
Comparison of Scheduling Policies and Workloads on the NCCS and NICS XT4 Systems at Oak Ridge National
Laboratory

Troy Baer, National Institute for Computational Sciences, University of Tennessee; and Don Maxwell, National
Center for Computational Sciences, Oak Ridge National Laboratory

ABSTRACT: Oak Ridge National Laboratory (ORNL) is home to two of the largest Cray XT4 systems in the world:
Jaguar, operated by ORNL's National Center for Computational Sciences (NCCS) for the U.S. Department of Energy;
and Kraken, operated by the University of Tennessee's National Institute for Computational Sciences (NICS) for the
National Science Foundation. These two systems are administered in much the same way, and use the same TORQUE
and Moab batch environment software; however, the scheduling policies and workloads on these systems are
significantly different due to differences in allocation processes and the resultant user communities. This paper will
compare and contrast the scheduling policies and workloads on these two systems.

KEYWORDS: XT4, scheduling, resource management

1. Introduction

Oak Ridge National Laboratory (ORNL) has long been the
home of the National Center for Computational Sciences
(NCCS), the first of the U.S. Department of Energy's
Leadership Computing Facilities (LCF). The current flagship
system of NCCS is Jaguar, a large Cray XT system that has
been through multiple upgrades. However, in 2007 a
partnership between ORNL and the University of Tennessee
received an award from the second track 2 competition of the
U.S. National Science Foundation's "Towards a Petascale
Computing Environment for Science and Engineering"
program. This resulted in a second supercomputing facility,
the University of Tennessee's National Institute for
Computational Sciences (NICS), being co-located at ORNL.
The flagship system of NICS is Kraken, yet another large
Cray XT system with a schedule for multiple upgrades.
These two systems are literally side by side and use the same
TORQUE and Moab batch environment software, but the
scheduling policies and workloads on the two systems differ
significantly. As a result, a comparison of the workloads of
the two systems could potentially point out areas of
improvement for scheduling on both systems.

To keep the number of differences between the two systems to
a minimum, the period considered for this discussion is the
fourth quarter of calendar year 2008 (4Q2008), i.e. 1 October
2008 through 31 December 2008. This is the only period
over which the XT4 versions of both Jaguar and Kraken could
be considered formally allocated, production computing
resources before the centers' respective XT5 systems became
available.

2. System Descriptions

During 4Q2008, Jaguar and Kraken were both Cray XT4
systems using quad-core Opteron processors. The two

machines are located side by side in the same machine room
at ORNL. They are however administered separately and
share neither a user namespace nor any file systems.

2.1 Hardware and System Software

The following table describes the hardware specifications for
the Jaguar and Kraken XT4 systems.

System Jaguar Kraken

Cabinets 84 40

Compute Nodes 7,832 4,508

Processor AMD Opteron
2.1 GHz quad-core

AMD Opteron
2.3 GHz quad-core

Total Cores 31,328 18,032

Peak Performance
(TFLOP/s)

263.2 165.9

Memory (TB) 61.19 17.61

Disk (TB) 700 450

I/O Bandwidth
(GB/s)

40 12.5

MDS Nodes 3 2

OSS Nodes 72 24

Login Nodes 8 6

Aprun Nodes 8 6

Grid Nodes 0 4

During 4Q2008, both the Jaguar and Kraken XT4 systems
used version 2.0 of the Cray Linux Environment (CLE), based
on SuSE Linux 9. Jaguar has subsequently been updated to
CLE 2.1.

CUG 2009 Proceedings 1 of 7

2.2 Batch Environments

Both Jaguar and Kraken use the TORQUE variant of PBS [2]
as their batch environment, with Moab [1] as the scheduler.
Moab is a an extremely powerful and flexible scheduler that
supports a wide variety of batch environments, including all
PBS variants, LSF, LoadLeveler, and SLURM. Moab also
supports a number of advanced scheduling capabilities such
as advance reservations, quality of service (QoS) levels,
consumable resource management, and a highly configurable
priority and policy engine. On Cray XT systems running
CLE, Moab must communicate with the Cray Application
Level Placement Scheduler (ALPS) service as well as the
TORQUE batch system. This is accomplished by interfacing
with a native resource manager, which is a set of "glue layer"
scripts that sit on top of ALPS and TORQUE services.

2.2.1 Queue Structures

The queue structure on Jaguar is extremely simple, with only
three user-accessible queues. Almost no policy is set or
enforced by these queues; rather, all policy decisions were
made either at submission time by the TORQUE submit filter
or by Moab.

Jaguar
Queue Name

Maximum
Processor Core

Count

Maximum
Wallclock Time

Limit

dataxfer 0 24:00:00

batch 31,328 24:00:00

debug 31,328 4:00:00

A major policy component enforced by the TORQUE submit
filter is the maximum wallclock time limit allowed to jobs as
a function of the number of cores requested. This is done to
keep large volumes of small jobs from increasing the queue
time for very large jobs.

