoint latency or checkpoint overhead,
as we refer to it in this paper. In contrast, the check-
point latency is the time required to write checkpoint data
to persistent storage. When some of the checkpoint la-
tency can be hidden, the impact on application execution
time, i.e., the checkpoint overhead, is reduced. For the
checkpoint-to-memory approach, this is done by having
compute nodes use their local memories to manage the state
of an application executed on other compute nodes. Be-
cause network and memory (network/memory) bandwidths
are typically much faster than storage system bandwidths,
this approach significantly reduces the checkpoint over-
head. However, checkpoint-to-memory approaches may
have problems with parity computation [27]: If an applica-
tion node computes the parity, the advantage gained by us-
ing the network/memory bandwidth, instead of the storage
bandwidth, decreases significantly [24]. But the biggest
problem with checkpoint-to-memory approaches for large-
scale scientific applications is the amount of memory re-
sources required by the compute nodes. Even in today’s
systems, many large-scale scientific applications are con-
strained by the size of the memory on the compute nodes.
Consequently, checkpoint-to-memory approaches are im-
practical for large-scale systems.

A number of other approaches are proposed in the lit-
erature, for example [7], but they have not been adopted
by the scientific community. This lack of interest among
developers of large-scale applications is likely due to the
fact that the scale of systems is not yet large enough to
justify a change. As we show in Section 3.3, through
mathematical modeling and analysis, checkpoint opera-
tions only become an I/O problem and, thus, an applica-
tion performance problem, when MPP systems reach scales
at and beyond the largest existing systems. Because of
this, the application-directed, checkpoint-to-disk approach
still is the most widely used fault-tolerance approach in
high-performance computing (HPC). However, if technol-

ogy trends continue along the same path being followed
today, we soon will have systems with hundreds of thou-
sands (perhaps millions) of compute nodes. Accordingly, if
the reliability of hardware and systems software do not im-
prove substantially, checkpoint-to-disk soon will become
impractical for large-scale applications.

In this paper, using Daly’s model [10], we approxi-
mate the impact of the checkpoint-to-disk approach on the
execution time of large-scale applications run on current
and next-generation MPP systems, i.e., SNL’s Red Storm,
LLNL’s BlueGene/L, ORNL’s Jaguar, and a target petaflop
system modeled after Red Storm. We then use the execu-
tion time model, with our own model of checkpoint latency,
to demonstrate the performance impact of an alternate ap-
proach to checkpointing [19] that employs lightweight stor-
age architectures [20] and overlay networks [15, 29], which
we call the LWFS+overlay approach. Although the analy-
sis of the results indicate that the LWFS+overlay approach
has a smaller impact on application execution time than
does checkpoint-to-disk, it indicates a critical need for new
research in checkpoint/restart approaches for massive-scale
systems.

The contributions of this paper include:

e a general analytical model for checkpoint overhead that
takes into account per-node link bandwidth, bi-section
network bandwidth, and storage system bandwidth;

e a proposed method to reduce checkpoint overhead by
using lightweight storage architectures and overlay net-
works;

e a refined analytical model that approximates the over-
head associated with checkpoint operations that use
lightweight storage architectures and overlay networks;

o the incorporation of our general and refined models for
checkpoint overhead into Daly’s equation for the opti-
mal checkpoint interval; and

e an approximation and analysis of the modeled check-
point overheads for three, in-production, massive-scale
systems and one proposed petaflop system.

The remainder of the paper is organized as follows.
Section 2 provides background information on check-
point/restart approaches and discusses related modeling ef-
forts. Section 3 presents Daly’s model, describes our model
of checkpoint overhead, and presents an analysis of check-
point overheads for four massive-scale systems. Section 4
describes and presents performance results for checkpoint
operations that use lightweight storage architectures and
overlay networks. Finally, Sections 5 and 6 discuss future
work and summarize the paper.

2. Background and Related Work

This section provides background information and a
summary of related work that justify our choice of models,
assumptions, and research direction. The following four
subsections discuss terminology used in this paper, check-
point/restart mechanisms, models of some of these mecha-
nisms, and research that targets the reduction of checkpoint
overhead and latency.

2.1. Terminology

For clarity, we define the following terminology:

Checkpoint data: An application’s state, i.e., data that are
sufficient to restart the application in case of a failure.

Checkpoint: An operation performed by an application or
a system to save the application’s state. This paper
focuses on application-directed, rather than system-
directed, checkpoint operations.

Checkpoint latency: The amount of time required to write
checkpoint data to persistent storage.

Checkpoint overhead: The amount of application execution
time used to perform a checkpoint operation. Note
that this may not be the same as the checkpoint la-
tency.

Checkpoint interval: The application execution time be-
tween two consecutive checkpoint operations. The
optimal checkpoint interval results in the minimum
application execution time, including the time to redo
the work performed between the last checkpoint and a
failure.

Compute node: A device that is attached to the interconnec-
tion network of a supercomputer and is specifically
designed to perform computation for large-scale ap-
plications. A compute node contains one or more pro-
cessors and, on massive-scale systems, is often disk-
less.

Processor: A processing “core” of a compute node. In this
paper, we assume that the application uses each em-
ployed compute-node processor for application com-
putation. We do not assume symmetric multiprocess-
ing capabilities on a compute node.

2.2. Checkpoint/Restart Mechanisms

Depending on when processes checkpoint, with respect
to when other processes checkpoint, checkpointing mech-
anisms are classified as coordinated, uncoordinated, or
communication-induced. In coordinated checkpointing, an
application’s processes must arrive at a consistent state be-
fore a checkpoint operation is performed; this makes the

approach complex with respect to synchronization, but it
simplifies recovery. In uncoordinated checkpointing, pro-
cesses perform checkpoint operations independent of one
another, thus, the restart operation is more complex. How-
ever, since there is no coordination with other processes,
there is no associated synchronization overhead and, as
a result, uncoordinated checkpointing is faster than co-
ordinated checkpointing. However, uncoordinated check-
pointing is prone to rollback propagation, which requires
processes to store multiple checkpoint states, and, conse-
quently, requires garbage collection in order to eliminate
unnecessary checkpoint data. In communication-induced
checkpointing, communication patterns trigger checkpoint
operations. At times during application execution, check-
pointing is uncoordinated, while at other times, communi-
cation patterns trigger processes to perform required check-
point operations. For large-scale applications, coordi-
nated checkpointing is the most widely used fault-tolerance
mechanism. It is favored over uncoordinated checkpoint-
ing, for which better performance comes at the cost of in-
creased restart complexity, memory overhead, and undesir-
able side effects, such as the domino effect [11]. Check-
pointing methods also are classified based on the type of
stable storage that is used to save application state, e.g.,
persistent or volatile storage, and the initiator of checkpoint
operations, e.g., application-directed or system-initiated
checkpointing. This paper focuses on large-scale applica-
tions and MPP systems. In this context, we study coor-
dinated, application-directed, periodic, checkpoint-based,
fault-tolerance methods that write application state to per-
sistent storage.

