
An Individual Tree Simulator for Assessment of Forest Management

Methods

Artur Signell∗ Johan Schöring∗ Mats Aspnäs∗ Jan Westerholm∗

Abstract

Suswood is a parallel forest simulator capable of simulating growth, mortality and reproduction of

large amounts of trees in multiple, polygon shaped compartments. Simulating on single tree level allows

study of much more detailed management systems than on stand level, as tree selection can be made

based on the properties of the trees, such as height and diameter or on the surroundings of a tree.

We describe the design, implementation, scalability and performance results of the simulator, which

is fully parallelized and able to take advantage of the computational power of 1024+ computing nodes for

a single simulation. It has been designed to be able to simulate forests larger than 100 000 ha containing

billions of trees.

1 Introduction

Many forest simulators operate on stand level rep-
resenting trees using tree distributions. In this ap-
proach average properties of the stands are obtained
while local and individual tree properties are lost.
In this paper simulations are done on a single tree
level, simulating properties for every tree in the area.
This approach, while requiring a lot of computa-
tional power, enables for instance the usage of dif-
ferent management methods where a decision to cut
a tree is based on the individual properties of a tree.
It is also possible to calculate the volume produc-
tion more precisely: for any tree we can calculate
the wood raw materials of different parts of the tree
(stem, branches, stump, needles).

In order to get a more realistic simulation we
have used multiple, arbitrarily shaped polygons as
forest area shapes, contrary to the single and of-
ten quite small rectangle shape that is usually
used in forest simulators, both on stand and in-
dividual tree level. Multiple polygons also enable
the use of real forest data as a starting point for
the simulation and to acquire simulation results
which can be mapped directly onto real forests.

2 Individual tree simulator

The Suswood simulator is based on a statistical
model[1]. The simulation area consists of one or
more polygon-shaped areas which are referred to as
compartments. Each compartment is defined by a
set of border points and has its own parameters re-
flecting the soil, growing conditions etc. in the area.
Figure 1 shows a sample area of 35 hectares used as
a test case in this paper. This area represents a real
forest area taken from Nurmes, Finland.

Figure 1: Sample area of 35 hectares taken from
Nurmes, Finland

∗Åbo Akademi University

1

2.1 Simulation flow

The simulation process is divided into two parts:
simulation and statistics. The simulation can consist
of one or more replications (repetitions of the sim-
ulation using different random numbers). Multiple
replications are used especially in small simulations
where one replication does not provide enough data
to get statistically significant results. Each replica-
tion is divided into an initial generation phase and
an iteration phase as illustrated in figure 2. These
phases are described in more detail in the following
sections.

Figure 2: High level description of the program flow

2.2 Initial tree generation

The simulation can either be started from com-
pletely empty compartments, or initial tree positions
can be loaded from a file. The empty compartments
are populated using a Poisson point generator with
given average and variance, which generates loca-
tions for the new trees. When the positions have
been generated the model in eq. 1 is used to gener-
ate initial marks for the trees. A mark is essentially
a degree of freedom from which tree properties can
be derived, eg. tree height and trunk volume from
the diameter mark. Currently the only mark used in
the simulation is the tree diameter and consequently
the model is here written in a form applicable to one
mark and one tree.

Y = Xβ + ατ + γξ + ε (1)

In this model β, α and γ are parameters given
as input to the program. X contains the competi-
tion indices for the tree. The competition indices
are the tree’s diameter and some of the properties
of the surrounding trees: density of the surrounding
forest (number of neighbours / competition area),
average distance to neighbouring trees, inverse av-
erage distance to neighbouring trees, mark sum of
the surrounding trees and mark difference (

∑

(target
tree marks - neighbour tree marks)). When calculat-
ing the competition indices for a single tree all trees

inside a given competition radius are taken into ac-
count. After competition indices for all trees have
been calculated the means of the indices are calcu-
lated and are used to center the individual tree’s
competition indices around zero.

The second part of the model ατ is a random
component representing the initial heterogeneity of
the tree. τ is generated using a random number
generator when a tree is created and is stored so it
will be the same for a tree during the whole simula-
tion. α is a fixed simulation parameter denoting the
weight of this component.

