
Enabling Contiguous Node Scheduling on the Cray XT3

Chad Vizino
vizino@psc.edu

Pittsburgh Supercomputing Center

ABSTRACT: The Pittsburgh Supercomputing Center has enabled contiguous node
scheduling to help applications achieve better performance. The implementation and
application performance benefits will be discussed.

KEYWORDS: scheduling, pbs, cpa, xt3, job placement, optimization, graphical monitor.

1.0 Introduction

The Pittsburgh Supercomputing Center (PSC) has
implemented a flexible job scheduling environment to
enable jobs to be placed onto its Cray XT3 system in
ways that can help them achieve better performance.

Figure 1. Xt3dmon physical view of BigBen with cabinet
nodes highlighted.

An overview of past work will be provided, discussing
changes made to the batch system, work on a graphical
machine monitor to help visualize jobs placed on the
system, and node assignment changes to help minimize
communication overhead to all jobs.

Finally, a summary of work done to accommodate
applications that are topology-aware (know in advance
how they should be placed on the system) and the system
changes that have been made to enable them will be
discussed.

2.0 Review of Past Work

PSC's Cray XT3 system, called BigBen, contains 2090
dual core nodes of which 2068 are compute nodes and 22
are service nodes. The system is physically configured in
two rows of 11 cabinets each. The interconnect topology
is a torus in three dimensions: 11x12x16.

On BigBen, PSC runs Catamount on the compute nodes
and uses a customized version of PBS Pro 5.3 software
[1] along with a custom scheduler called Simon[2]. These
changes will be briefly reviewed.

Other changes to the environment including a graphical
monitor, and job placement observations will also be
discussed in this section.

Figure 2. Xt3dmon wired view of BigBen with cabinet
nodes highlighted.

2.1 Graphical Monitor

To help visualize XT3 nodes and various system
characteristics, a graphical machine monitor called

1

Xt3dmon [3][4] has been developed that features several
views of the machine including both physical and wired
(logical) ones using node attribute information from the
processor table of the XTAdmin database within the
System Database (SDB). Figure 1 shows a physical view
from Xt3dmon of the machine in two rows with nodes
grouped by cabinet, cage and module.

Figure 2 shows a wired view of the machine which helps
to visualize the interconnect topology.

In both the physical and wired views nodes may be color
coded to display the location of jobs within the system.
Using both views, this tool has helped to visualize the
proximity of nodes assigned to jobs. Xt3dmon has been
an important tool in helping to understand both the node
connections and node selections from node allocation
algorithms.

2.2 Batch System Changes

On BigBen, PSC has developed a custom scheduler called
Simon[2] and has made changes to PBS Pro[1] that allow
the selection of nodes on which a job will run. This
provides complete control over node selection for job
assignment and moves the node selection logic for a job
from the Compute Processor Allocator (CPA) in the Cray
software to Simon. Figure 3 shows an example job
demonstrating Simon's controlled node selection as
viewed with Xt3dmon.

Figure 3. Nodes allocated by Simon in “PSC” shape.

XT3 Operational Enhancements[5] details these changes
and provides further introduction to Xt3dmon.

2.3 Job Placement

In Optimizing Job Placement on the Cray XT3[6] it was
determined that allocating job nodes cubically results in

fewer communication hops among allocated nodes. This
work showed that a speedup of up to 10% was possible by
assigning nodes in a cubic geometry versus assignment
using an ascending numeric ordering of node ids.

This work also showed that the key to cubic node
selection was to select nodes in x-major order by selecting
nodes from cabinets down one row then the other. On
BigBen, node wiring in the x-direction moves down rows
linking cabinets, while node wiring in the y-direction
connects nodes within a cabinet and finally, node wiring
in the z-direction connects nodes across rows. Figure 4
shows a subset of node connections highlighting x, y and
z connections.

Figure 4. Wired connections of BigBen. Blue shows x-
connections down rows. Red shows y-connections within
cabinets. Green shows z-connections across rows.

3.0 System Changes to Benefit All Jobs

Using knowledge gained by cubic layout experiments and
the ability to control job node layout, a change was made
to the node selection algorithm in Simon. Node selection
was changed from ascending node id order to an ordering
using a mask. Several visual examples will be shown to
illustrate this change.

3.1 Scheduler Changes

PSC had previously been selecting job nodes by sorting
the list of free nodes by ascending node id and then
selecting the first N for a job requiring N nodes. This
algorithm was the same as the default one being used by
CPA.