2.3. Models of Checkpoint/Restart Mechanisms

Several models that define the optimal checkpoint inter-
val have been proposed in the literature. Young proposed
a first-order model that defines the optimal checkpoint in-
terval in terms of checkpoint overhead and mean time to
interrupt (MTTI). Young’s model does not consider fail-
ures during checkpointing and recovery [39], while Daly’s
extension of Young’s model, a higher-order approxima-
tion, does [10]. In addition to considering checkpoint over-
head and MTTI, the model discussed in [32] includes sus-
tainable I/O bandwidth as a parameter and uses Markov
processes to model the optimal checkpoint interval. The
model described in [22] uses useful work, i.e., computa-
tion that contributes to job completion, to measure system
performance. The authors claim that Markov models are
not sufficient to model useful work and propose the use
of Stochastic Activity Networks (SAN) to model coordi-
nated checkpointing for large-scale systems. Their model
considers synchronization overhead, failures during check-
pointing and recovery, and correlated failures. This model

also defines the optimal number of processors that maxi-
mize the amount of total useful work. Vaidya models the
checkpointing overheadc of a uniprocess application. This
model also considers failures during checkpointing and re-
covery [36]. To evaluate the performance and scalability
of coordinated checkpointing in future large-scale systems,
[13] simulates checkpointing on several configurations of
a hypothetical petaflop system. Their simulations consider
the node as the unit of failure and assume that the probabil-
ity of node failure is independent of its size, which is overly
optimistic.

Although the models presented in this section differ
in many respects, all but [22] assume that system and
processor failures are independent and exponentially dis-
tributed; however, a recent study of failures on systems at
Los Alamos National Laboratory suggests that emperical
evidence may not match this assumption [30]. The analy-
sis in our paper is based on Daly’s model, which also makes
this assumption.

2.4. Reducing Checkpoint Overhead

Several techniques target the reduction of checkpoint
overhead, i.e., the time added to application execution time
as a result of checkpointing. Some of these techniques are
meant to hide some of the checkpoint latency and, thus, re-
duce checkpoint overhead. Copy-on-write checkpoint al-
gorithms take advantage of the low-latency of memory;
they copy checkpoint data to a separate memory address
space via virtual-memory, page-protection hardware. Once
a memory-to-memory transfer is complete, the checkpoint
data are saved to stable storage while application execu-
tion continues. Copy-on-write algorithms can be improved
by adding a buffering capability to enable the overlapping
of memory-to-memory transfers of checkpoint data and the
writing of the data to stable storage [18]. Although copy-
on-write implementations slightly increase checkpoint la-
tency, they decrease checkpoint overhead [12]. Since ap-
plications executing on MPP systems use large fractions
of the available memory, copy-on-write and checkpoint-to-
memory approaches [26], discussed briefly in Section 1,
are not suitable for such systems.

The following techniques explicitly target the reduction
of checkpoint latency. The use of RAID techniques has
been proposed to store coordinated checkpoint data more
efficiently [25]. RAID-inspired techniques, such as check-
point mirroring, N+1 parity, and Reed-Solomon coding, are
aimed at minimizing the impact of checkpointing on shared
resources, e.g., /O and network bandwidth, and on reduc-
ing checkpoint latency and recovery time [35]. Incremental
checkpointing aims at reducing the size of checkpoint data
by saving only the memory that has been touched since the
last checkpoint operation. Page-based incremental check-

pointing requires paging support from hardware and the op-
erating system. Page-based techniques might not scale well
on large MPP systems since even if only one bit in a page
changes, the entire page must be saved; also, paging is not
made use of on many MPP systems. Hash-based, as op-
posed to page-based, techniques are able to identify bytes
changed in a page. This feature is used in [1] to propose an
adaptive incremental checkpointing algorithm that aims at
minimizing the amount of checkpoint data saved to stable
storage. This algorithm uses a secure hashing function to
dynamically identify a block corresponding to the approxi-
mate number of bytes changed in memory.

The LWFS+overlay approach to checkpointing, intro-
duced in Section 1 and discussed in more detail in Sec-
tion 4, reduces checkpoint overhead by buffering check-
point data at network bandwidths rather than storage band-
widths. An important benefit of this approach for appli-
cations targeted at MPP systems is that it does not require
additional memory resources on the compute nodes, a lim-
itation that makes checkpoint-to-memory, asynchronous
checkpoint, and incremental checkpoint approaches im-
practical for many large-scale applications [24]. The tech-
niques described above that specifically target checkpoint
latency and are applicable to MPP systems can be incorpo-
rated into the LWFS+overlay approach.

3. Modeling Checkpoint Performance

The model used in this paper is based on a detailed
mathematical model of wall clock application execution
time on a computer system that exhibits Poisson single
component failures [8, 9, 10]. In this model, which was
constructed by John Daly, execution time includes the time
to perform checkpoints and the time to redo the work per-
formed between the last checkpoint and a failure, i.e., re-
work time. For long-running applications, the execution
time (T) is:

T = MM (DM 1) % for 6 <<T,, (1)

where

T, = Time spent doing application computation,

T = Time spent doing work between check-
points, i.e., checkpoint interval,

6 = Time to output checkpoint data, i.e., check-
point overhead,

M = Mean time between interruptions (MTTI) of
the application, and

R = Rework time.

By minimizing the application execution time in this
equation, Daly in [10] derives the following approximation

for the optimal checkpoint interval, 7,,;—p, which depends
on the checkpoint overhead (8) and the mean time between
interruptions (MTTTI) of the application (M).

1
\/23M[1+§<2‘§4)2+9§M} ~-8 s<2M
M §>2M.

2

Topt—D =

3.1. Checkpoint Overhead Model

In the remainder of the paper, we use Daly’s models of
application execution time and optimal checkpoint interval
to estimate the performance impact of application-directed,
checkpoint-to-disk strategies that either write directly to the
storage system (the current state-of-the-art) or write to an
intermediate level of memory, from which the checkpoint
data is automatically written to persistent storage. In either
case, the checkpoint overhead, &, which does not consider
network or storage system contention, is approximated by
the following model:

6= o + ﬂa
Bchkpt
where

o, = Start-up cost (e.g., creating files) associ-
ated with a checkpoint operation,

n = Number of processors used by the appli-
cation,

d = Amount of data written by each proces-
sor,

Bewipr = Perceived bandwidth of a checkpoint op-
eration, i.e., min(nfy, By, Bs),

BL = One-way network bandwidth per link,

B = Aggregate bisection network bandwidth,
and

Bs = Aggregate storage system bandwidth.

