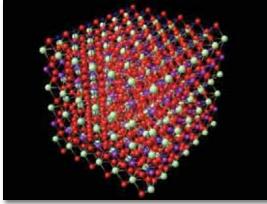
The Spider Center Wide File System

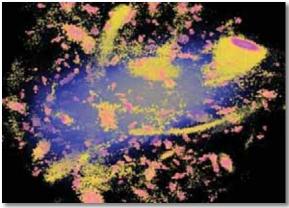
Presented by: Galen M. Shipman

> Collaborators: David A. Dillow Sarp Oral Feiyi Wang

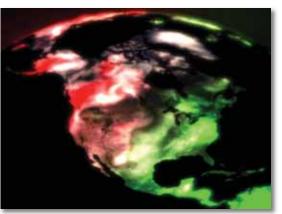
May 4, 2009

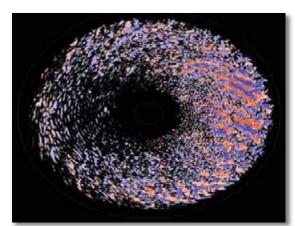

Jaguar: World's most powerful computer Designed for science from the ground up

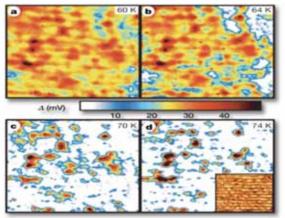
Peak performance	1.645 petaflops	
System memory	362 terabytes	
Disk space	10.7 petabytes	Jaguar Talk
Disk bandwidth	200+ gigabytes/second	Tuesday at
Managed by UT-Battelle for the		10:30 ≇ OAK RIDGE

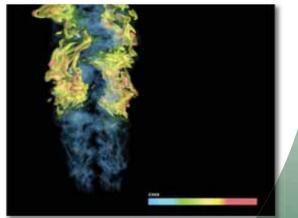

National Laboratory

U. S. Department of Energy


Enabling breakthrough science 5 of top 10 ASCR science accomplishments in the past 18 months used LCF resources and staff


Electron pairing in HTSC cuprates PRL (2007, 2008)


Shining a light on dark matter Nature 454, 735 (2008)