Jaguar
Maximum

 Core Count

Maximum
Wallclock Time Limit

0 12:00:00

256 1:30:00

512 2:30:00

1,024 4:00:00

31,328 24:00:00

Initially the queue structure on Kraken was almost identical to
that of Jaguar, except for the smaller size of the machine.

However, a slightly more complex queue structure was
implemented in September 2008 to allow for more fine-
grained control over wallclock time limits based on job size.
This also allowed for considerable simplification of the
TORQUE submit filter.

Kraken
Queue Name

Maximum
Processor Core

Count

Maximum
Wallclock Time

Limit

dataxfer 0 24:00:00

small 512 12:00:00

longsmall 512 60:00:00

medium 2,048 24:00:00

large 8,192 24:00:00

capability 18,032 48:00:00

The queue names batch and debug were retained for
compatibility reasons; however, they were converted into
routing queues with the above queues as destinations, with the
debug queue enforcing a 2 hour maximum wallclock time
limit to mimic its previous behavior.

The longsmall queue was not originally part of the revised
queue structure on Kraken. It was requested by a group of
users who objected to the 12-hour time limit on the small
queue on the grounds that such a limit forced them to have to
submit jobs too often. In exchange for allowing longer small
jobs, these users agreed that said jobs would be limited to a
relatively small fraction of the machine, as discussed below.

2.2.2 Scheduling Policies

On Jaguar, jobs that use a significant fraction of the machine
are given the highest priority. Priorities are considered in units
of days, equivalent to one day of waiting to run. Another
major priority component in Moab on Jaguar is accomplished
by assigning one of five QoS levels to a job using Moab’s job
template feature.

Jaguar
QoS Level

Min.
Core

Count

Max.
Core

Count

Priority
in days

Fair
Share
Target

Jobs
per

User

sizezero 0 0 90 None 10

smallmaxrun 1 256 0 20% 2

nonldrship 257 6,000 0 20% None

ldrship 6,001 17,000 8 80% None

topprio 17,001 31,328 10 80% None

CUG 2009 Proceedings 2 of 7

These QoS levels also include fair share targets, which are
used to tune job priorities dynamically such that large jobs get
approximately 80% of all cycles delivered by the system. The
sizezero QoS is excluded from the fair share system, as
jobs in this QoS are primarily in the dataxfer queue and
are used to stage data in and out of HPSS. Furthermore, the
sizezero QoS limits users to 10 running jobs apiece, and
the smallmaxrun QoS limits users to 2 running jobs
apiece.

Like Jaguar, Kraken’s scheduling policies are intended to
favor jobs that use a significant faction of the machine;
however, the mechanisms used to accomplish this are quite
different. Priority in Moab on Kraken is based primarily on
the number of cores requested; secondary factors used in the
priority calculation include the job’s queue time and its
expansion factor. The expansion factor of a job is the ratio of
the sum of the job’s queue time and run time to the run time:

f exp j =
t queue jt run j

t run j
=1

t queue j

t run j

The expansion factor quantifies the overhead of the batch
system in a job's overall time to completion. Weighting the
expansion factor in the priority calculation gives higher
priority to short-running jobs that have waited longer than
their requested time to run.

As job classification on Kraken is done primarily at the queue
level, QoS levels are used less extensively on Kraken than on
Jaguar. Only two QoS levels are generally used on Kraken.

Kraken
QoS Level

Base Priority Queue Time
Target

Queue Time
Priority

sizezero 0 0:00:01 5,000

negbal -100,000 None None

The sizezero QoS has the same intent as the similarly
named QoS on Jaguar, and is applied using the same job
template mechanism. However, rather than having an
increased base priority, jobs in the sizezero QoS on
Kraken have a short queue time target, after which their
priorities begin to increase rapidly. On the other hand, the
negbal QoS is used to de-prioritize jobs from projects
whose allocations are overdrawn; it is applied automatically
by the system’s TORQUE submit filter at job submission.

Kraken also has additional policies applied to two of its
queues. The discussion which led to the creation of the
longsmall queue stipulated that jobs in that queue would
be limited to using a small fraction of the machine so that

they would not block jobs requesting the largest power of 2
available on the system (16,384). To also allow for node
failures, this limit on longsmall jobs is configured to be
1,600 cores. In addition, user complaints about
capability jobs hogging the system resulted in that queue
being limited to one job eligible to run at a time.

3. Allocation Processes

The processes used to allocate time on these two systems are
very different. Allocations for Jaguar are handled primarily
by the U.S. Department of Energy's Innovative and Novel
Impact on Theory and Experiment (INCITE) allocation
program [3]. Allocations by INCITE are made annually, with
allocations potentially lasting for multiple years. A significant
component of the INCITE review process is that a project
must be able to demonstrate that their application has the
ability to run at scale -- that is, using a major fraction of the
LCF systems at Argonne and Oak Ridge National
Laboratories. This has the effect of limiting INCITE
allocations to approximately 20 projects per year with
massively scalable codes.