The start-up cost of a checkpoint operation, o, heav-
ily depends on the employed checkpoint algorithm, e.g.,
whether a shared file or a file per process is employed. In
POSIX-compliant parallel filesystems, consistency seman-
tics and device conflicts contribute to poor performance
when writing to a shared file. Considering this negative
performance impact, many DOE applications create a file
per process for checkpoint/restart files. This improves write
performance but creates a significant overhead associated
with sending thousands of simultaneous create operations
through a centralized metadata server [20].

With respect to the amount of data written by each pro-
cessor, i.e., d, this model for checkpoint overhead assumes
that each processor writes the same amount of state to the

checkpoint/restart file(s) and that the parallel filesystem is
perfectly scalable. These are overly optimistic assumptions
but they still provide a reasonable lower bound on the per-
formance impact of checkpoint operations.

The perceived checkpoint latency in the model takes
into account the fact that the compute nodes of most MPP
systems are diskless, meaning that all I/O requests travel
through a communication network to access the storage de-
vices. Thus, a checkpoint operation is bound by the aggre-
gate network link bandwidth, bisection network bandwidth,
or storage system bandwidth. The model accounts for these
three different checkpoint bandwidth (B pr) possibilities.

3.2. Checkpoint Overhead Model Parameters

In this paper, we model the performance of a represen-
tative, scientific, parallel application on four MPP archi-
tectures: SNL’s Red Storm, LLNL’s BlueGene/L. (BG/L),
ORNL'’s Jaguar, and a theoretical petaflop system, all
scaled to 128K compute-node processors, where a node is
comprised of multiple cores/processors. The representa-
tive parallel application employs all of the compute-node
processors in a system and checkpoints half of each pro-
cessor’s available memory at periodic intervals equal to the
optimal checkpoint interval computed using Daly’s model.
The memory available to each processor is the total mem-
ory of a compute node divided by the number of proces-
sors. Anecdotal evidence gathered from conversations with
computational scientists who use DOE systems indicates
that checkpoint data comprises 10-50% of the data in each
compute node’s memory; we chose to use 50% to cover the
most data-intensive case.

Table 1 shows the model parameters for each of the four
systems studied. The n,,,, X cores parameter is the number
of compute-node processors in the system. It is the product
of the number of nodes and the number of processors per
node in the system'. d,q is the total memory available to
a processor. My,, is the expected MTTI of any compute
node in the system; see Section 3.2.5 for a description of
how it is calculated. Our parameters for link and bisec-
tion bandwidths (B,, Br) indicate hardware rates reported
by vendors; they do not include the overheads associated
with message headers, encoding, or integrity checks (e.g.,
checksums), which may be required for production use.

The following sections describe the various systems and
justify the parameter values used in our model.

3.2.1. SNL Red Storm Parameters The Red Storm at
SNL is a Cray XT3 system comprised of 12,960 dual-core

1Our model assumes that the application uses every compute-node pro-
cessor as if it were independent; we do not assume SMP compute nodes.
This is known as “virtual node” mode on the Cray XT systems at SNL and
ORNL.

Table 1. Parameter values for the studied MPPs .

Parameter | Red Storm | BlueGene/L Jaguar Petaflop
Hmax X cores | 12,960 x2 | 65,536 x2 | 11,590 x 2 | 50,000 x 2
dmax 1GB 0.25GB 2.0GB 2.5GB
Mg,y 5 years 5 years 5 years 5 years
Bs 50GB/s 45GB/s 45GB/s 500GB/s
B 2.3TB/s 360GB/s 1.8TB/s 30TB/s
BL 4.8GB/s 1.4GB/s 3.8GB/s 40GB/s

Bandwidth of a Checkpoint Operation

100 T { T { T { T { T { T { T { T { T
Model (ﬁchkpt) 7]
RedStorm ---o--- —

Bandwidth (GB/s)
A
S
I
|

10 - i
0 o b o b | 1 1Ly
20 22 24 26 28 210 212 214 216 218

Number of Compute-Node Processors

Figure 1. Comparison between the modeled
and actual performance of checkpointing for
LLNLs IOR benchmark writing to a file per
process on SNL's Red Storm.

compute nodes and 256 dual-core I/O nodes. The I/O nodes
are split evenly between two filesystems, one for classified
work and one for unclassified work, each of which is sup-
posed to provide 50GB/s sustained throughput to the stor-
age devices. However, as indicated by recent experiments,
the I/O nodes deliver filesystem performance that is well
below the targeted throughput [38]. Using the LLNL IOR
benchmark writing to a file per process, our independent
experiments (shown in Figure 1) compare the actual perfor-
mance of checkpointing on Red Storm, in terms of through-
put in GB/s, with the modeled performance. The modeled
performance, which reflects hardware rates, further empha-
sizes that Red Storm’s achieved filesystem performance is
well below hardware rates.

The Red Storm network consists of a 3-D mesh with a
per-link (one-way) peak bandwidth of 4.8GB/s and a bisec-
tion bandwidth of 1.8TB/s. See [5] for a detailed descrip-
tion of the architecture of the SNL Red Storm, as well as a
presentation of the employed design philosophy.

3.2.2. LLNL BlueGene/L Parameters The IBM Blue-
Gene/L (BG/L) at LLNL has 64K dual-core compute nodes
and 1K I/O nodes. Each I/O node is a Lustre [4] client
that connects to an 896TB Lustre cluster. The Lustre clus-

ter consists of 224 “Object Storage Servers” (OSSs), each
attached to a Data Direct Network 8500 RAID controller
through a 2Gb/s link. LLNL’s BG/L uses a separate net-
work for storage and computation. The storage network
consists of 1,024 1Gb/s interfaces and can provide a po-
tential I/O bandwidth of 128GB/s to the storage system.
Note, however, that the Lustre system was designed to pro-
vide 45GB/s theoretical bandwidth between BG/L and the
storage cluster. The hope is to obtain 80% of the theoret-
ical bandwidth but, to date, only about 22GB/s has been
achieved by LLNL’s IOR benchmark [28].

3.23. ORNL Jaguar Parameters The Jaguar at
ORNL is a Cray XT system with 11,590 nodes, each
comprised of a 2.6 GHz dual-core AMD Opteron and
4GB memory. Of these nodes, 11,508 are used exclu-
sively for computation, 10 are service and login nodes,
and the remaining 72 are used for I/O to serve three Lus-
tre filesystems—one 300TB system and two 150TB sys-
tems. Each I/O node has four Lustre object-storage tar-
gets (OSTs). Two OSTs serve the 300TB system, while
the other two serve the 150TB systems. The expected peak
block-1/0 bandwidth to the 300TB system is 45GB/s.