Based on job placement work discussed in [6] and using
Xt3dmon to visualize job layout, it was discovered that
nodes were being assigned in a more fragmented and
planar layout. Figure 5 shows job layout with nodes

2

colored by job and illustrates the planar and fragmented
nature of the default selection algorithm.

The new node selection algorithm was designed to select
nodes in a cubic geometry by using a node ordering mask,
a static, total ordering of all compute nodes, constructed
by taking the shortest path through the machine from node
to node. The mask was then used to order free nodes on
each scheduling cycle, assigning the first N nodes from
this list to a job requiring N nodes. The reader is
encouraged to view an animation[7] illustrating the
construction of the node ordering mask by comparing the
physical and wired views of the machine as nodes are
added to the mask.

Ordering the list of free nodes according to this mask is
computationally no more expensive than sorting them
numerically, so there is no additional overhead in using
this new algorithm.

Figure 5. Xt3dmon wired view showing planar nature of
default node selection algorithm leading to non
contiguous node assignment within a job. Jobs are color
coded. Service nodes are yellow.

To illustrate the node selection differences between the
default and new algorithms on a set of real jobs, a time
lapse animation[8] has been produced that shows a six
hour window starting from an empty state on the machine.
This animation contrasts the differences between the two
algorithms on the same set of jobs and shows how larger
jobs generally get contiguous nodes in a cubic geometry
using the new algorithm while jobs using the old default
node id ordering algorithm have a more planar and non-
contiguous geometry. Figures 5 and 6 also help to
illustrate these differences.

4.0 System Changes to Benefit Specific Jobs

The changes detailed in section 3 were made to help
improve interconnect performance for all jobs. In this

section system changes to accommodate applications that
understand the machine topology and that can assign tasks
to take advantage of node proximity will be reviewed.

For these topology-aware codes each must be given a
specific geometry or shape. In addition the codes must
know the coordinates of the nodes that have been assigned
so that they may assign tasks appropriately.

Figure 6. Xt3dmon wired view showing cubic nature of
new node selection algorithm leading to contiguous node
assignment within a job. Jobs are color coded. Service
nodes are yellow.

Figure 7. Xt3dmon wired view showing an 8x8x8 node
job allocation in red.

4.1 OpenAtom

OpenAtom is a quantum chemistry code that is highly
communications bound and its performance is highly
influenced by placement on a torus topology machine[9].
The goal of the researchers working with this code on
BigBen is to minimize the communication volume of

3

OpenAtom by minimizing the hop counts between the
nodes allocated to the job in which the code is running.
Nodes for the code must be allocated in specific
geometries: 8x8x16, 8x8x8, 8x8x4 or 8x4x4. See Figures
7 and 8 for an 8x8x8 allocation example. Tasks are then
assigned by the code based on the topology of the
machine and the geometry of the node allocation.

PSC has helped to facilitate these runs by providing node
coordinates from the SDB and also administrator created,
shape-oriented reservations that allow jobs to be placed
on specific nodes on the system. Initially, as work began
on this project, separate reservations were created for each
geometry required. Jobs were run in these geometries and
results tabulated. This approach turned out to be both
time consuming for the users and system administrators to
coordinate geometry transitions between each reservation.

Figure 8. Xt3dmon physical view showing an 8x8x8 node
job allocation in red.

After studying needs further, refinements were made to
help accommodate the runs without system administrator
intervention between geometry transitions. Using files
with lists of node ids comprising the desired geometries
(8x8x16, 8x8x8, etc.) and passing these files to the
system application launcher command, yod, some of the
geometry control was passed to the users so that they
could control the shape at application launch time. Since
all desired shapes were sub-shapes of the largest one
allocated for the job, no further adjustments to the
reservation was needed for the duration of the reservation.

To accommodate these runs in production in the future,
users will need a way to request a geometry when
submitting jobs to the system and this is being considered.

4.2 Coarse Grain/Fine Grain Decomposition

A second topology-aware application using BigBen that is
still in development is a molecular dynamics code. The
goal of this project is to speed up simulations by running
them in parallel. Progress with the application is just
beginning so details at the time of writing are not
complete. This section discusses expected plans to
accommodate this work.

The expectation is that the parallel decomposition of the
code will break down work into fine-grained units of up
to four nodes that will communicate frequently with each
other. See Figure 9 for an expected fine-grained grouping
of nodes. Therefore, it is important that these nodes be
kept close together.

Figure 9. Wired view showing grouping of four
contiguous nodes used for fine-grained communications.
Intra-group communication is very frequent.

At a higher level, the fine-grained decomposed groups
will communicate with each other less frequently. They
will be placed close together, again using topology
information from the machine. See Figure 10 illustrating
the course-grained layout.

