

CUG 2008 Proceedings 1 of 5

Parallel Analysis and Visualization on Cray Compute Node

Linux

David Pugmire, Oak Ridge National Laboratory and

Hank Childs, Lawrence Livermore National Laboratory

and Sean Ahern, Oak Ridge National Laboratory

ABSTRACT: Capability computer systems are deployed to give researchers the

computational power required to investigate and solve key challenges facing the

scientific community. As the power of these computer systems increases, the

computational problem domain typically increases in size, complexity and scope. These

increases strain the ability of commodity analysis and visualization clusters to effectively

perform post-processing tasks and provide critical insight and understanding to the
computed results. An alternative to purchasing increasingly larger, separate analysis

and visualization commodity clusters is to use the computational system itself to perform

post-processing tasks. In this paper, the recent successful port of VisIt, a parallel, open

source analysis and visualization tool, to compute node linux running on the Cray is

detailed. Additionally, the unprecedented ability of this resource for analysis and

visualization is discussed and a report on obtained results is presented.

KEYWORDS: ORNL, NCCS, Cray XT4, analysis, visualization

1. Introduction

ORNL NCCS

The National Center for Computational Sciences

(NCCS) was established at Oak Ridge National

Laboratory (ORNL) in 1992. In 2004 the Secretary of

Energy designated the center as the Leadership
Computing Facility for the nation, with the mission of

delivering world class computing facilities for open

scientific research.

The primary goal of the NCCS is to support open

science and research in areas that the Department of

Energy (DOE) deems worthy of investigation. This is

primarily accomplished through the DOE’s Innovative

and Novel Computational Impact on Theory and

Experiment (INCITE) program, with over 145 million

processing hours awarded on ORNL systems for the 2008

year. INCITE is one of the United States’ primary

programs for computationally intensive research.

Analysis and Visualization at the NCCS

One significant challenge to supercomputing at these

scales is understanding the enormous amount of

information output by these simulations. A typical

simulation can output data files that are larger than the

total size of the entire Library of Congress. One powerful

method of understanding the information contained in

these outputs is the use of scientific analysis and

visualization. Creating a visual representation of the data

uses the power of the human visual system to serve as a

guide in exploring the results of a calculation. Being able
to see visual representations of a calculation can serve as

a power tool enabling scientists to draw correlations and

gather insight into their data. Supporting INCITE users

with analysis and visualization needs is one of the

primary goals of the Visualization Team in the NCCS.

As the computational resources available to

researchers increases, the size, complexity and scope of

the scientific problem domain typically increases as well.

These increases strain the ability of traditional modes of

analysis and visualization. In this paper, several methods

of addressing this strain on system resources are discussed

CUG 2008 Proceedings 2 of 5

and the recent port of VisIt, a popular open source

analysis and visualization tool developed by the

Department of Energy is detailed. Additionally, results of

a scaling study are presented.

2. Background

Large scale production analysis and visualization

In order to service the output of large computational

resources, one common method employed by analysis and

visualization software is to use a distributed, client-server

architecture. In this type of architecture, shown in Figure

1, the visualization application is composed of two

components, one component running on the users work

station and the other component running in parallel on a
cluster. A number of full featured, production analysis

and visualization tools use this type of architecture,

including, VisIt [1], Paraview [3] and EnSight [2].

Figure 1. Client Server architecture. A distributed

architecture where client and scalable server components

run on different resources. Synchronization and
communication is done over a connection.

The client side of the architecture utilizes the

graphics hardware on the user workstation to render the

geometry extracted from the data as well as provide a

graphical user interface (GUI). The server side of the

architecture runs in parallel, allowing it to scale to the size

of the simulation data. Each parallel server will interact

with the data directly, perform the analysis and send the
resulting geometry to the client side for rendering and

viewing. This architecture has served the production

analysis and visualization community well for some time

and will likely continue into the future.

Client-server deployment options

One common method of deploying client-server

architecture type analysis tools is to have a separate

cluster dedicated to analysis and visualization tasks. In

this method, as shown in Figure 2, the supercomputer

outputs results of a simulation to disk. The analysis

cluster is then used to read data from disk (ideally, a

shared disk) and perform the analysis. Since analysis and

visualization is almost always I/O bound, these systems

are typically designed to include features such as fast

parallel file system and a very large memory foot print.