The third part (γξ) generates a correlated ran-
dom effect for the tree. In order to calculate this
we first have to generate a covariance matrix for the
forest. The covariance matrix is generated using the
covariance function (eq. 2). |xi−xj | denotes the dis-
tance between tree i and tree j, θ1 and θ2 are input
parameters and CR is the used competition radius.

Cij =

{

e(θ1+θ2(|xi−xj |)), if |xi − xj | ≤ CR
0, otherwise

(2)

Correlated random numbers for the trees can be
generated by using Cholesky decomposition[2]. By
decomposing the matrix into a lower and an upper
triangular matrix and multiplying the lower triangle
part with a vector of uniform random numbers we
get a vector consisting of correlated random num-
bers, one for each tree. The corresponding element
from this vector is used as the γ parameter in the
model.

The parameter ε is a pure random component.

After calculating the competition indices and the
correlated random number for each tree we can now
calculate the initial marks (diameters) for all trees
using eq. 1. The calculation of initial marks is done
in one compartment at a time, independent of other
compartments, using the parameters given for that
compartment. Figure 3 shows the previous sample
area after the initial generation phase. Each dot
represents one tree.

2

Figure 3: The sample area with 10 000 trees/hectare
generated in the initial generation phase.

2.3 Simulation

After the initial generation phase is complete we
have reached the starting point for the simulation.
The actual simulation is done in iterations (time
steps) with a typical length of 1-5 years. The sim-
ulation flow is divided into four parts: growth, re-
production, mortality and management. The order
in which the parts are performed does not matter
because every part operates on the tree data avail-
able at the beginning of the iteration. Updates for
all parts are done at the end of the iteration.

2.3.1 Growth

Tree growth is calculated using the same model as
the initial marks (eq. 1) but using different param-
eters. Competition indices are calculated by taking
into account all neighbouring trees independent of
which compartment they are located in. When cen-
tering the competition indices only the means for
trees positioned in the same iteration are used. The
covariance matrix is constructed and multiplied with
generated, independent random numbers to acquire
correlated random numbers in the same way as in
the initial generation. Finally Y , which represents
the tree growth, is calculated and stored so the tree
diameters can be updated at the end of the iteration.

2.3.2 Reproduction

Reproduction is done in the same way as the initial
generation. The number of new trees to be generated
is calculated from the expected number of trees us-
ing the Poisson random number generator. New tree

positions are then calculated using a chosen point
generation process. Currently only a homogeneous
point process is available in the program for gen-
erating the positions. The homogeneous point pro-
cess generates an evenly distributed forest, which
means that each position in the compartment is just
as likely to be chosen for a new tree. The new posi-
tions are checked so they are not inside the trunk of
an existing tree, but otherwise the placement is done
exactly as in the initial generation. After the posi-
tions have been generated the competition indices
and covariance matrix are calculated as in the ini-
tial generation phase, with the exception that only
new trees are included in the covariance matrix. The
new trees are then stored and are not included in the
calculations until the next iteration.

2.3.3 Mortality

There are two models for mortality in the simulator.
Firstly, if the tree growth is less than zero or than
a mortality threshold, specified as a parameter, the
tree will die. Secondly, the model (eq. 1) is used
to calculate a mortality mark for each tree. The
parameters used when calculating the mortality are
mortality specific but the calculation is the same as
in the other parts. The mortality mark is used as x
in eq. 3 to calculate the probability p that the tree
will die. If a random number which is drawn is less
than p the tree will no longer exist after the current
iteration.

p =
1

1 + e−x
(3)

2.3.4 Management

Management, which can be considered as a type of
mortality, is performed as the last step of the iter-
ation. A number of different management methods
can be used in the simulation, eg. dimension cutting
(removal based on tree diameter) or low thinning (re-
moval based on tree height). The management sys-
tem is still being developed and will therefore not be
discussed further in this paper.