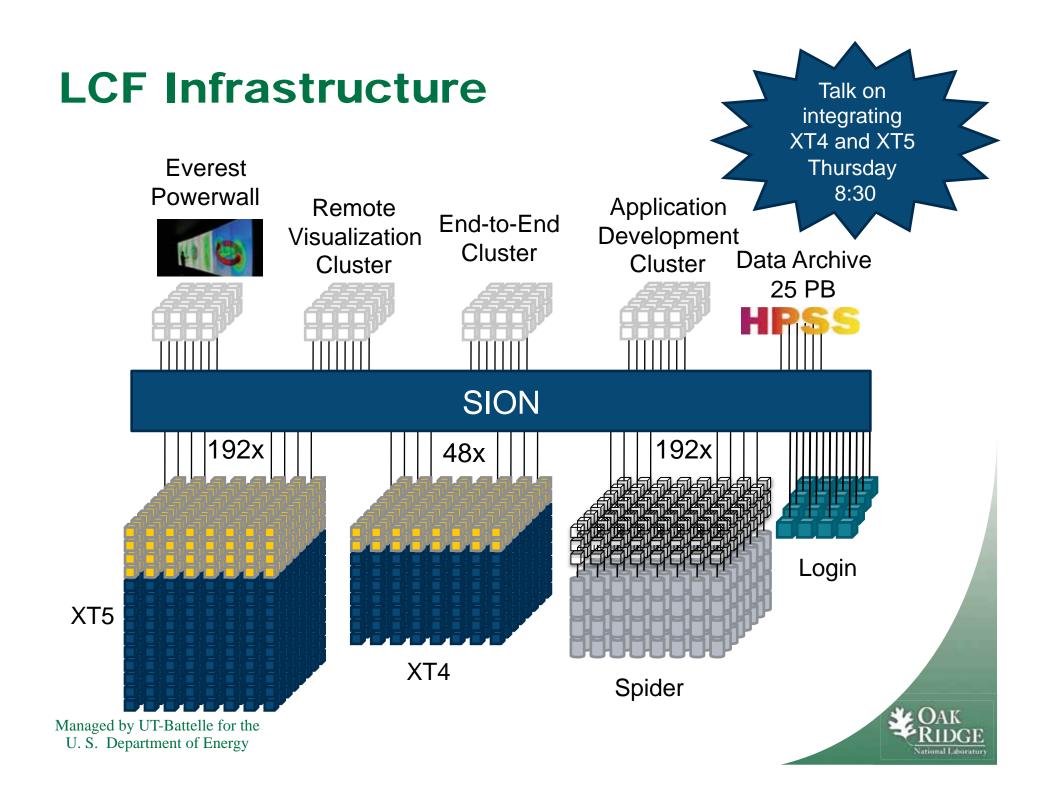

Modeling the full earth system

Fusion: Taming turbulent heat loss PRL 99, Phys. Plasmas 14

Nanoscale nonhomogeneities in high-temperature superconductors Winner of Gordon Bell prize

Stabilizing a lifted flame Combust. Flame (2008)

Center-wide File System



- "Spider" will provide a shared, parallel file system for all systems
 - Based on Lustre file system
- Demonstrated bandwidth of over 200 GB/s
- Over 10 PB of RAID-6 Capacity
 - 13,440 1 TB SATA Drives
- 192 Storage servers
 - 3 TeraBytes of memory
- Available from all systems via our highperformance scalable I/O network
 - Over 3,000 InfiniBand ports
 - Over 3 miles of cables
 - Scales as storage grows
- Undergoing system checkout with deployment expected in summer 2009

Current LCF File Systems

System	Path	Size	Throughput	OSTs
Jaguar XT5				
	/lustre/scratch	4198 TB	> 100 GB/s	672
	/lustre/widow1	4198 TB	> 100 GB/s	672
Jaguar XT4				
	/lustre/scr144	284 TB	> 40 GB/s	144
	/lustre/scr72a	142 TB	> 20 GB/s	72
	/lustre/scr72b	142 TB	> 20 GB/s	72
	/lustre/wolf-ddn gin nodes only)	672 TB	> 4 GB/s	96
Lens, Smoky				
	/lustre/wolf-ddn	672 TB	> 4 GB/s	96

Future LCF File Systems

System	Path	Size	Throughput	OSTs
Jaguar XT5				
	/lustre/widow0	4198 TB	> 100 GB/s	672
	/lustre/widow1	4198 TB	> 100 GB/s	672
Jaguar XT4				
	/lustre/widow0	4198 TB	> 50 GB/s	672
	/lustre/widow1	4198 TB	> 50 GB/s	672
	/lustre/scr144	284 TB	> 40 GB/s	144
	/lustre/scr72a	142 TB	> 20 GB/s	72
	/lustre/scr72b	142 TB	> 20 GB/s	72
Lens, Smoky				
	/lustre/widow0	4198 TB	> 6 GB/s	672
	/lustre/widow1	4198 TB	> 32 GB/s	672

Benefits of Spider

- Accessible from all major LCF resources
 - Eliminates file system "islands"
- Accessible during maintenance windows
 - Spider will remain accessible during XT4 and XT5 maintenance

Benefits of Spider

- Unswept Project Spaces
 - Will provide larger area than \$HOME
 - Not backed up, use HPSS
 - The Data Storage council is working through formal policies now
- Higher performance HPSS transfers
 - XT Login nodes no longer the bottleneck
 - Other systems can be used for HPSS transfers which allow HTAR and HSI to be scheduled on computes
- Direct GridFTP transfers
 - Improved WAN data transfers

How Did We Get Here?