Like the Red Storm at SNL, each node is connected
to a Cray SeaStar router through HyperTransport tech-
nology. The SeaStar routers are interconnected in a 3D-
torus. Each router provides six network links (one for each
neighbor in the torus), each with a peak (one-way) link
bandwidth of 3.8GB/s. The peak bisection bandwidth is
1.4TB/s. See [37] for a performance evaluation of the XT3
at ORNL. Details about the recent upgrade of the ORNL
XT system can be found at http://info.nccs.gov/
resources/jaguar.

3.24. Petaflop System Although no true petaflop
capability-class systems exist, Tomkins presents a “con-
servative” description of the system requirements for this
next class of systems in [34]. The architecture of the Red
Storm follow-on remains basically the same as its prede-
cessor with improvements in the network, storage system,
processors, and memory capacity. A petaflop Red Storm
system will consist of over 50K compute nodes. Our table
shows two processors per node, but we do not know ex-

http://info.nccs.gov/resources/jaguar
http://info.nccs.gov/resources/jaguar

actly how many processors per compute node the system
will have. If the trend toward multi-core systems contin-
ues, it would not be surprising to see up to 64 cores/node.
Applications will have to execute on 25K or more compute
nodes with over 50% efficiency and have an I/O through-
put to the filesystem of S00GB/s. Each compute node will
need at least SGB of memory and the network will need a
per-link (one-way) bandwidth of 40GB/s with a bisection
bandwidth of 30TB/s.

3.2.5. MTTI for Large-scale Applications The speci-
fications of both Red Storm and the proposed petaflop sys-
tem expect a MTTTI of over 50 hours for the whole system,
including software and hardware failures. Given our as-
sumption of an exponential failure distribution, achieving
50 continuous hours of service without any failures on a
128K-processor application means that the per-processor
MTTI has to be 128K x 50 hours, or 748 years! How-
ever, a recent paper from Schroeder, et al. [30], which
documents a variety of different types of interrupts regis-
tered for MPP systems at Los Alamos National Laboratory
(LANL), shows that with software interrupts caused by ei-
ther the operating system or application libraries, even the
most reliable systems achieve an MTTI of no more than
five years/processor. Based on failure rates reported for the
ASCI-Q supercomputer at LANL, Elnozahy, et al. [13] sug-
gest an even lower value of single-node MTTI of one year,
as a “conservative” estimate. Since we do not have defini-
tive failure rates for the systems studied, we use a generous
five-year processor failure rate (MTTI); this is optimistic,
considering the failure rates reported in the literature.

3.3. Model Results

For the systems studied, using Daly’s model and our
model for checkpoint overhead, this section presents results
regarding the optimal checkpoint interval, the throughput
of the checkpoint operation, and the checkpoint overhead
as a percentage of application execution time. Figure 2 de-
picts the optimal checkpoint interval as a function of the
number of compute-node processors. Since the probability
of application failure is directly proportional to the number
of employed processors, as the figure shows, the applica-
tion increases the frequency of checkpoint operations, i.e.,
the optimal checkpoint interval decreases, as the number of
employed processors increases to account for the increased
probability of failure.

Figure 3 illustrates the modeled throughput of a check-
point operation of our representative parallel application
executed on the MPPs studied. As shown in the figure,
for any job executing on more than 32 compute-node pro-
cessors, the execution time of a checkpoint operation is
governed by storage system performance. In contrast, for

Tope: Optimal Checkpoint Interval

160 ‘ ‘ T \

RedStorm ——+——
140 + BG/L - PR]
=~ 120} Jaguar E
sté’ 100 7 PetaFlop a |
£ s pl -
260 F oK .
B a0l E\’j; 1
20 L E D:w'ﬁmm"ﬁ”ﬁ'H'ggfgfgi‘jj@% |

0 1 1 1 1 1 1 1 1

20 22 24 26 28 210 212 214 216 218
Number of Compute-Node Processors
Figure 2. Optimal checkpoint interval as a

function of the number of compute-node pro-
cessors.

Benkpr: Bandwidth of a Checkpoint

1000 ‘ ‘
=8--8--g-g--g-8-8-8-a--a8--8--8e-0 ol
=
z o
% 100 | E
=
2
2 10 RedStorm ——+——— 4
2 2 BG/L - *oooes
* Jaguar
' PetaFlop a

1 i 1 1 1 1
20 22 24 26 28 210 212 214 216 218

Number of Compute-Node Processors

Figure 3. Modeled throughput of a check-
point operation as a function of the number
of compute-node processors.

smaller jobs, the storage system can keep up with the de-
mands of checkpointing because the aggregate node-link
bandwidth of the compute-node processors does not exceed
the storage system’s ability to consume data. On all sys-
tems, the execution time of a checkpoint operation is never
bound by the bisection bandwidth.

Figure 4 shows the aggregate execution time spent per-
forming all checkpoint operations as a percentage of the
overall application execution time. The following formula
is used to calculate this percentage:

Ts
T,+Ts’

Percent of Execution for Checkpoints (Traditional FS)

100% 1T T T T T T T T T T T T T T T T
B BG/L
[l RedStorm
80% - -Jaguar - - -
o [] PetaFlop
E
800 [
i)
5
(8}
R A0 [g
]
X
20% [y
0% | | | | | | | I I I N
AN <0 O N0 ONTO0ONT 0O N
M O N AN OO 0 O M~
=N O O QMmN O
N < 00O N W o
HO’)LDQ
Number of Compute-Node Processors

Figure 4. Aggregate checkpoint overhead as
a percentage of application execution time.

where T is the amount of compute time required for the
application, i.e., the solve time without checkpointing, and
Ts is the total execution time spent performing checkpoint
operations. It is this fraction that matters to the computa-
tional scientist; it provides an upper bound on the scalabil-
ity of the application. According to our model, even when a
checkpoint operation executes at hardware rates, an appli-
cation that executes on 64K processors can achieve no bet-
ter than 70% efficiency, even on the hypothetical petaflop
system. The dramatic increase in checkpoint overhead as
the system size increases demonstrates the need to investi-
gate alternative approaches to checkpoint/restart.

Our analysis also provides substantial evidence to ex-
plain why checkpoint-to-disk has been an acceptable solu-
tion to date. On capacity systems, with small job sizes,
system-directed checkpoints, where the system check-
points the entire memory footprint, are viable. For appli-
cations that scale to more than 4K processors, application-
directed checkpoint-to-disk solutions are sufficient if the
application can select the data that needs to be dumped,
opting to re-calculate portions of lost data. However,
as applications scale beyond 32K processors, application-
directed checkpoint operations begin to dominate execution
time, severely limiting application scalability.