2.4 Statistics

The program supports outputting information (po-
sition and marks) for all trees that are alive at the
end of the simulation, which is useful mainly for de-
bugging purposes. For normal use we calculate sum-
mary statistics consisting of number of trees grouped

3

by different factors such as size and iteration. We
also calculate mean values for, among others, tree
diameter, forest density and distance between trees.
The total basal area of the trees in the forest is also
calculated at the end of the simulation. In the near
future the statistics will also contain volume calcu-
lations which will tell how many cubic meters would
be acquired if a clear cut would be performed at the
end of the simulation.

In addition to these statistics the program pro-
duces a frequency distribution table. Trees are di-
vided into roughly 70 classes based on the their di-
ameters, and the frequency (number of trees) for
each class is output.

The last statistical output is a correlogram which
contains the correlation between trees for predefined
lags (distances from each other). Usually the correl-
ogram is calculated for 10 different lags and the data
should be decreasing by the lag number as the corre-
lation between trees should get lower as the distance
used for calculation increases.

All statistics are calculated and output sepa-
rately for each compartment. If the simulation con-
sists of several replications the statistics is calculated
separately for each replication and the output con-
sists of the minimum and maximum values from any
replication and also the average for all replications.

3 Implementation

The SUSWOOD simulator is implemented in C++.
When the project started it was decided to empha-
size program design and structure, and postpone all
possible issues with efficiency to a later stage in the
program development. Using an object oriented pro-
gram design approach has forced the developers to
really understand the problem in order to create a
good, clean class design which can easily be extended
with new features.

3.1 Data structures

The main data structures in the simulation are used
for representing trees and compartments. Each com-
partment consist of the associated polygon, which is
described by a number of points, and a number of
trees populating the compartment. Each tree must
belong to precisely one compartment. Some parts of
the program, such as reproduction, are done com-
partment by compartment and in these parts it is
important to find all trees in a given compartment.

Other parts, such as growth, are done on the whole
simulation area at the same time. In these parts a
central operation is to find the neighbours of the tree
and calculate the result of the interaction between a
tree and its neighbours.

For these cases to be implemented efficiently it
must be possible to both find all trees in a compart-
ment and also to find all trees near a certain tree,
independent of which compartments they belong to.
To be able to find all trees in a certain compart-
ment each Compartment has a linked list of Tree
objects, representing the trees in that compartment.
The program always performs compartment based
calculations on all trees so the only used linked list
operations are iteration, insert and remove. These
are all efficient and can be executed in linear time
(constant time for insert and remove).

A TreeContainer class is used to keep track of all
trees in the simulation. This class is built around a
simple array of Tree objects. An array is of course
inefficient for searching so an additional structure
called RectangleContainer is used to support effi-
cient searching.

Figure 4: The sample area overlaid with 39x41 rect-
angles created by the RectangleContainer.

3.1.1 RectangleContainer

The RectangleContainer is a structure designed to
support efficient searching for all trees within a cer-
tain distance from a specific tree. The Rectangle-
Container divides the area (the whole simulation
area or a single compartment, depending on the situ-
ation) in x and y directions into many small, equally
sized rectangles as illustrated in figure 4. After the
rectangles have been created all trees in the area are

4

added to the rectangle they reside in. If a tree lies
within a specified distance from another rectangle it
is also added to that rectangle. This means that a
rectangle will contain all trees inside the rectangle
area, and also the trees that are located within the
specified distance from the borders of the rectangle.
This is illustrated in figure 5.

Figure 5: A rectangle contains the trees inside the
rectangle and all trees within a given distance from
the border of the rectangle.

To find the neighbours within a given distance
from a certain tree we now fetch the rectangle where
the tree is located. The rectangles are stored in a
matrix, so it can be accessed directly. We then fetch
all the trees belonging to the rectangle. Obviously
this will also fetch a few extra trees that are not
located within the given distance from the selected
tree, so these have to be filtered out. This gives a
list of trees that are close to the chosen tree. The
list is traversed to find the actual neighbours inside
the wanted distance from the tree.

The distance we are interested in may be differ-
ent in different parts of the program. A distance
smaller than the distance used when creating the
rectangles pose no problem but if the distance is
greater than the original distance the rectangles have
to be discarded and reconstructed using the new dis-
tance.