- We didn't just pick up the phone and order a center-wide file system
 - No single Vendor could deliver this system
 - Trail Blazing was required
- Collaborative effort was key to success
 - ORNL
 - Cray
 - DDN
 - SUN

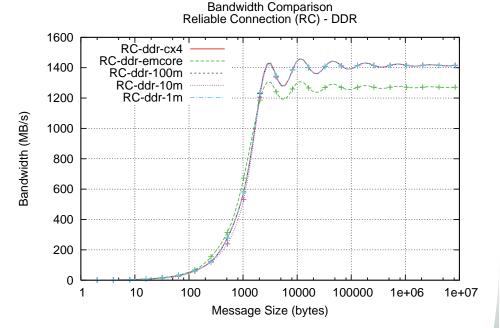
A Phased Approach

- Conceptual design 2006
- Early Prototypes 2007
- Small Scale Production System (wolf) 2008
- Storage System Evaluation 2008
- Direct Attached Deployment 2008
- Spider File System Deployment 2009

Spider Status

- Demonstrated stability on a number of LCF systems
 - Jaguar XT5
 - Jaguar XT4
 - Smoky
 - Lens
 - All of the above..

- Over 26,000 clients mounting the file system and performing I/O
- Early access on Jaguar XT5 today!
 - General Availability this Summer

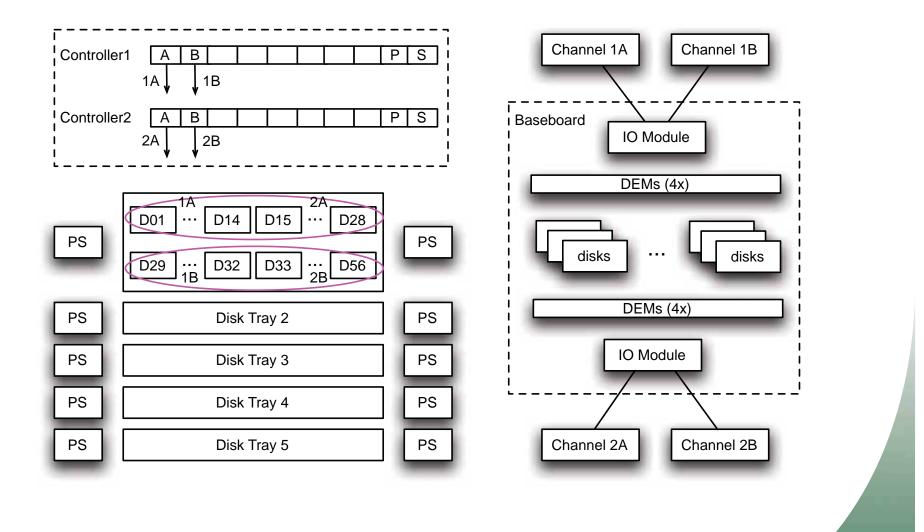

Snapshot of Technical Challenges

- Fault tolerance
 - Network
 - I/O Servers
 - Storage Arrays
 - Lustre File system
- Performance
 - SATA
 - Network congestion
 - Single Lustre Metadata server
- Scalability
 - 26,000 file system clients and counting

InfiniBand Support on Cray XT SIO

- LCF effort; required system software work to support OFED on the XT SIO
- Evaluation of a number of optical cable options
- Worked with Cray to integrate OFED into stock CLE distribution

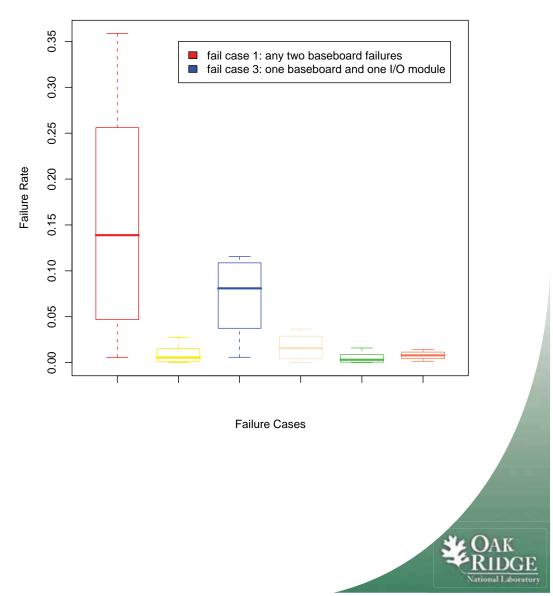
*InfiniBand Based Cable Comparison, Makia Minich, 2007