4. Reducing Checkpoint Overhead

According to Daly’s model, the optimal checkpoint in-
terval is dependent on two variables: the MTTI and the
overhead of a checkpoint operation. We focus our efforts
on ways to reduce the checkpoint overhead as a means
to improve overall application performance. There are a

authenticate \
Launch Authentication
Server
credential
)
validate
credential
S CE -
quest capability \‘

Authorization
- Server
capability

operation
(capability)

Credential

validate

capability

Figure 5. The LWFS core architecture.

number of ways to achieve this goal, some of which are
mentioned in Sections 1 and 2. In this paper, we focus
on exploring the use of lightweight filesystems [20] and
overlay networks [5] to reduce checkpoint overhead, and
we evaluate the impact of this approach, which we call
LWFS+overlay in this paper, using Daly’s model.

4.1. Lightweight Filesystems

Lightweight filesystems [20] allow secure, direct access
to storage, bypassing features of traditional filesystems that
impose performance bottlenecks. Figure 5 illustrates the
core architecture of a lightweight filesystem (LWFS). The
LWES core architecture consists of a small set of services
and mechanisms to provide security, efficient data trans-
port, and direct access to storage. It does not provide di-
rect support for traditional filesystem services like naming,
consistency/conflict management, or organizational infor-
mation that describes data distribution. If the application
requires these services, the user includes the necessary li-
brary services at link time.

Figure 6 illustrates why the LWFS architecture, a
lightweight storage architecture, is well suited for appli-
cation checkpoints. These results were obtained on SNL’s
Darkstar cluster, an I/O-development system that consists
of 64 dual-core Opteron compute nodes and 16 dual-core
Opteron I/O nodes configured to mimic the I/O-node con-
figuration of Red Storm. First, referring to the figure, con-
sider the negative effect that the consistency semantics of
traditional filesystems have on the performance associated
with shared-file access (labeled n-to-1 in the figure). Also,
consider the alternative, i.e., the file-per-process approach
(labeled n-to-n), which generates an unnecessarily large
number of operations targeted at a centralized metadata
server. In contrast, with LWFS, it is possible to design

(a) LWEFS vs. Lustre: Write to 16 Storage Servers

|

LWES (n-to-n) ——
Lustre (n-to-n) ---o---
Lustre (n-to-1) ---—+---

|

| | |

30

40 50 60 70

Number of Compute-Node Processors

(b) Lustre File Creation

0 10

Number of Compute-Node Processors

20 30 40 50 60

20STs —o—
4 OSTs --o--

8OSTs —+
16 OSTs - —x -

(c) LWFS Object Creation

70000 { : : : { —
360000% X*"**g"47”<gﬁkqi*
2 50000 (- 3{/*” o |
= 40000 |- - - e
230000 | /% e B -
2’ 20000 | % = |
£ 10000 |
a 0 ! | | | | |

0 10 20 30 40 50 60 70

Number of Compute-Node Processors

20STs —o—
4 OSTs --o--

8OSTs —+
16 OSTs - —x -

Figure 6. The first figure (a) shows n-to-1 (shared-file) and »-to-n (file-per-process) write performance
of Lustre compared to the n-to-n write performance of LWFS. The second and third figures (b and
c) show throughput (ops/sec) of creating files using Lustre and creating objects (in parallel) using
LWFS. All experiments were performed on SNL's Darkstar cluster.

a library that permits each client process to allocate on a
storage server its own object for checkpoint data. After all
clients dump their states, the application collectively gener-
ates the necessary metadata to represent the distributed data
set; then it selects one client to associate that metadata with
aname in an external naming service. This approach avoids
the expensive overhead of a file-per-process case, while
achieving near physical bandwidths to the storage system.
With respect to the checkpoint model, this only effects the
start-up cost, ¢.. Based on the measured results from Fig-
ure 6(c), for LWFS, we set o, = n/60,000seconds; this is
a conservative estimate of the cost of allocating objects on
a large system.

4.2. Overlay Networks

LWES architectures provide a direct-to-storage option
for checkpoints that can improve I/O performance when
compared to using a traditional “heavyweight” filesystem.

However, these improvements will be modest if the data
throughput is bound by the bandwidth of the storage sys-
tem.

One way to relieve this storage system bottleneck is
to exploit available processing and memory resources in
an overlay network [15, 29]. Overlay networks provide
a mechanism that allows an application to move poten-
tially performance-limiting I/O operations off the compute
nodes; this allows compute nodes to perform I/O opera-
tions unencumbered by the associated overheads and po-
tential serialization imposed by the I/O operations. There
are a number of interesting uses for overlay networks. For
example, overlay networks could (1) filter input data in
an application-specific way, saving network bandwidth and
compute-node memory [16, 3, 14, 17]; (2) efficiently route
data to compute nodes using data-dependent mapping func-
tions, for example in applications with data-dependent de-
composition of unstructured data [16]; and (3) process in-

flight data sets to transform data into a format that matches
the needs of the computation or a particular data distribu-
tion, for example to convert time-series data into frequency
data for seismic imaging [21].

For the purpose of improving the I/O performance of
checkpoint operations, a simple use for overlay networks
is to buffer checkpoint data for applications that have
compute-node memory constraints. This approach allows
the application to checkpoint some, if not all, of its state at
network bandwidths rather than storage bandwidths. On all
of the systems studied in this paper, bisection bandwidth is
at least an order of magnitude greater than the peak storage
system bandwidth. An important benefit of this approach
is that it does not require additional memory resources on
the compute nodes, a limitation that makes checkpoint-to-
memory, asynchronous checkpoint, and incremental check-
point approaches impractical for many large-scale applica-
tions [24]. Note that for applications that are not memory
constrained, using overlay nodes purely as buffers is not
practical. These applications will benefit more from using
an asynchronous checkpoint approach that exploits buffers
in the compute nodes to overlap I/O and computation.

To model the use of overlay networks for checkpoint op-
erations, we compute the checkpoint overhead as follows:

dn <k

, 3
dn >k ©)

dn
d=oa.+ { ﬁ]gv (dn—Fk)
BB

where £ is the effective memory that can be used at the net-
work bandwidth, i.e., the amount of checkpoint data trans-
ferred over the network before the transfer becomes bound
by the storage system bandwidth, and Sy = min(nfy, B,)
is the minimum of the aggregate link bandwidth and the
bisection bandwidth of the network. The variable k is the
sum of p, the combined memory in the overlay network,
and the amount of data transferred to storage while u is
being transferred to the overlay network. Thus,

(B ()

2)

As shown in Equation 3, when (dn > k), the terms ﬁi and

(dn—k) represent the time spent bound by the network band-

W1dth (Bw) and the time spent bound by the storage system
bandwidth (), respectively.

The memory in overlay nodes can be used to provide
buffers for bursts of I/0. The size of the checkpoint data

10

and the size of this memory determine how much the sys-
tem can hide the checkpoint overhead. However, this intro-
duces a lower bound on the checkpoint interval that can be
employed in the system, T;;, given by

d
Tp = ﬁﬁmm (1,’1]{) .
s

Recall that k is size of the effective memory that can be
written at the network bandwidth rate and k > u, where
is the size of the memory in the overlay network.