Figure 2. Separate computing and analysis resources. Using

this method, two independent computing resources are used,

one for simulation computation and the second for post
processing analysis and visualization.

This method of deploying a separate cluster dedicated

to analysis has worked well in the past, but is unlikely to

continue to be a viable work path going forward. As the

size of super computers and the amount of data being

output continues to grow, deploying increasingly larger

clusters dedicated to analysis becomes prohibitively

expensive.

Figure 3. Shared computing and analysis resources. Using

this method, the computing resource is shared, performing

both computation and post-processing analysis and
visualization.

An alternative to having a dedicated analysis cluster

is run both computation and analysis on the same system.

As shown in Figure 3, a portion of the super computer is

used to perform analysis and visualization. By using the

same resource for both computation and analysis,
scalability of the analysis is no longer an issue.

However, doing both computation and analysis on

the same system has historically been complicated. In

order to maximize performance, the operating systems on

computational systems typically consist of a very

optimized but restricted subset of a full featured operating

system. Analysis and visualization tools are often feature

rich, requiring operating system functionality that is not

always supported in optimized computational operating

systems. Porting a production visualization tool to run on

these computational operating systems can be
challenging.

CUG 2008 Proceedings 3 of 5

Recently, as reported in [5], VisIt was ported to run

on the Catamount operating system on a Cray XT3.

Catamount, a light weight computational operating

system lacks two key features used by VisIt. First, support

for shared libraries and second, support for sockets. The

first limitation can be overcome, at the expense of
creating a large executable, by building VisIt statically.

The second limitation proved more challenging. In the

VisIt implementation of the client-server architecture, the

connection between the client and the server is made

using TCP/IP over sockets, which are not supported in

Catamount. Altering the communication protocol in the

tool would require changes to both the client and server

side and would be a serious maintenance, compatibility

and support issue for the future. To minimize the impact,

a small change in the server side component was made to

communicate with a socket-like feature in Catamount

called portals. A client side daemon would then be
installed to translate the communication done with portals

to sockets. The client side components could then

function without modification.

3. Porting VisIt to CNL

Jaguar is the National Center for Computational

Science’s 263 TFLOPS Cray XT4 running at Oak Ridge
National Laboratory. The system runs Compute Node

Linux (CNL) on the computational nodes. CNL is a

recently developed, optimized operating system that has a

feature set richer than Catamount but with nearly similar

performance

CNL provides two key features that were important

in simplifying the port of VisIt to Jaguar; full support for

sockets and partial support for shared libraries. Full

support of sockets allows the VisIt implementation of the

client-server architecture to run directly, unmodified on

Jaguar. Direct communication can occur between the

client and the server using TCP/IP sockets. The partial
support for shared libraries allows for a much smaller

executable footprint that loads components on an as-

needed basis and simplifies the VisIt build process as the

default mode is to use shared libraries.

With these enhancements to CNL, only two very

minor challenges remained in the Visit port. First, CNL

has access only to the Lustre parallel file system and

second, a partial support of shared libraries. While shared

libraries are supported on the compute nodes running

CNL, passing information by means of the job launch

system into the compute nodes about where the shared
libraries are located proved difficult.

The solution to the first challenge was found by

placing the VisIt installation and copying all the

supporting system libraries into a location on lustre.

The solution to the second challenge was a minor

modification to VisIt’s parallel component launching

mechanism. When the parallel computational component

is launched on the server-side with qsub/aprun, instead of

running the server-side application a proxy application is

run. This proxy application sets the environment variable

required for shared libraries and then launches the parallel

component.

With these two minor changes in place, VisIt was
successfully installed and deployed as a production tool

for users on Jaguar.

4. Results

As results from simulations get larger and larger, we

anticipate a desire to run visualization and analysis

software on the only place that has sufficient resources to

handle this data: on the supercomputer that generated
them. This study was an attempt to better understand

what the performance characteristics would be on such a

machine and how viable this machine will be for

visualization purposes in the future. Two strong scaling

cases were used, an interactive session using ray casting

and a detailed timing of the iso-contouring of a data set at

two different resolutions.