Reliability Analysis of DDN S2A9900

- Developed a failure model and a quantitative expectation of the system's reliability
- Particular attention was given to the DDN S2A9900's peripheral components
 - 3 major components considered
 - I/O module
 - Disk Expansion Modules (DEMs)
 - Baseboard
- Analysis of RAID 6 implementation

Details to appear in: A Case Study on Reliability of Spider Storage System

DDN S2A9900 Architecture



ional Laboratory

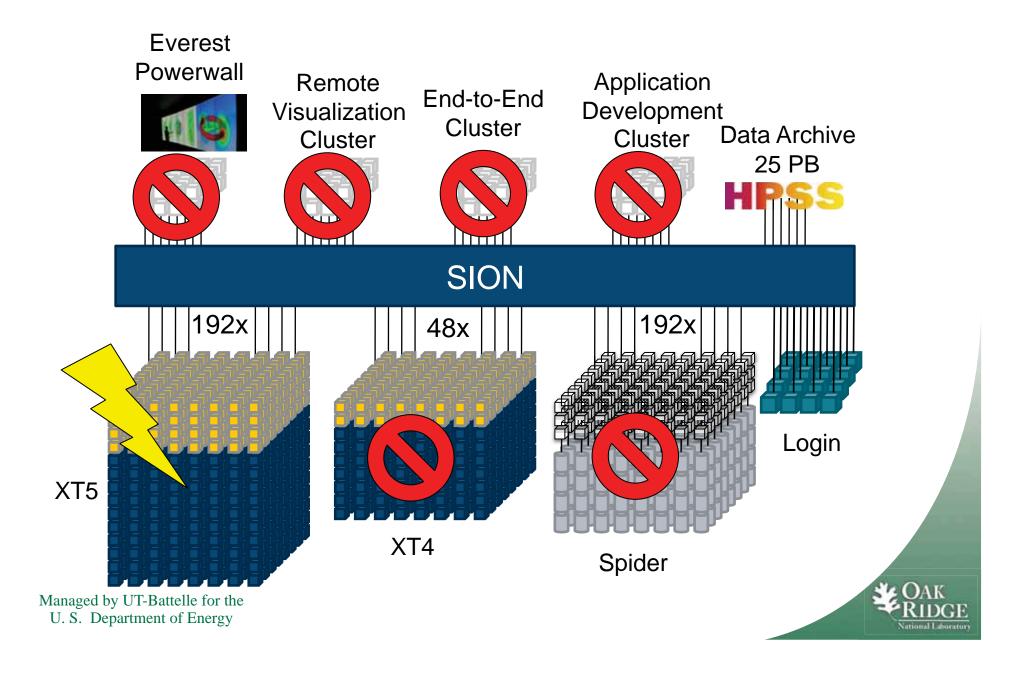
DDN S2A9900 Failure Cases

- Case 1: two out of the five baseboards fail
- Case 2: three out of ten I/O modules fail
- Case 3: one baseboard fails, and another I/O module fails on a different baseboard
- Case 4: any two I/O modules fail and any other baseboard failure

Comparison on Failure Cases

Scaling to More Than 26,000 Clients

- 18,600 Clients on Jaguar XT5
- 7,840 Clients on Jaguar XT4
- Several hundred additional clients from various systems
- System testing revealed a number of issues at this scale