For a system, as described in this section, that uses the
memory in an overlay network as a buffer for checkpoint
data, we define the optimal checkpoint interval, 7, as

“4)

Topt = Max (Topthv le))

where 7,,,_p is Daly’s optimal checkpoint interval defined
by Equation 2 and 7, is defined by Equation 4.

Note that systems like Red Storm and BlueGene/L al-
ready pass data through intermediate “I/O nodes”, which
run Linux. On BG/L, there are 1,024 I/0O nodes, one for ev-
ery 64 compute nodes, that act as filesystem clients, which
simply forward calls to the back-end filesystem. On Red
Storm there are 256 nodes (128 on each side), each at-
tached to storage devices. One goal of our future work is
to investigate how to use these nodes for more application-
specific purposes (for example, buffers), rather than just in-
terfaces to the I/O system. We also want to explore using
application-dedicated nodes for this purpose, and eventu-
ally investigate opportunities to use these nodes to manage
state in a way that allows recovery from individual node
failure without restarting the entire application.

We reiterate a point made in the introduction: We do not
explore how failures in the overlay network or the underly-
ing storage system affect our model. However, we believe
that it is possible to design libraries that use overlay net-
work memory to buffer checkpoint data and transfer it to
the storage system in such a way that it has minimal impact
on the probability of application failure (i.e., employing the
memory in overlay networks will not influence the calcula-
tion for M,,p,). This is another topic for future work.

4.3. Results

For the Red Storm system at SNL, we use the models
derived in Sections 3, 4.1, and 4.2 to estimate the potential
benefit of LWFS+overlay on checkpoint performance. The
results for Red Storm are presented in Figures 7 and 8, as
well as in 9 and 10, which present results for the other
three systems. With respect to Figures 7 and 8, the results
for the other three systems are similar. Due to space con-
straints, we omit full results for all systems. In all of our
models, we assume that there are 1,024 intermediate-node

Tope: Optimal Checkpoint Interval for RedStorm

100 T \
30 7\\ LWEFS - Koo
LWFS+Overlay

60 b]
50 g
40 | j\ 1
30 | R e e e
20 |
10 + g
0 1 1 1 1 1 1 1 1

20 22 24 26 28 210 212 214 216 218

Time (minutes)

Number of Compute-Node Processors

Figure 7. Optimal checkpoint interval for PFS,
LWFS, and LWFS+overlay on Red Storm.

processors in the overlay network (less than 1% of the total
compute-node processors), each with double the memory
of a normal compute-node processor.

Figure 7 shows Daly’s optimal checkpoint interval for
our representative parallel application executed on Red
Storm with the normal parallel file system (PFS), LWEFS,
and LWFS with an overlay network. An interesting side-
effect of Daly’s equation is that a reduction in checkpoint
overhead also reduces the checkpoint interval. Initially a
decrease in application execution time due to a reduction
in checkpoint frequency seemed counter-intuitive. How-
ever, when you consider rework time (the time required
to recompute data lost due to failures), which is included
in Daly’s model, it makes sense that as checkpoint oper-
ations become cheaper, the application performs check-
points more often in order to reduce the amount of work
lost due to failures. A detailed exploration of this phe-
nomenon is presented in [2].

The effective throughput of an LWFS+overlay check-
point operation on Red Storm, illustrated in Figure 8, be-
haves as we expected. The additional memory provided by
the intermediate nodes in the overlay network causes the
throughput to be bounded by the aggregate link bandwidth,
then by the bisection bandwidth, and finally, when the size
of a checkpoint exhausts the memory on the intermediate
nodes, by the storage bandwidth. As shown in Figure 9, for
all the MPP systems studied, this has a dramatic effect on
the percentage of execution time spent checkpointing. Fig-
ure 10 is another bar graph that shows, for all the MPP sys-
tems studied, the relative difference between the standard
filesystem approach and the LWFS+overlay approach. We
calculate the relative difference as

Pfs - Poverlay
Py ’

Benkpr: Bandwidth of a Checkpoint

10000
2 1000 £ E
o)
<)
=
] 100 t 3
2 d
g
@ 10 < PFS —+—
LWES - PR
. LWEFS+Overlay

20 22 24 26 28 210 212 214 216 218

Number of Compute-Node Processors

Figure 8. Throughput of LWFS+overlay
checkpoint operation on Red Storm.

where Py is the percentage of execution time for the stan-
dard filesystem approach, and P,..;qy is the percentage
of execution time for the LWFS+overlay approach. The
relative difference plot gives insight into how much bet-
ter one approach is than the other. Below 8K processors,
LWFS+overlay reduces the checkpoint overhead to less
than 1% of the total application execution time. At 16K
processors, checkpoint data exhausts the memory in the
overlay network and the operations again become bound
by the storage system bandwidth.

Percent of Execution for Checkpoints (LWFS+OQOverlay)

1000% 1T T T T T T T T T T T T T T T T 1
B BGL
[l RedStorm
80% [-M-Jaguar - - - - ...
o [] PetaFlop
S
800 [
2
5
[8)
R A0 [ttt -
N
S
20% [
o L1 10
o NS 0O NS OONTOOONT®DON
AMONNMANT OO RO MmN~
AN OO O dMmN~n o
AN < 00 d
EERCRY
Number of Compute—Node Processors

Figure 9. LWFS+overlay checkpoint overhead
as a percentage of total application execution
time for the MPP systems studied.

Relative Difference Between Checkpoint Overheads

6T 71T T T T T T T T T T T T T T T T 1
B BG/L I
14 | ----RedStorm- - - - ---------c-c-mama el]
M Jaguar
o 12 ---[d-PetaFlop---------- - Al
% _
5 10
=
- S | I
[¢]
=
6
©
2 TR | [} (111 [T 1Y | ——

Figure 10. Relative difference between check-
point overheads for standard parallel filesys-
tems and LWFS+overlay for the MPP systems
studied.

5. Future Work

This paper presents results of a preliminary study to un-
derstand the impact of application-directed checkpointing
on the next generation of massive-scale systems. This sec-
tion describes our plans to extend this work. In particu-
lar, we plan to validate our models on a large-scale system,
improve the accuracy of our models by including realistic
overheads associated with the network and storage system,
and investigate other fault-tolerance methods.

Although Section 4 includes validation of standard par-
allel filesystem and LWFS performance on a modest-sized
cluster, we have not yet validated the performance mod-
els on a large-scale system. In the next few months, we
will actively develop experiments to validate our analytical
models on the Red Storm system at SNL.

Our models take an overly optimistic view of application
performance to establish a lower bound on the performance
impact of application-directed checkpoints. On most sys-
tems, however, measured performance is often much worse
than hardware rates. A logical next step is to refine our
models to include realistic, expected overheads (for pro-
duction systems) for operations associated with the storage
system, network, and other system components.