3.2 Optimization methods

Certain well known code optimization methods have
been applied to the program to improve its efficiency.
Code inlining is critical as many small functions have
been created to keep the code well structured. If full
compiler inlining is not enabled, the program execu-
tion time may be up to twice as long as with full

compiler inlining enabled.

The classes that consume the most memory have
been carefully studied and all unnecessarily variables
have been removed. The Tree class is the most in-
stantiated class in the program and directly deter-
mines how large simulations can be run. The original
version of the class required 80 bytes of memory and
is shown in figure 6. The optimized version of the
class, shown in figure 7, requires only 56 bytes per
tree which is a 30% gain without sacrificing perfor-
mance or precision of the final result.

Figure 6: The original Tree class, requiring 80 bytes.

Figure 7: The optimized Tree class, requiring only
56 bytes.

The life time of the Tree objects have also been
studied carefully so that they exist in memory only
when needed and are removed as soon as possible.
This ensures that the maximum amount of memory
is available for objects that are actually used and no
memory is wasted on objects that are going to be
deallocated in a later phase.

In addition to these class level memory optimiza-
tions we have also tried to reduce the dynamic mem-
ory allocations to a minimum. Instead of allocating
a large number of small objects, memory is allocated
in larger chunks and also freed in larger chunks.

For vector and matrix arithmetics the highly
optimized ACML library [5] has been used wher-

5

ever possible. Together all these basic optimizations
has enabled simulations of notably larger areas in a
clearly shorter time, compared to the original ver-
sion of the simulator.

4 Parallelization

The sequential version of the simulator is mainly lim-
ited by the amount of memory available. A standard
2 GHz computer with 1 GB of memory can simulate
an area containing roughly 4 million trees. To be
able to simulate arbitrarily large forest areas, a par-
allel version of the simulator was developed.

The parallel version is based on a fairly stan-
dard domain decomposition where the simulation
area is divided among the participating processes.
Each process calculates how its own part of the
forest evolves and occasionally communicates with
the other processes. Since the simulated forest con-
sists of arbitrarily shaped polygons which may have
strongly varying tree densities, the decomposition
has to be designed so that the processes get an even
workload.

4.1 Domain decomposition

Two alternative domain decomposition were eval-
uated in SUSWOOD: assigning different compart-
ments to different processes or dividing the area
between the processes without taking compartment
borders into account. As some parts of the simula-
tion is done compartment by compartment and other
parts are done independent of the compartment bor-
ders, it was not obvious which of these alternatives
to choose.

Reproduction is done separately for each com-
partment: new trees are placed inside the compart-
ment borders but trees both on the inside and out-
side of the borders affect the reproduction. If the de-
composition would be done by assigning whole com-
partments to processes the processes would still need
to be aware of the trees outside its compartments
within the competition radius from the border. We
will refer to these trees located in other processes
as foreign trees, as opposed to own trees which are
local to the process. As the compartments consist
of arbitrarily shaped polygons, it is not very easy to
identify the border zone which contains the foreign
trees that other processes need to be aware of. For
the growth and mortality phases also the informa-
tion of foreign trees close to the own trees must be

known, regardless if they are in the same compart-
ment or not.

Based on these facts it was decided that the best
way to divide the area between processes was to ig-
nore compartment borders and do a decomposition
where only globally straight lines separate an area
belonging to one process from an area belonging to
another process. This strategy has the advantage of
giving very simple algorithms for locating trees to
communicate to other processes: only trees in the
border zone according to x or y coordinate need to
be processed. A naive way of doing this decomposi-
tion would be to use the bounding box of the area
and divide that into equally sized areas as shown in
figure 8.

Figure 8: The sample area divided into nine sub ar-
eas for nine processes by using the bounding box.

A more sophisticated approach takes the work-
loads of the individual processes into account. The
workload for each process is not directly related to
the area that it is processing but rather to the num-
ber of trees that the process handles. The best way
of dividing the area would thus be so that each pro-
cess handles exactly the same number of trees. This
is however not feasible, as we did not want to move
the borders during the simulation. New trees are
born and die during the simulation and change the
density in the compartments, which would require
borders to be moved for the equal load between pro-
cesses to be kept.