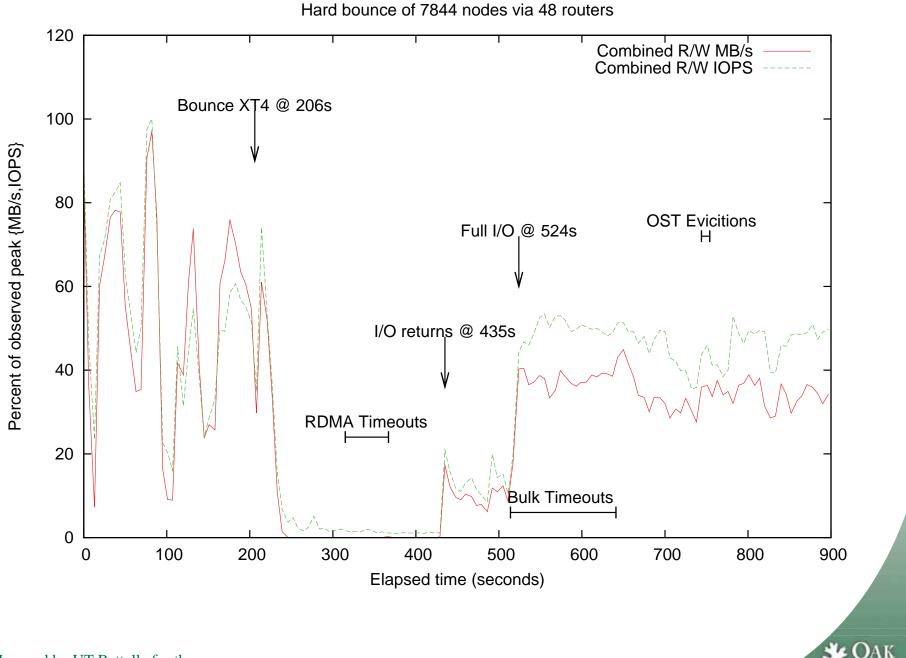


Scaling to More Than 26,000 Clients

- Server side client statistics
 - 64 KB buffer for each client for each OST/MDT/ MGT
 - Over 11GB of memory used for statistics when all clients mount the file system
 - OOMs occurred shortly thereafter
- Solution? Remove server side client statistics
 - Client statistics are available on computes
 - Not as convenient but much more scalable as each client is only responsible for his own stats

Surviving a Bounce

Challenges in Surviving an Unscheduled Jaguar XT4 or XT5 Outage


- Jaguar XT5 has over 18K Lustre clients
 - A hardware event such as a link failure may require rebooting the system
 - 18K clients are evicted!
- On initial testing a reboot of either Jaguar XT4 or XT5 resulted in the file system becoming unresponsive
 - Clients on other systems such as Smoky and Lens became unresponsive requiring a reboot

Solution: Improve Client Eviction performance

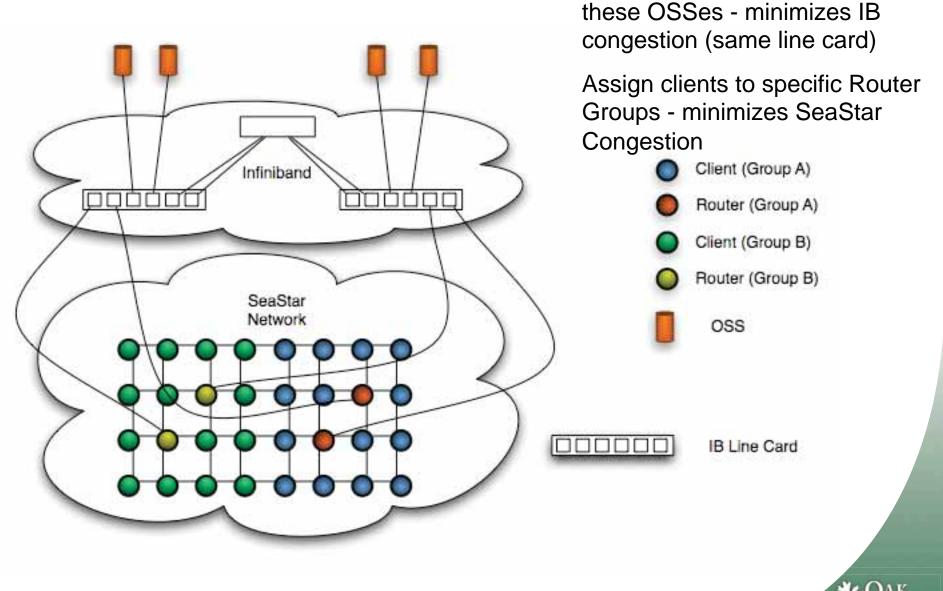
- Client eviction processing is serialized
- Each client eviction requires a synchronous write for every OST
- Current fix changes the synchronous write to an asynchronous write
 - Decreases impact of client evictions and improves client eviction performance
- Further improvements to client evictions may be required
 - Batching evictions
 - Parallelizing evictions