For these jobs, the scheduler will allocate a specific shape
for the job through a reservation and then the application
will layout tasks appropriately within the shape assigned.
As with the OpenAtom project, node coordinate
information from the SDB will be made available to this
code.

5.0 Future Work

While previous work showed that up to a 10% speedup
was possible using contiguous node scheduling, it is not
clear how well this benefits all jobs. Further study of this
is planned. Also, fragmentation is an issue with

4

placement scheduling and more work needs to be done
concerning fragmentation mitigation. Plans to study ways
to better schedule jobs so that special geometries can be
requested while keeping fragmentation to a minimum are
being considered.

Figure 10. Wired view showing groupings of fine-grained
communication blocks.

Also, users need to be provided with a means to specify a
desired node geometry for reserved nodes and to be
provided with accessible machine topology information.
Changes to the batch reservation system are being
considered to accommodate these needs.

Finally, all work discussed has been conducted on a
Catamount system. Similar results using Compute Node
Linux (CNL) are expected. Plans are being made to run
tests under CNL to confirm equivalent operation and
results.

6. Conclusions

It is clear that contiguous node placement can benefit
communication intensive jobs. Changes have been made
to the system to provide better communication
performance to these jobs through the use of a new
scheduling algorithm that helps to keep nodes assigned to
jobs close together.

Changes have also been made to the system to
accommodate jobs that require a specific node geometry.
These changes help reduce intervention between the user
and administrator when these jobs are run.

Finally, as a message to Cray, users who understand how
their codes can take advantage of the topology of the
machine have found it frustrating to get machine topology
information from within their codes. Cray is urged to
make this information more readily available.

Acknowledgments

This work is supported by the National Science
Foundation under TeraGrid Resource Partners, SCI-
0504078, and Cooperative Agreement No. SCI-0456541.

The author wishes to thank Jared Yanovich and Derek
Simmel for their hard work and attention to detail in
preparing the images used and the animations referenced
in this paper.

About the Author

Chad Vizino is a member of the Scientific Computing
Systems group currently working on scheduling systems,
resource management and accounting. He can be reached
at PSC, 300 S. Craig St., Pittsburgh, PA 15213. Phone:
412-268-4960. E-mail: vizino@psc.edu.

References

[1] http://www.altair.com/software/pbspro.htm

[2] C. Vizino, J. Kochmar, R. Scott: Custom Features of a
Large Cluster Batch Scheduler. PDPTA 2005: 3-9.

[3] C. Vizino, J. Kochmar, N. Stone, R. Scott. Batch
Scheduling on the Cray XT3. CUG 2005.

[4] Xt3dmon Man Page:
http://staff.psc.edu/yanovich/xt3dmon/xt3dmon.pdf

[5] C. Vizino, N. Stone, R. Scott. XT3 Operational
Enhancements. CUG 2006.

[6] D. Weisser, N. Nystrom, C. Vizino, S. Brown, J.
Urbanic. Optimizing Job Placement on the Cray XT3.
CUG 2006.

[7] Animation showing node id mask in physical and
wired views:
http://staff.psc.edu/vizino/cug2008/opt_nid_list_mask.mo
v

[8] Animation showing contiguous versus node id
ordering node selection:
http://staff.psc.edu/vizino/cug2008/cubic_vs_planar.mov

[9] A. Bhatele, E. Bohm, L. Kale. Improving parallel
scaling performance using topology-aware task mapping
on Cray XT3 and IBM Blue Gene/L. Submitted to The
37th International Conference on Parallel Processing
(ICPP-08).

5

http://www.altair.com/software/pbspro.htm
http://staff.psc.edu/vizino/cug2008/cubic_vs_planar.mov
http://staff.psc.edu/vizino/cug2008/cubic_vs_planar.mov
http://staff.psc.edu/vizino/cug2008/cubic_vs_planar.mov
http://staff.psc.edu/vizino/cug2008/opt_nid_list_mask.mov
http://staff.psc.edu/vizino/cug2008/opt_nid_list_mask.mov
http://staff.psc.edu/vizino/cug2008/opt_nid_list_mask.mov
http://staff.psc.edu/vizino/cug2008/opt_nid_list_mask.mov
http://staff.psc.edu/vizino/cug2008/opt_nid_list_mask.mov
http://staff.psc.edu/vizino/cug2008/opt_nid_list_mask.mov
http://staff.psc.edu/yanovich/xt3dmon/xt3dmon.pdf
http://www.altair.com/software/pbspro.htm
http://www.altair.com/software/pbspro.htm