6

Figure 9: The sample area divided into nine sub ar-
eas so that each process is assigned an equally large
area.

Because of this we settled on dividing the area
based on the total forest area instead of number of
trees. The decomposition of the sample area done
this way is shown in figure 9. Even though there
may be a clear cut of trees in a part of an area as-
signed to one process it is unlikely that the whole
area assigned to the process would be clear cut,
while other processes would contain areas with dense
forests, making the workload unbalanced. On the
other hand, even if this happened, new trees would
grow in the clear cut area in the next iteration, bal-
ancing the workload once again. A process should
thus not have a significantly different workload com-
pared to the average workload during more than one
iteration.

4.1.1 Decomposition implementation

The first step in the decomposition is to decide into
how many rows and columns the area should be di-
vided. The number of rows and columns are calcu-
lated so that the original aspect ratio of the forest
area is taken into account and the generated cells
are as close to squares as possible. The area of each
process must be at least of size 2c x 2c, where c is
the competition radius, to avoid competition across
more than two neighbouring subareas. This is best
accomplished by dividing the full area taking the as-
pect ratio into account. If the acquired number of
rows and columns do not use all available processes,
another column is added at the right end of the area.

All left over processes will divide this area among
them, still in such a way that the area is equally
large for each process.

Figure 10: The sample area divided in x direction
for 10 processes. The grid has been selected as 3x3
with an extra added column at the right end for the
left over tenth process. The rightmost slice thus con-
tains an active area of only 1/3 of the other slices.

When the number of rows and columns have been
determined each process calculates the coordinates
that limits its area. Based on the row number for
the process (calculated from the process id) the pro-
cess is able to determine how large fraction of the
whole area should be to the left of its own area. In
the same way the process can determine how large
fraction of the area should be to the right. As the
area is asymmetric it is not possible to directly de-
termine where the borders should be based on the
fractions, but instead a search has to be performed
to find the actual border coordinates in x direction.
Starting from the center of the area in x direction we
split the area into two and calculate what fraction
of the total area is to the left of the split coordinate.
If this is larger than what we want, we split the left
area into two and calculate the new fractions. This is
basically a standard binary search algorithm which
is repeated until the coordinate that gives the de-
sired fraction is found, with a predefined precision.
The actual value of the precision is not important
as long as all processes use the same value and thus
can agree on where the borders are. Small variations
between the size of the area in different processes do

7

not impact the overall performance. The result of
this phase can be seen in figure 10 where the sample
area has been divided in x direction when using 10
processes.

After calculating the boundaries in x direction
we continue by calculating the border coordinates
in y direction for each of the areas limited by the
recently calculated x coordinates. The same algo-
rithm is used for these calculations and as a result
each process will know what area it is responsible
for in the simulation. The final result of a decom-
position of the sample area for 10 processes can be
seen in figure 11.

Figure 11: The sample area decomposed in both x
and y direction for 10 processes. Each area is of
equal size even though the last column contains only
one row

4.1.2 Finding neighbouring processes

Each process must also be aware of which neighbours
it has and which border(s) it has in common with its
neighbours. In theory, this could be calculated from
the information the process already has: the number
of processes, its own position in the process grid and
the locations of the borders. However, in order not
to have to assume too much about how the decom-
position is done the information about neighbours is
communicated rather than calculated.

When each process has calculated the coordi-
nates of its own forest area it broadcasts the corner
coordinates (top-left and bottom-right) to all other
processes. A process receiving this information can

determine if the area is a neighbouring area or if it
can ignore the information. For neighbouring areas
it is also easy to determine which border the pro-
cesses have in common.

4.2 Process communication

Since the simulator is designed to run on a Cray
XT4[4] with a very efficient communication network,
the design of the communication structure has not
been aimed at minimizing the amount of data trans-
fer. Instead, a more important goal has been to min-
imize the time the processes have to wait for each
other, or in other words, to achieve a good load bal-
ancing.