Figure 4. Domain decomposed data. The simulation is

composed of a set of data files on disk.

The examples used consisted of domain decomposed

data sets. As shown in Figure 4, each domain is in a

separate file on disk. Each test consisted of loading all of

the domains from disk into memory, execution of an

analysis algorithm on the data and then rendering the

resulting image.

Interactive exploration

For the interactive exploration test case, a simulation

of a Richtmyer-Meshkoff instability computed on a mesh

of size 2048x2048x1920 with 960 domains was used [4].
The exploration was done using ray casting and an image

size of 1024x1024. In order to maximize the amount of

work done by the ray casting algorithm, the camera view

was set so that the simulation data filled the entire

viewing window. At each pixel in the image, a number of

rays are cast into the data for sampling. A transfer

CUG 2008 Proceedings 4 of 5

function is used to specify the mapping from data value to

color and opacity. In this study a range of between 500

and 2500 samples per pixel was used.

Interactive frame rates for differing sampling and

processor configurations are shown in Figure 5. While not

exhibiting ideal scaling, it is possible for a user to interact
with and explore a very large data set.

Figure 5. Frames per second ray casting a 1024 x 1024 pixel

image. Results are shown on sampling rates between 500 and
2500 samples per pixel and between 120 and 960 processors.

Figure 6. Isocontour test dataset. A number of random seed

values are distributed within a volume. Values at each

individual cell are calculated by interpolation of the random
seed points.

Isocontouring scaling study

In the isocountouring scaling study, detailed timings

were taken of loading a dataset, extracting isocontour

surfaces and rendered the resulting image. Three data sets

were used, each an interpolated noise data set, shown in
Figure 6, resampled onto a larger grid. Test cases

included a 1 billion cell data set with 1000 domains and a

10 billion cell data set, one with 1000 and the other with

2744 domains. In each case, timings of the major

computational tasks were taken while executing a script.

The steps in the process are as follows:

1. Load data from disk

2. Extract ten iso contour surfaces

3. Render image

a. Render triangles

b. Image compositing

Steps 1, 2 and 3a are each handled in parallel by a

separate processing running on the server side and are

expected to scale as additional nodes are added. The

performance of step 1 is dependent on the performance of

the underlying lustre file system and the load across the

system of other jobs competing for I/O, and so actual
scaling may vary. The image compositing step in 3b is not

expected to scale. Each parallel process on the server

renders the geometry for its subset of the total dataset,

producing a partial image. These partial images must be

composited together to form the final image. As more

processors are added, more sub-images must be

composited together and so the time required will

increase.

Figure 7. Parallel scaling on a 1 billion zones, 1000 domain

dataset.

Figure 8. Parallel scaling on a 10 billion zones, 1000 domain
dataset.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

120 240 480 960

Frames per second

500 samples

1000 samples

1500 samples

2000 samples

2500 samples

0.1

1

10

100

32 64 128 256 512 1024

Parallel scaling

Total Time

IO

Contour

TriRender

Composite

Ideal

1

10

100

64 128 256 512 1024

Parallel scaling

Total Time

IO

Contour

TriRender

Composite

Ideal

CUG 2008 Proceedings 5 of 5

Figure 9. Parallel scaling on a 10 billion zones, 2744 domain
dataset.

Log scale plots of results can be seen in Figure 7,

Figure 8 and Figure 9. The scaling of the entire execution

is captured by the “TotalTime” graph in each figure. In all

three cases, the overall scaling of the entire execution is

determined by the scaling of the I/O. Since analysis and

visualization is typically an I/O bound task, this result was

surprising. As discussed previously, the performance of

the I/O exhibited a lot of variability as it is dependent on
the overall system load and demand of other concurrently