The LWFS and overlay network approach,
LWFS+overlay, presented in Section 4, is just one of
a number of interesting approaches to reduce checkpoint
overhead. Our results show that when the overlay network
contains sufficient memory, the approach is quite effective
at reducing checkpoint overhead; however, when the
size of the checkpoint data is larger than the memory in

12

the overlay network, LWFS+overlay is no better than a
traditional filesystem approach. Our future work includes
investigating hybrid approaches that combine the use
of overlay networks and client-side buffering. Such an
approach would be effective, for example, if compute
nodes have a small portion of available memory that,
when combined with the memory in the overlay network,
is sufficient to buffer all checkpoint data. Our modeling
approach gives us a tool that can be used to evaluate and
theorize on the value and applicability of some of these
approaches on the next generation of systems.

Although our analytical models provide some evidence
that we can improve I/O performance for checkpoint op-
erations, it is clear that I/O improvements alone are not
enough. Another goal of our research is to investigate al-
gorithms that use the intermediate nodes in an overlay net-
work, along with lightweight storage architectures, for con-
tinuous computing, even when application nodes fail. For
example, one interesting idea is to use nodes in an over-
lay network in the same way diskless checkpointing ap-
proaches use compute nodes. While the overlay nodes pro-
vide the memory lacking on the compute nodes, the parity
computation can be “offloaded” to the overlay network, re-
solving some of the issues discussed in [27].

6. Summary

This paper uses mathematical models to approximate
the performance impact of application-directed check-
pointing on a representative scientific application running
on three existing MPP systems and one theoretical petaflop
system. To establish a lower bound on the performance
impact of checkpointing, our models assume perfect scal-
ability of the filesystem, no overheads or contention in the
network, and periodic checkpoints at the interval defined
by Daly’s function for the optimal checkpoint interval.

Our experiments investigate three different application-
directed, checkpoint approaches: a typical approach that
dumps direct to a parallel file system, an approach that
dumps to a lightweight file system, and an approach that
exploits available memory in an overlay network as a buffer
between the application and the storage system.

Our analysis of the traditional approach illustrates two
important points. First, for applications that use fewer
than 16K processors, checkpoint overhead accounts for less
than 10% of the overall application execution time. Since
today’s massive-scale systems are just now reaching this
scale, the impact of the choice of fault-tolerance approach
on application execution time has not yet been realized.
This explains the general lack of interest we have experi-
enced when discussing checkpoint optimizations with com-
putational scientists at SNL.

The results also show that the compounding effect of
larger checkpoint data files and increased checkpoint fre-
quency to account for increased probability of failure, con-
tribute to significant overheads when applications employ
more than 16K processors. On some systems this over-
head accounts for more than 50% of the total execution
time when the application scales beyond 64K processors.

Our analysis of application performance when using
overlay networks to buffer checkpoints is encouraging. The
results show that when the overlay network contains suffi-
cient memory, the approach is quite effective at reducing
the checkpoint overhead. However, as the size of a check-
point file increases beyond the size of the overlay network
memory, the performance attained by using overlay net-
works approaches that of traditional filesystems. In our ex-
periments, using an overlay network with 1,024 processors
(1% of the total number of system processors), each with
a memory capacity of twice the normal compute-node pro-
cessor, when the application uses 16K processors or fewer,
all of the data in a checkpoint file can be transferred at net-
work rates rather than storage system rates .

In short, this work provides insight and understanding
that will help motivate and guide future efforts related to
fault-tolerance research. It is clear from our results that
new approaches are needed. Our mathematical models pro-
vide a useful tool kit with which to evaluate the viability of
experimental fault-tolerance methods for applications exe-
cuted on massive-scale systems.

References

[1] S. Agarwal, R. Garg, M. S. Gupta, and J. E. Moreira. Adap-
tive incremental checkpointing for massively parallel sys-
tems. In Proceedings of the 18th Annual International Con-
ference on Supercomputing, pages 277-286, New York, NY,
2004. ACM Press.

S. Arunagiri, S. Seelam, R. A. Oldfield, M. R. Varela, P. J.
Teller, and R. Riesen. An analysis of the consequences of a
reduction in checkpoint latency for periodic checkpointing
systems. Technical Report SAND2007-xxxx, Sandia Na-
tional Laboratories, 2007.

A.J. Borr and F. Putzolu. High performance SQL through
low-level system integration. In Proceedings of the ACM
SIGMOD International Conference on Management of
Data, pages 342-349, Chicago, IL, 1988. ACM Press.

P. J. Braam. The lustre storage architecture. Cluster File
Systems, Inc. Architecture, Design, and Manual for Lustre,
November 2002. http://www.lustre.org/docs/lustre.pdf.

R. Brightwell, W. Camp, B. Cole, E. DeBenedictis, R. Le-
land, J. Tomkins, and A. B. Maccabe. Architectural specifi-
cation for massively parallel computers: an experience and
measurement-based approach. Concurrency and Computa-
tion: Practice and Experience, 17(10):1271-1316, March
2005.

(2]

(3]

(4]

(5]

13

(6]

(7]

(8]

(9]

(10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

W. J. Camp and J. L. Tomkins. The red storm com-
puter architecture and its implementation. In The Confer-
ence on High-Speed Computing: LANL/LLNL/SNL, Salis-
han Lodge, Glenedon Beach, Oregon, April 2003.

T.-C. Chiueh and P. Deng. Evaluation of checkpoint mech-
anisms for massively parallel machines. In Proceedings of
the Annual Symposium on Fault Tolerant Computing, pages
370-379, Sendai, Japan, June 1996. IEEE Computer Soci-
ety Press.

J. Daly. A model for predicting the optimum checkpoint
interval for restart dumps. Lecture Notes in Computer Sci-
ence, 2660:3—-12, August 2003.

J. Daly. A strategy for running large scale applications
based on a model that optimizes the checkpoint interval
for restart dumps. In Proceedings of the 26th International
Conference on Software Engineering, pages 70-74, Edin-
burgh, Scotland, UK, May 2004.

J. Daly. A higher order estimate of the optimum check-
point interval for restart dumps. Future Generation Com-
puter Systems, 22:303-312, 2006.

E. N. Elnozahy, L. Alvisi, Y. M. Wang, and D. B. John-
son. A survey of rollback-recovery protocols in message-
passing systems. ACM Computing Surveys, 34(3):375-408,
September 2002.

E. N. Elnozahy, D. B. Johnson, and W. Zwaenepoel. The
performance of consistent checkpointing. In Proceedings of
the 11th Symposium on Reliable Distributed Systems, pages
39-47, Houston, TX, October 1992. IEEE Computer Soci-
ety Press.