Managed by UT-Battelle for the U. S. Department of Energy

Ribge National Laborator

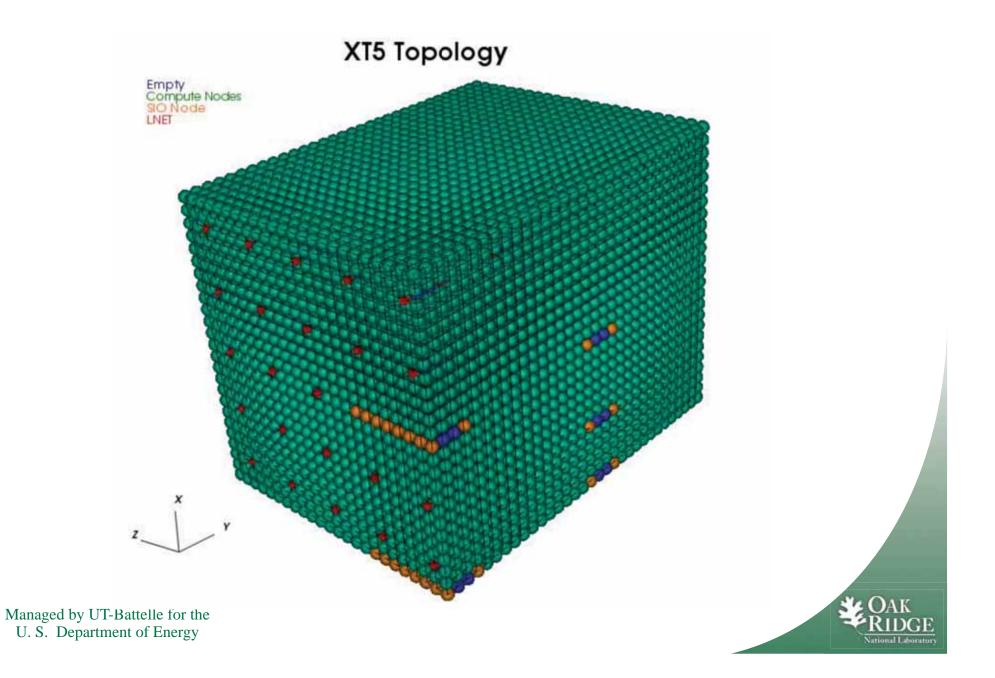
Improving Lustre Performance @ Scale

- Multiple areas of Network Congestion
 - Infiniband SAN
 - SeaStar Torus
 - LNET routing doesn't expose locality
 - May take a very long route unnecessarily
- Assumption of flat network space won't scale
 - Wrong assumption on even a single compute environment
 - Center wide file system will aggravate this
- Solution Expose Locality
 - Lustre modifications allow fine grained routing capabilities



