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Fault-Tolerance Challenges for MPP

• MPP Application characteristics
– Require large fractions of systems (80/40 rule)
– Long running
– Resource constrained compute nodes
– Cannot survive component failure

• Options for fault tolerance
– Application-directed checkpoints
– System-directed checkpoints
– System-directed incremental checkpoints
– Checkpoint in memory
– Others: virtualization, redundant computation, …

Application-directed checkpoint to disk dominates!
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Sandia Fault Tolerance Effort (LDRD)

Questions to answer:
1. Is checkpoint overhead a real problem for MPPs?

• Account for ~80% of I/O on large systems
• What are current/expected overheads relative to app?

2. Can we improve existing approaches?
3. Can we contribute a fundamentally different approach?

This paper/talk addresses the first two questions:
– Developed analytic model for app-directed chkpt on 3 existing 

MPPs and one theoretical PetaFlop system
– Adapted model to investigate the intermediate nodes as 

buffers to absorb the “burst” of I/O generated by a checkpoint
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Modeling Checkpoint to Disk

• Goal: Approximate impact of checkpoint to disk on current 
and future MPP systems

• Assume near perfect conditions
– Application uses optimal checkpoint period [Daly]
– Near perfect parallel I/O (at hardware rates)

Provide a lower bound on the performance impact
(in practice, it will be worse!)
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The Optimal Checkpoint Interval

• Daly’s equation…

• Not perfect, but it’s better than nothing.
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Modeling Checkpoints

( )SNL
c n

nd
βββ

αδ
,,min

+=

bandwidth storage (max) Aggregate
storage tobandwidth network Max 

network  theofbandwidth link Per 
checkpoint a  todumped nodeper  Data 

nodes compute ofNumber  
checkpoint of overhead up-Start 

=
=
=
=
=
=

S

N

L

c

d
n

β
β
β

α



7

System Parameters

Parameter Red Storm BG/L Jaguar Petaflop

11,590x2

2.0 GB

5 yr

45 GB/s

1.8 TB/s

3.8 GB/s

n (max) 12,960x2 65,536x2 50,000x2

d (max) 1 GB 0.5 GB 5 GB

MTTI (dev)* 5 yr 5 yr 5 yr

βS 50 GB/s 45 GB/s 500 GB/s

βN 2.3 TB/s 360 GB/s 30 TB/s

βL 4.8 GB/s 1.4 GB/s 40 GB/s

* MTTI value comes from a conservative guess based on empirical results (see paper).
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Modeling Results
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Modeling Results
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Improving I/O Performance of Checkpoints

• Two Proposed Optimizations for MPP Apps
– The Lightweight File System (LWFS)
– Use Overlay Networks to absorb I/O bursts
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Lightweight File Systems Project

Project Goals
1. Reduce complexity of FS
2. Improve scalability of I/O

Value of LWFS
– Vehicle for I/O research
– Framework for production FS
– Reliable (small code base)

Cluster’06 paper provides details
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LWFS + Overlay Networks
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Benefits: LWFS
- Near physical access to storage
- Overlap compute, comm, disk I/O
- Format/permute/partition data for storage
- Manage state for partial application restart 

+ Overlay Network



13

Revisiting the Model for Checkpoints

ratesnetwork at  ed transferrbecan  that data ofAmount  
nodes teintermedia ofmemory  Aggregate 

=
=

k
μ

( )

( )⎪
⎪
⎩

⎪⎪
⎨

⎧

>
−

+

≤
+=

kdnknd
n
k

kdn
n
nd

SNL

NL
c

βββ

ββαδ

,min

,min

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−
=+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+=

),min(
1

1
),min(

NL

SNL

S

n
n

k

ββ
βμ

ββ
βμμ L

Bounded by Network

Bounded by Storage System



14

RedStorm Results: PFS, LWFS, and Overlay
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Modeling Results
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Relative Improvement as a Percentage 
of Execution Time
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Summary

• Conclusions from modeling effort
– Checkpoint to disk is still below “pain threshold”
– Next-generation systems cause more pain
– LWFS + Overlays provide some relief
– “Smart” intermediate nodes could be a cure

• Lots of work to do…
– Validation of models
– API’s and integration for overlay networks
– Systems software to support state recovery
– Algorithms to support state recovery
– Investigate alternatives to periodic checkpoints

• Incorporate system info to decide how/when to chkpt (FastOS
proposal)
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Extra Slides

• Advantages of LWFS for Checkpoints
• Additional Results
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Checkpoints: Traditional PFS vs. LWFS
Required Operations
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Pseudocode for LWFS
Each Processor (in parallel)
• Allocate object (blob of bytes)
• Dump state

One processor
• Allocate object for medata
• Gather metadata (obj refs, info about data)
• Create name in naming service
• Associate MD obj with name
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Jaguar Results: PFS, LWFS, and Overlay
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BG/L Results: PFS, LWFS, and Overlay

Other results are similar (see extra slides)
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Petaflop Results: PFS, LWFS, and Overlay
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