In the initialization stage the processes commu-
nicate by broadcasting parameters, area coordinates
and other initialization data, which takes a negligible
amount of time. During the simulation communica-
tion is needed at the start of each iteration in order
to exchange information about trees there are close
to the border between two neighbour processes. The
only communication that is needed during the simu-
lation is in the reproduction phase, where processes
that share some compartment exchange information
about the competition indices of the new trees.

Reproduction is calculated in parallel for all com-
partments. All trees are placed inside the compart-
ment area and the competition indices are calculated
for all these trees. This computation takes roughly
the same time in all processes, provided the simu-
lated forest is homogeneous. When this is done for
every compartment the processes exchange the av-
erage of the competition indices and can after that
calculate the final marks for the new trees. The only
drawback of calculating the reproduction in parallel
is that the competition indices for every new tree
have to be stored in memory at the same time, in-
stead of only storing the competition indices for the
new trees in one compartment. This is not a prob-
lem, however, as there are typically only 6 competi-
tion indices.

4.3 Computing statistics

Statistics on the trees in a compartment in the par-
allel version can be calculated in two different ways.
For compartments that are not shared between two
or more processes statistics is calculated exactly in
the same way as in the sequential version. This is
possible as the process has information about all the
trees in the compartment.

8

For shared compartments, a single process does
not have all the needed information and must com-
municate with other neighbour processes. Due to
the nature of the statistical calculations it is not pos-
sible to calculate all statistics separately in each pro-
cess and then simply combine the final results. The
statistics is calculated in parallel, using the same
methods as in reproduction. The memory consump-
tion in this computation is, however, a slightly bigger
problem as we need to calculate the competition in-
dices for every tree owned by the process, as opposed
to only the new trees in reproduction. The parallel
statistics calculation is the heaviest part of the pro-
gram, both for cpu load and memory consumption.

4.4 Validation of the parallel version

A problem encountered when developing the paral-
lel version was how to validate that the parallel ver-
sion performs the same calculations as the sequential
version of the program. As the model is stochastic
and uses random numbers for the simulation, it is
impossible to directly compare the output consist-
ing of tree locations and marks from the sequential
and parallel versions. The results from two runs of
the sequential version using different random num-
ber seeds will not be identical either. It is possible
to compare the statistical summaries of the runs by
hand to see that they are roughly the same. To be
able to automatically compare the results from a se-
quential simulation with the results from a parallel
simulation, a method for ensuring that both versions
use the same random number sequences was intro-
duced. This is called comparison seeding.

Comparison seeding is a special mode that can be
enabled when the program is compiled. This mode
introduces a seeding of the random number genera-
tor, which guarantees that both the sequential and
parallel version of the code will use exactly the same
sequence of pseudo-random numbers. In compari-
son seeding, the random number seeds used in the
simulation are always based on something that can
be derived from the current state of the simulation,
and will thus be identical in both the sequential and
parallel versions. Usually the seeding is done before
an operation is performed on a tree and the seeds are
based on a the position of a tree. Examples of this is
calculation of initial marks and growth calculation.
Reproduction, however, is a bit more complicated.

Reproduction is, as previously noted, performed
on one compartment at a time. The polygon shaped
area of the compartment is surrounded by its bound-

ing box for the reproduction phase. A random posi-
tion (x and y) inside the bounding box is generated
for a new tree and the position is checked so it is
inside the polygon borders and not inside another
tree’s trunk. In the parallel version the compart-
ments can be shared between several processes, but
the processes still have to use the same bounding box
for the generated positions in order to be the same.
Even when using the original bounding box the re-
sult will not be the same unless the process is aware
of all trees inside the compartment and also all trees
just outside the borders of the compartment, so the
trunk comparison can be done correctly. This means
that for comparison seeding to work in the parallel
case the processes must send information about al-
most all their trees to their neighbours, significantly
slowing down the simulation.

As the seeding in this mode is done based on
the simulation state, the results of the simulation
are predictable and comparison seeding should not
be used for any production simulations. Comparison
seeding is, however, a simple way to make the results
from sequential and parallel runs directly compara-
ble. Even though the seeding is based on properties
of the simulation, it is still possible to vary the out-
come by multiplying the seeds with different factors.
Thus this does not limit the tests to a single case,
but gives a possibility to do broader, more reliable
test to show that the parallel version produces the
same results as the sequential.

