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ABSTRACT: Capability computer systems are deployed to give researchers the 

computational power required to investigate and solve key challenges facing the 

scientific community.  As the power of these computer systems increases, the 

computational problem domain typically increases in size, complexity and scope. These 

increases strain the ability of commodity analysis and visualization clusters to effectively 

perform post-processing tasks and provide critical insight and understanding to the 
computed results.  An alternative to purchasing increasingly larger, separate analysis 

and visualization commodity clusters is to use the computational system itself to perform 

post-processing tasks. In this paper, the recent successful port of VisIt, a parallel, open 

source analysis and visualization tool, to compute node linux running on the Cray is 

detailed. Additionally, the unprecedented ability of this resource for analysis and 

visualization is discussed and a report on obtained results is presented. 
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1. Introduction 

ORNL NCCS 

The National Center for Computational Sciences 

(NCCS) was established at Oak Ridge National 

Laboratory (ORNL) in 1992. In 2004 the Secretary of 

Energy designated the center as the Leadership 
Computing Facility for the nation, with the mission of 

delivering world class computing facilities for open 

scientific research. 

The primary goal of the NCCS is to support open 

science and research in areas that the Department of 

Energy (DOE) deems worthy of investigation. This is 

primarily accomplished through the DOE’s Innovative 

and Novel Computational Impact on Theory and 

Experiment (INCITE) program, with over 145 million 

processing hours awarded on ORNL systems for the 2008 

year. INCITE is one of the United States’ primary 

programs for computationally intensive research. 
 

 

Analysis and Visualization at the NCCS 

One significant challenge to supercomputing at these 

scales is understanding the enormous amount of 

information output by these simulations.  A typical 

simulation can output data files that are larger than the 

total size of the entire Library of Congress. One powerful 

method of understanding the information contained in 

these outputs is the use of scientific analysis and 

visualization. Creating a visual representation of the data 

uses the power of the human visual system to serve as a 

guide in exploring the results of a calculation. Being able 
to see visual representations of a calculation can serve as 

a power tool enabling scientists to draw correlations and 

gather insight into their data. Supporting INCITE users 

with analysis and visualization needs is one of the 

primary goals of the Visualization Team in the NCCS. 

As the computational resources available to 

researchers increases, the size, complexity and scope of 

the scientific problem domain typically increases as well. 

These increases strain the ability of traditional modes of 

analysis and visualization. In this paper, several methods 

of addressing this strain on system resources are discussed 
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and the recent port of VisIt, a popular open source 

analysis and visualization tool developed by the 

Department of Energy is detailed. Additionally, results of 

a scaling study are presented. 

2.  Background 

Large scale production analysis and visualization 

In order to service the output of large computational 

resources, one common method employed by analysis and 

visualization software is to use a distributed, client-server 

architecture. In this type of architecture, shown in Figure 

1, the visualization application is composed of two 

components, one component running on the users work 

station and the other component running in parallel on a 
cluster. A number of full featured, production analysis 

and visualization tools use this type of architecture, 

including, VisIt [1], Paraview [3] and EnSight [2]. 

 

 

 
 

Figure 1. Client Server architecture. A distributed 

architecture where client and scalable server components 

run on different resources. Synchronization and 
communication is done over a connection.  

The client side of the architecture utilizes the 

graphics hardware on the user workstation to render the 

geometry extracted from the data as well as provide a 

graphical user interface (GUI). The server side of the 

architecture runs in parallel, allowing it to scale to the size 

of the simulation data. Each parallel server will interact 

with the data directly, perform the analysis and send the 
resulting geometry to the client side for rendering and 

viewing. This architecture has served the production 

analysis and visualization community well for some time 

and will likely continue into the future. 

Client-server deployment options 

One common method of deploying client-server 

architecture type analysis tools is to have a separate 

cluster dedicated to analysis and visualization tasks. In 

this method, as shown in Figure 2, the supercomputer 

outputs results of a simulation to disk. The analysis 

cluster is then used to read data from disk (ideally, a 

shared disk) and perform the analysis. Since analysis and 

visualization is almost always I/O bound, these systems 

are typically designed to include features such as fast 

parallel file system and a very large memory foot print. 

 

 

 
 

Figure 2. Separate computing and analysis resources. Using 

this method, two independent computing resources are used, 

one for simulation computation and the second for post 
processing analysis and visualization. 