E. N. Elnozahy and J. S. Plank. Checkpointing for peta-
scale systems: A look into the future of practical rollback-
recovery. IEEE Transactions on Dependable and Secure
Computing, 1(2):97-108, April-June 2004.

E. Franke and M. Magee. Reducing data distribution bottle-
necks by employing data visualization filters. In Proceed-
ings of the Eighth IEEE International Symposium on High
Performance Distributed Computing, pages 255-262, Re-
dondo Beach, CA, August 1999. IEEE Computer Society
Press.

A. Gavrilovska, K. Schwan, O. Nordstrom, and H. Seifu.
Network processors as building blocks in overlay networks.
In Proceedings of the 11 th Symposium on High Perfor-
mance Interconnects (HOTIO3), pages 83—-88, August 2003.
D. Kotz. Expanding the potential for disk-directed I/O. In
Proceedings of the 1995 IEEE Symposium on Parallel and
Distributed Processing, pages 490-495, San Antonio, TX,
October 1995. IEEE Computer Society Press.

T. Kurc, C. Chang, R. Ferreira, and A. Sussman. Querying
very large multi-dimensional datasets in ADR. In Proceed-
ings of SC99: High Performance Networking and Comput-
ing, Portland, OR, November 1999. ACM Press and IEEE
Computer Society Press.

K. Li, J. S. Naughton, and J. S. Plank. Low-latency, con-
current checkpointing for parallel programs. [EEE Trans-
actions on Parallel and Distributed Systems, 5(8):874-879,
August 1994.

R. A. Oldfield. Investigating lightweight storage and over-
lay networks for fault tolerence. In Proceedings of the High

[20]

[21]

(22]

(23]

[24]

(25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

Availability and Performance Computing Workshop, Santa
Fe, NM, Oct. 2006.

R. A. Oldfield, A. B. Maccabe, S. Arunagiri, T. Korden-
brock, R. Riesen, L. Ward, and P. Widener. Lightweight /O
for scientific applications. In Proceedings of the IEEE In-
ternational Conference on Cluster Computing, Barcelona,
Spain, September 2006.

R. A. Oldfield, D. E. Womble, and C. C. Ober. Efficient
parallel I/O in seismic imaging. The International Journal
of High Performance Computing Applications, 12(3):333—
344, Fall 1998.

K. Pattabiraman, C. Vick, and A. Wood. Modeling coor-
dinated checkpointing for large-scale supercomputers. In
Proceedings of the 2005 International Conference on De-
pendable Systems and Networks (DSN’05), pages 812-821,

Washington, DC, 2005. IEEE Computer Society.

F. Petrini and K. Davis. Tutorial: Achieving Usability and
Efficiency in Large-Scale Parallel Computing Systems, Au-
gust 31, 2004. Euro-Par 2004, Pisa, Italy.

L. R. Philp. Software failures and the road to a petaflop ma-
chine. In /st Workshop on High Performance Computing
Reliability Issues (HPCRI). Los Alamos National Labora-

tory, February 2005.
J. S. Plank. Improving the performance of coordinated

checkpointers on networks of workstations using RAID
techniques. In Proceedings of the Symposium on Reliable
Distributed Systems, pages 76—85, 1996.

J. S. Plank, Y. Kim, and J. J. Dongarra. Fault-tolerant ma-
trix operations for networks of workstations using diskless
checkpointing. Journal of Parallel and Distributed Com-
puting, 43(2):125-138, June 1997.

J. S. Plank and K. Li. Faster checkpointing with n+1 par-
ity. In Proceedings of the 24th International Symposium on
Fault-Tolerant Computing, pages 288-297, Austin, Texas,
June 1994.

R. Ross, J. Moreira, K. Cupps, and W. Pfeiffer. Parallel I/O
on the IBM Blue Gene/L system. BlueGene Consortium

Quarterly Newsletter, 2006.

P. C. Roth, D. C. Arnold, and B. P. Miller. MRNet:
A software-based multicast/reduction network for scalable
tools. In Proceedings of SC2003: High Performance Net-
working and Computing, Pheonix, AZ, Nov. 2003.

B. Schroeder and G. A. Gibson. A large-scale study of
failures in high-performance computing systems. In Pro-
ceedings of the International Conference on Dependable
Systems and Networks (DSN2006), Philadelphia, PA, June
2006. School of Computer Science, Carnegie Mellon Uni-
versity, Pittsburgh, PA.

L. M. Silva and J. G. Silva. An experimental study about
diskless checkpointing. In Proceedings of the 24th EU-
ROMICRO Conference, pages 395-402, Vasteras, Sweden,

August 1998. IEEE Computer Society Press.
R. Subramaniyan, R. S. Studham, and E. Grobelny. Opti-

mization of checkpointing-related I/O for high-performance
parallel and distributed computing. In Proceedings of The
International Conference on Parallel and Distributed Pro-

cessing Techniques and Applications, pages 937-943, 2006.
T. B. Team. An overview of the BlueGene/L supercomputer.

In Proceedings of SC2002: High Performance Networking
and Computing, Baltimore, MD, November 2002.

14

[34]

[35]

[36]

[37]

[38]

[39]

J. Tomkins. A conservative path to petaflop computing: The
Red Storm architecture scaled to a petaflop and beyond. 4th
Annual Workshop on Linux Clusters for Supercomputing,
October 2003.

N. H. Vaidya. A case for two-level distributed recovery
schemes. SIGMETRICS Perform. Eval. Rev., 23(1):64-73,
1995.

N. H. Vaidya. Impact of checkpoint latency on overhead ra-
tio of a checkpointing scheme. IEEE Transactions on Com-
puters, 46(8):942-947, 1997.

J. S. Vetter, S. R. Alam, J. Thomas H. Dunigan, M. R.
Fahey, P. C. Roth, and P. H. Worley. Early evaluation of
the cray xt3. In Proceedings of the International Paral-
lel and Distributed Processing Symposium. Oak Ridge Na-
tional Laboratory, April 2006.

L. Ward, J. Laros, R. Klundt, and B. Kellog. Red storm IO
performance and scaling. Presentation given to Cray Inc.,
August 2006.
J. W. Young.
mum checkpoint interval.
17(9):530-531, 1974.

A first order approximation to the opti-
Communications of the ACM,

	Introduction
	Background and Related Work
	Terminology
	Checkpoint/Restart Mechanisms
	Models of Checkpoint/Restart Mechanisms
	Reducing Checkpoint Overhead

	Modeling Checkpoint Performance
	Checkpoint Overhead Model
	Checkpoint Overhead Model Parameters
	SNL Red Storm Parameters
	LLNL BlueGene/L Parameters
	ORNL Jaguar Parameters
	Petaflop System
	MTTI for Large-scale Applications

	Model Results

	Reducing Checkpoint Overhead
	Lightweight Filesystems
	Overlay Networks
	Results

	Future Work
	Summary