5 Performance

We have executed the program on the Cray XT4 at
CSC[6] in order to measure the performance of the
program and investigate its scalability. Figure 12
illustrates the scalability of the program. In these
measurements the simulated area, and thus also the
number of trees, is kept constant when the num-
ber of processes are increased so effectively the same
simulation is executed using different number of pro-
cesses. We see that the program scales very well
(with a factor close to 2 when doubling the number
of processes) up to 512 processes, and probably also
well beyond this.

9

Figure 12: Runtime and memory usage for a fixed
forest size when increasing the number of processes

6 Conclusions

This paper presents the design and implementation
of a forest simulator where trees are represented as
individual objects. The simulation model explicitly
considers the location of trees and the competition
between nearby trees to calculate the growth, mor-
tality and reproduction processes in a forest area.
The simulator is implemented as a highly efficient
and scalable parallel program which can be used to
simulate forest areas larger than 100 000 ha and con-
taining over one billion trees.

Simulations of this kind will likely be a valuable
instrument for large-scale forest management in the
near future. Current technology already enables for-
est inventory by remote sensing, which gives detailed
information about the individual trees growing in
a forest, including position, species and size. This
kind of data can be used as input to a forest simu-
lator to investigate how the forest will evolve under
different management methods, and to optimize the
wood raw material production.

Acknowledgements

The facilities of CSC were used for this work. This
work received support from the Academy of Finland
in the KETJU[7] research programme.

About the Authors

Artur Signell is a Ph.D. student at the High Per-
formance Computing laboratory at Åbo Akademi

University. His research focuses on massively par-
allel computing problems. He can be reached at
Åbo Akademi University, Department of Informa-
tion Technologies, Joukahainengatan 3 − 5, 20500
Åbo, Finland, e-mail: artur.signell@abo.fi.

Johan Schöring is a research assistant at the
department of information technologies at Åbo
Akademi University. His work has been focused
on optimization and parallelization of the object
oriented forest simulator. He can be reached at
joschori@abo.fi.

Mats Aspnäs has a Ph.D. in computer science
from Åbo Akademi and works as a lecturer in par-
allel computing. He is currently involved in several
software development projects for large scale high-
performance systems, in cooperation with CSC. He
can be reached at mats@abo.fi.

Jan Westerholm holds a chair on high perfor-
mance computing at Åbo Akademi University in
Finland. His main interests include code optimi-
sation, parallel programming and non-linear opti-
misation applied to physical problems. Jan can be
reached at jan.westerholm@abo.fi.

References

[1] Chijien Lin, Generating Forest Stands with
Spatio-Temporal Dependencies Publications in
Social Sciences 64. University of Joensuu 2003.
123 p.

[2] Numerical Recipes: The Art of Scientific Com-
puting, Third Edition William H. Press et al.
Cambridge University Press, 2007

[3] William Gropp and Ewing Lusk and Anthony
Skjellum, Using MPI: Portable Parallel Pro-
gramming with the Message-Passing Interface
MIT Press 1994

[4] Cray Inc., The Supercomputer Company
http://www.cray.com/products/xt4

[5] AMD Core Math Library.
http://developer.amd.com/tools/acml

[6] Finnish IT Center for Science (CSC)
http://www.csc.fi

[7] Sustainable production and products research
programme KETJU http://www.aka.fi/ketju

10

http://www.cray.com/products/xt4
http://developer.amd.com/tools/acml
http://www.csc.fi
http://www.aka.fi/ketju

	Introduction
	Individual tree simulator
	Simulation flow
	Initial tree generation
	Simulation
	Growth
	Reproduction
	Mortality
	Management

	Statistics

	Implementation
	Data structures
	RectangleContainer

	Optimization methods

	Parallelization
	Domain decomposition
	Decomposition implementation
	Finding neighbouring processes

	Process communication
	Computing statistics
	Validation of the parallel version

	Performance
	Conclusions