Design To Minimize Contention

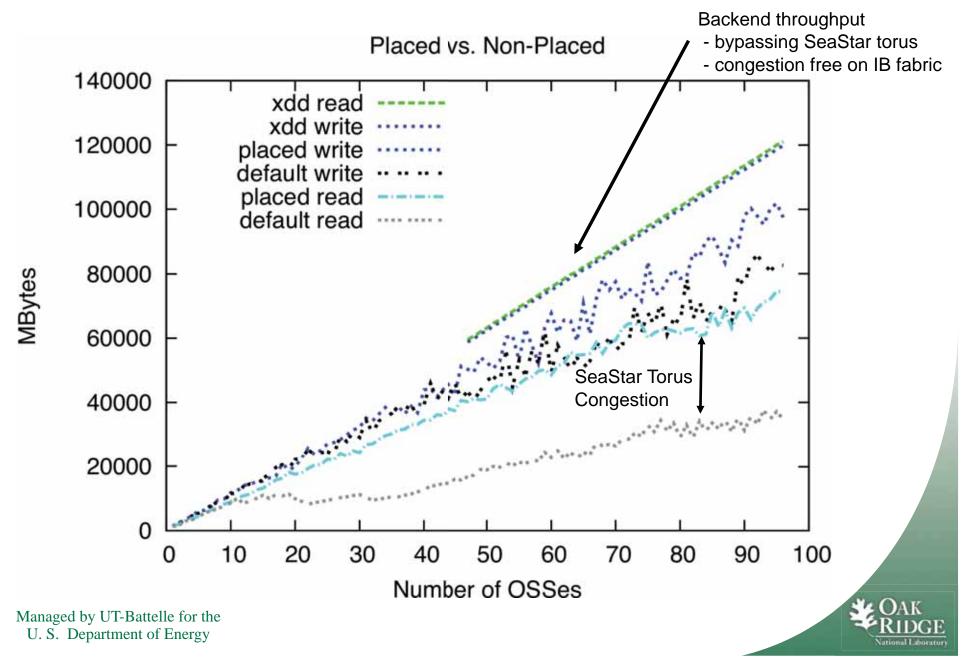
- Pair routers and object storage servers on the same line card (crossbar)
 - So long as routers only talk to OSSes on the same line card contention in the fat-tree is eliminated
 - Required small changes to Open SM
- Place routers strategically within the Torus
 - In some use cases routers (or groups of routers) can be thought of as a replicated resource
 - Assign clients to routers as to minimize contention
- Allocate objects to "nearest" OST
 - Requires changes to Lustre and/or I/O libraries



Intelligent LNET Routing

Clients prefer specific routers to

XT5 Router node placement



Performance Results

- Even in a direct attached configuration (no Lustre routers) we have demonstrated the impact of network congestion on I/O performance
 - By strategically placing writers within the torus and pre-allocating file system objects on topologically closest OSTs we can substantially improve performance
 - Performance results obtained on Jaguar XT5 using ½ of the available backend storage

Performance Results (1/2 of Storage)

Lessons Learned: Journaling Overhead

- Even "sequential" writes can exhibit "random" I/O behavior due to journaling
- Special file (contiguous block space) reserved for journaling on Idiskfs
 - Located all together
 - Labeled as "journal device"
 - Towards the beginning on the physical disk layout
- After the file data portion is committed on disk
 - Journal meta data portion needs to be committed as well
- Extra head seek needed for every journal transaction commit!

Minimizing extra disk head seeks

- External journal on solid state devices
 - No disk seeks
 - Trade off between extra network transaction latency and disk seek latency
- Asynchronous Journal Commit
 - Lustre software only change
 - Reply to client when data portion of RPC is committed to disk

Configuration	Bandwidth MB/s
Internal Journals	1398.99
external, sync to RAMSAN	3292.60
internal, async journals	4625.44

Future Work

- Increased Metadata performance
 - Improved SMP scalability (10x improvement target from single MDS)
 - Tiger team working this now (ORNL, Cray, SUN)
- Resiliency
 - OSS Failover
 - Router Failover (asymmetric network failure)
- Quality of Service
 - Network Request Scheduler
- Increased Bandwidth
 - 240 GB/sec is not enough
 - Full system checkpoint times need to be reduced
- Changing workloads
 - Data Analytics
 - Visualization
 - No longer a write-once file system for checkpoints

INCITE April 15th call for proposals

Call for large-scale, computationally intensive, high-impact research proposals

In 2010, powerful, leadership-class computing systems at DOE's Argonne National Laboratory and Oak Ridge National Laboratory will provide over one billion processor hours to a limited number of researchers nationwide.

The call is open to scientific researchers and research organizations, including industry; DOE Sponsorship is not required. **Deadline July 1**st.

INCITE awards help advance the state-of-the-art in areas such as

- Accelerator physics
- Astrophysics
- Chemical sciences
- Climate research

- Computer scienceEngineering
- Physics
- Environmental science
- Fusion energy
- Life sciences
- Materials science
- Nuclear physics, and more

For details about the DOE leadership computing facilities, see www.alcf.anl.gov and www.nccs.gov or contact INCITE@DOEleadershipcomputing.org to be added to an announcement distribution list.

Questions?

Contact info:

Galen Shipman

Group Leader, Technology Integration

865-576-2672

gshipman@ornl.gov