This method of deploying a separate cluster dedicated 

to analysis has worked well in the past, but is unlikely to 

continue to be a viable work path going forward. As the 

size of super computers and the amount of data being 

output continues to grow, deploying increasingly larger 

clusters dedicated to analysis becomes prohibitively 

expensive. 

 
 

 
 

Figure 3. Shared computing and analysis resources. Using 

this method, the computing resource is shared, performing 

both computation and post-processing analysis and 
visualization. 

An alternative to having a dedicated analysis cluster 

is run both computation and analysis on the same system. 

As shown in Figure 3, a portion of the super computer is 

used to perform analysis and visualization. By using the 

same resource for both computation and analysis, 
scalability of the analysis is no longer an issue. 

However, doing both computation and analysis on 

the same system has historically been complicated. In 

order to maximize performance, the operating systems on 

computational systems typically consist of a very 

optimized but restricted subset of a full featured operating 

system. Analysis and visualization tools are often feature 

rich, requiring operating system functionality that is not 

always supported in optimized computational operating 

systems. Porting a production visualization tool to run on 

these computational operating systems can be 
challenging. 
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Recently, as reported in [5], VisIt was ported to run 

on the Catamount operating system on a Cray XT3. 

Catamount, a light weight computational operating 

system lacks two key features used by VisIt. First, support 

for shared libraries and second, support for sockets. The 

first limitation can be overcome, at the expense of 
creating a large executable, by building VisIt statically. 

The second limitation proved more challenging. In the 

VisIt implementation of the client-server architecture, the 

connection between the client and the server is made 

using TCP/IP over sockets, which are not supported in 

Catamount. Altering the communication protocol in the 

tool would require changes to both the client and server 

side and would be a serious maintenance, compatibility 

and support issue for the future. To minimize the impact, 

a small change in the server side component was made to 

communicate with a socket-like feature in Catamount 

called portals. A client side daemon would then be 
installed to translate the communication done with portals 

to sockets. The client side components could then 

function without modification. 

3. Porting VisIt to CNL 

Jaguar is the National Center for Computational 

Science’s 263 TFLOPS Cray XT4 running at Oak Ridge 
National Laboratory. The system runs Compute Node 

Linux (CNL) on the computational nodes. CNL is a 

recently developed, optimized operating system that has a 

feature set richer than Catamount but with  nearly similar 

performance 

CNL provides two key features that were important 

in simplifying the port of VisIt to Jaguar; full support for 

sockets and partial support for shared libraries.  Full 

support of sockets allows the VisIt implementation of the 

client-server architecture to run directly, unmodified on 

Jaguar.  Direct communication can occur between the 

client and the server using TCP/IP sockets. The partial 
support for shared libraries allows for a much smaller 

executable footprint that loads components on an as-

needed basis and simplifies the VisIt build process as the 

default mode is to use shared libraries. 

With these enhancements to CNL, only two very 

minor challenges remained in the Visit port. First, CNL 

has access only to the Lustre parallel file system and 

second, a partial support of shared libraries. While shared 

libraries are supported on the compute nodes running 

CNL, passing information by means of the job launch 

system into the compute nodes about where the shared 
libraries are located proved difficult. 

The solution to the first challenge was found by 

placing the VisIt installation and copying all the 

supporting system libraries into a location on lustre.  

The solution to the second challenge was a minor 

modification to VisIt’s parallel component launching 

mechanism. When the parallel computational component 

is launched on the server-side with qsub/aprun, instead of 

running the server-side application a proxy application is 

run. This proxy application sets the environment variable 

required for shared libraries and then launches the parallel 

component. 

With these two minor changes in place, VisIt was 
successfully installed and deployed as a production tool 

for users on Jaguar. 

4. Results 

As results from simulations get larger and larger, we 

anticipate a desire to run visualization and analysis 

software on the only place that has sufficient resources to 

handle this data: on the supercomputer that generated 
them.  This study was an attempt to better understand 

what the performance characteristics would be on such a 

machine and how viable this machine will be for 

visualization purposes in the future.  Two strong scaling 

cases were used, an interactive session using ray casting 

and a detailed timing of the iso-contouring of a data set at 

two different resolutions. 

 

 
 

Figure 4. Domain decomposed data. The simulation is 

composed of a set of data files on disk. 

The examples used consisted of domain decomposed 

data sets. As shown in Figure 4, each domain is in a 

separate file on disk. Each test consisted of loading all of 

the domains from disk into memory, execution of an 

analysis algorithm on the data and then rendering the 

resulting image. 