running jobs for I/O resources. In all three cases, I/O

seems to exhibit good scaling to around 128 processors

and then begins to degrade. As expected, contouring

exhibited very good scaling in all three cases. Contouring

is an embarrassingly parallel algorithm with no

dependence on communication or I/O. Triangle rendering

exhibited fairly good scaling but better scaling on larger

number of processors was expected. It is possible that the

tests cases chosen resulted in an imbalance in the number

of triangles to be rendered for each processor, but this

requires further investigation. Finally, as discussed
previously, the composite step did not scale, as was

expected

5. Conclusions

A scalable, production analysis and visualization tool

is running on the Cray XT4 at Oak Ridge National

Laboratory. Efforts to port the tool to the Compute Node
Linux operating system were fairly straightforward and

the scaling performance on large data sets was in line with

our initial expectations. The scalable portions of the

visualization pipeline exhibited good scaling and I/O

scaled to a certain point before becoming a bottleneck.

One very valuable lesson from this work was

information learned about the behavior of VisIt running

on a very large number of processors. As timing results

were being analysed, several optimizations were

identified for incorporation into VisIt.

In conclusion, Cray Compute Node Linux proved to

be an adequate, optimized computational kernel for

performing analysis and visualization on the

computational platform. The availability of such a large

scale resource will be an invaluable tool for scientists to

explore and understand larger and more complex
simulations.

Acknowledgments

Thanks to Kevin Thomas of Cray Inc. for discussions

on his work porting VisIt to Catamount and for answering

questions on Compute Node Linux. Thanks also to Jeff

Larkin of Cray Inc. for answering questions about

Compute Node Linux.

About the Authors

David Pugmire is a Computer Scientist in the

National Center for Computational Sciences at Oak Ridge

National Laboratory. He can be reached at Oak Ridge

National Laboratory, Building 5600, Room B203, P.O.

Box 2008 MS6008, Oak Ridge, TN 37831-6008, E-Mail:

pugmire@ornl.gov.
Hank Childs is a Computer Scientist at Lawrence

Livermore National Laboratory. He can be reached at

Lawrence Livermore National Laboratory, L-557,

Livermore, CA 94550, E-Mail: child3@llnl.gov.

Sean Ahern is the Visualization Task Leader in the

National Center for Computational Sciences at Oak Ridge

National Laboratory. He can be reached at Oak Ridge

National Laboratory, Building 5600, Room B205, P.O.

Box 2008 MS6016, Oak Ridge, TN 37831-6016, E-Mail:

ahern@ornl.gov.

References

[1] CHILDS, BRUGGER, BONNELL, MEREDITH, MILLER,

WHITLOCK, MAX, “A CONTRACT BASED SYSTEM FOR LARGE

DATA VISUALIZATION”, VIS ‟05: PROCEEDINGS OF THE

CONFERENCE ON VISUALIZATION „05”, MINNEAPOLIS, MN, OCT

2005.

[2] COMPUTATIONAL ENGINEERING INTERNATIONAL, “ENSIGHT

USER MANUAL”, MAY 2003.

[3] LAW, HENDERSON, AHRENS, “AN APPLICATION

ARCHITECTURE FOR LARGE DATA VISUALIZATION: A CASE

STUDY”, PVG ‟01: PROCEEDINGS OF THE IEEE 2001 SYMPOSIUM

ON PARALLEL AND LARGE-DATA VISUALIZATION, SAN DIEGO,

CA, 2001.

[4] MIRIN, COHEN, CURTIS, DANNEVIK, DIMITS, DUCHAINEAU,

ELIASON, SCHIKORE, ANDERSON, PORTER, WOODWARD, AND

WHITE, "VERY HIGH RESOLUTION SIMULATION OF

COMPRESSIBLE TURBULENCE ON THE IBM-SP SYSTEM,"

SUPERCOMPUTING 99 CONFERENCE, PORTLAND, OR, NOVEMBER

1999.

 [5] THOMAS, “PORTING OF VISIT PARALLEL VISUALIZATION

TOOL TO THE CRAY XT3”, CRAY USERS GROUP MEETING,

SEATTLE, WA, MAY 2007.

0.1

1

10

100

64 128 256 512 1024 2048 2744

Parallel scaling

TotalTime

IO

Contour

TriRend

Composite

Ideal

mailto:pugmire@ornl.gov
mailto:ahern@ornl.gov

