

An Individual Tree Simulator for Assessment of Forest Management Methods

Artur Signell, Johan Schöring, Mats Aspnäs, Jan Westerholm

Åbo Akademi Unversity

SUSWOOD project

- Sustainable and environmental friendly wood production for future industrial needs
- Cooperation between
 - Åbo Akademi University (High Performance Computing)
 - University of Joensuu (Forestry and Geographics)
- Financed by the Ketju Programme of Academy of Finland

SUSWOOD

- Forest dynamics simulator
 - Simulates on single tree level
 - Calculates properties for each individual tree (position, diameter, age, height,...)
 - Trees compete with surrounding trees
 - Based on a stochastic mixed linear model
 - $Y = \underline{X}\beta + \alpha\tau + \gamma\xi + \varepsilon$

Simulation flow

- Start from an empty area (or predefined forest)
- Generate an initial forest stand
- Simulate forward in time (5 years steps)
 - Growth
 - Reproduction
 - Mortality
 - Management
- Calculate summary statistics

Simulation area

- The simulation area consists of multiple polygons
 - A polygon is the smallest area operated on
 - Each polygon can have separate parameters
 - Soil conditions, forest type, management methods

Tree interaction

- Trees interact with neighbours
 - Independent of polygons
 - Necessary to efficiently find neighbours
- Place a grid over the simulation area
 - All trees that can interact with a tree in a cell belong to that cell
 - Only need to search for neighbours inside a cell

Tree grid

- Trees are placed in a cell according to position
 - Also placed in nearby cells if close to the border

Large scale simulations

- Goal: Simulate North Karelia, Finland
 - 2 000 000 hectares semi
 dense (4000 trees / ha) forest
 - Roughly 8 000 000 000 trees
- Single processor version
 - I 000 hectares
 - 4 000 000 trees

Parallel implementation

- Domain decomposition done independent of polygons
 - Complex decomposition algortihm
 - Simple communication algorithms

SUSWOOD - An Individual Tree Simulator

Load balancing

- Need to ensure processes have equal amount of work
- Decomposition based on area
 - Use active area (polygons) and not bounding box

Decomposition implementation

- Number of columns and rows to divide into is calculated
 - Based on number of processes
 - Not limited to 2^N processes
 - Based on original aspect ratio
- Each process finds its own area
 - Uses binary search to find boundaries
 - First in x, then in y direction

Process communication

- Communication only between neighbours
- Each process broadcasts its coordinates
 - Other processes become aware of their neighbours
- Information about trees close to process borders is communicated once in each iteration

Performance

- Sequential implementation
 - Memory usage limits simulation size
 - Proportional to the number of trees
 - With IGB of memory it is possible to simulate I 000 hectares with 4 000 trees/ha
 - Simulation time 2 min
 - Statistics calculation 30 min

Performance

- Parallel implementation
 - Using 512 cores we have simulated roughly
 300 000 hectares with 1 billion trees
 - I GB memory / core
 - Total runtime 55 min

Scalability

Designed for large scale simulations – Scales up to 512+ cores

SUSWOOD scalability on Cray XT4

Conclusions

- A very large scale individual tree forest simulator
 - Scales up to 512+ cores, billions of trees
- Can be used as a tool to optimize forest management
 - Able to use real forest data as input
 - Acquired nowadays by remote sensing
- The simulator will be released as open source

Thank you for your attention!