Interactive exploration 

For the interactive exploration test case, a simulation 

of a Richtmyer-Meshkoff instability computed on a mesh 

of size 2048x2048x1920 with 960 domains was used [4]. 
The exploration was done using ray casting and an image 

size of 1024x1024. In order to maximize the amount of 

work done by the ray casting algorithm, the camera view 

was set so that the simulation data filled the entire 

viewing window. At each pixel in the image, a number of 

rays are cast into the data for sampling. A transfer 
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function is used to specify the mapping from data value to 

color and opacity. In this study a range of between 500 

and 2500 samples per pixel was used.  

Interactive frame rates for differing sampling and 

processor configurations are shown in Figure 5. While not 

exhibiting ideal scaling, it is possible for a user to interact 
with and explore a very large data set. 

 

 
Figure 5. Frames per second ray casting a 1024 x 1024 pixel 

image. Results are shown on sampling rates between 500 and 
2500 samples per pixel and between 120 and 960 processors. 

 

 
Figure 6. Isocontour test dataset. A number of random seed 

values are distributed within a volume. Values at each 

individual cell are calculated by interpolation of the random 
seed points. 

Isocontouring scaling study 

In the isocountouring scaling study, detailed timings 

were taken of loading a dataset, extracting isocontour 

surfaces and rendered the resulting image. Three data sets 

were used, each an interpolated noise data set, shown in 
Figure 6, resampled onto a larger grid. Test cases 

included a 1 billion cell data set with 1000 domains and a 

10 billion cell data set, one with 1000 and the other with 

2744 domains. In each case, timings of the major 

computational tasks were taken while executing a script. 

The steps in the process are as follows: 

1. Load data from disk 

2. Extract ten iso contour surfaces 

3. Render image 

a. Render triangles 

b. Image compositing 
 

Steps 1, 2 and 3a are each handled in parallel by a 

separate processing running on the server side and are 

expected to scale as additional nodes are added. The 

performance of step 1 is dependent on the performance of 

the underlying lustre file system and the load across the 

system of other jobs competing for I/O, and so actual 
scaling may vary. The image compositing step in 3b is not 

expected to scale. Each parallel process on the server 

renders the geometry for its subset of the total dataset, 

producing a partial image. These partial images must be 

composited together to form the final image. As more 

processors are added, more sub-images must be 

composited together and so the time required will 

increase. 

Figure 7. Parallel scaling on a 1 billion zones, 1000 domain 

dataset.

 

 
Figure 8. Parallel scaling on a 10 billion zones, 1000 domain 
dataset. 
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Figure 9. Parallel scaling on a 10 billion zones, 2744 domain 
dataset. 

Log scale plots of results can be seen in Figure 7, 

Figure 8 and Figure 9. The scaling of the entire execution 

is captured by the “TotalTime” graph in each figure. In all 

three cases, the overall scaling of the entire execution is 

determined by the scaling of the I/O. Since analysis and 

visualization is typically an I/O bound task, this result was 

surprising. As discussed previously, the performance of 

the I/O exhibited a lot of variability as it is dependent on 
the overall system load and demand of other concurrently 

running jobs for I/O resources. In all three cases, I/O 

seems to exhibit good scaling to around 128 processors 

and then begins to degrade. As expected, contouring 

exhibited very good scaling in all three cases. Contouring 

is an embarrassingly parallel algorithm with no 

dependence on communication or I/O. Triangle rendering 

exhibited fairly good scaling but better scaling on larger 

number of processors was expected. It is possible that the 

tests cases chosen resulted in an imbalance in the number 

of triangles to be rendered for each processor, but this 

requires further investigation. Finally, as discussed 
previously, the composite step did not scale, as was 

expected 

5. Conclusions 

A scalable, production analysis and visualization tool 

is running on the Cray XT4 at Oak Ridge National 

Laboratory. Efforts to port the tool to the Compute Node 
Linux operating system were fairly straightforward and 

the scaling performance on large data sets was in line with 

our initial expectations. The scalable portions of the 

visualization pipeline exhibited good scaling and I/O 

scaled to a certain point before becoming a bottleneck. 

One very valuable lesson from this work was 

information learned about the behavior of VisIt running 

on a very large number of processors. As timing results 

were being analysed, several optimizations were 

identified for incorporation into VisIt. 

In conclusion, Cray Compute Node Linux proved to 

be an adequate, optimized computational kernel for 

performing analysis and visualization on the 

computational platform. The availability of such a large 

scale resource will be an invaluable tool for scientists to 

explore and understand larger and more complex 
simulations. 
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