In contrast, allocations for Kraken are done primarily by the
National Science Foundation's Teragrid Resource Allocations
Committee (TRAC) [4]. TRAC allocations are made
quarterly, with allocations expiring after one year. Unlike the
INCITE program, the TRAC has no requirement that
applications scale to a significant fraction of the machine
requested, so any project can in principle get an allocation on
any Teragrid system. TRAC allocated projects are also
allowed to shift balances between Teragrid sites, and a
number of projects have shifted balances to NICS after
discovering that Kraken outperformed other Teragrid systems
on codes that have arguably modest scalability.

4. Workload Analysis

The following analyses were performed using software
developed by the authors [5, 6], much of which is open
source. The TORQUE accounting logs from the two
machines were parsed and fed into a MySQL database, which
were then be queried either manually or using a set of web
forms to do pre-defined reports. For Kraken, users' job scripts
were also stored in the database for full-text searches; on
Jaguar, the job scripts were partially reconstructed using logs
of the jobs' aprun commands stored in another database.

4.1 Overall Utilization

The overall utilization on Jaguar and Kraken during 4Q2008
is summarized in the following table.

CUG 2009 Proceedings 3 of 7

4Q2008 Jaguar Kraken

Jobs Run 46,023 15,774

CPU Hours Used 54.46M 21.00M

Average
Utilization

89.7% 57.0%

Active Users 300 116

Active Projects 142 40

Kraken had lower overall utilization than Jaguar for primarily
historical reasons. As a new center at the beginning of 2008,
NICS effectively started from zero in terms of users and
allocations, whereas NCCS had several years worth of
preexisting users and allocations. Furthermore, the TRAC
process had only allocated approximately 63 million CPU
hours on Kraken as of the beginning of 4Q2008; as a result,
many allocations on Kraken had already significantly
depleted their allocation balances by the end of the quarter.

4.2 Job Breakdown by Size

Since Jaguar and Kraken have very different queue structures,
a comparison between the two cannot be done at the queue
level. A breakdown based solely on jobs' requested processor
core count is not entirely helpful either, as Jaguar is almost
twice the size of Kraken and therefore capable of running
much larger jobs. However, a breakdown by processor core
count normalized by the size of the machines allows for a
meaningful direct comparison. The following analyses break
down jobs into one of six categories: those that request less
than 1% of the system's processor cores, those that request
between 1% and 10% of the cores, those that request between
10% and 25% of the cores, those that request between 25%
and 50% of the cores, those that request between 50% and
75% of the cores, and those that request more than 75% of the
cores (i.e. effectively the whole system).

On both systems, approximately 90% of the jobs submitted
request less than 10% of the machine. Kraken's job mix is
skewed more heavily to the small side with 58.4% of all jobs
requesting 1% or less of the system, whereas 48.8% of all
jobs on Jaguar request 1% or less of the system. However,
the breakdown of the remaining 10% of jobs is very different
between the two systems. On Jaguar, 3.94% of all jobs
request between 10% and 25% of the system, 4.32% request
between 25% and 50% of the system, 0.90% request between
50% and 75% of the system, and only 0.48% more than 75%
of the system. On Kraken, this distribution is rather different;
8.35% of Kraken jobs request between 10% and 25% of the
system, 1.72% request between 25% and 50% of the system,
0.77% request between 50% and 75% of the system, and
1.31% request 75% or more of the system. This skew toward
whole-system jobs on Kraken relative to Jaguar is a result of
the sizes of the systems relative to the largest possible power
of 2 in core count on them; on Jaguar, 16,394 cores are a little
more than 52% of the machine, whereas on Kraken, it is 91%
of the machine.

However, the numbers of jobs using various fractions of the
systems are only part of the story. On both Jaguar and
Kraken, jobs which request a relatively small portion of the
machine are limited in terms of the amount of wallclock time
they may request, so that larger jobs can be turned around
more quickly. As discussed previously, this limitation is more
strict on Jaguar than on Kraken, due to the much wider
variability of code scalability in projects allocated time on
Kraken. Furthermore, the scheduling policies on both
systems are also intended to favor usage by very large jobs.
As a result, a breakdown of the number of CPU hours
consumed by different groups of jobs based on the normalized
size of the jobs is instructive as far as being able to determine
quantitatively whether the scheduling policies are successful
in achieving their goals.

CUG 2009 Proceedings 4 of 7

Jaguar Job Count by Normalized Core Count

<=0.01
>0.01-0.10
>0.10-0.25
>0.25-0.5
>0.5-0.75
>0.75

Kraken Job Count by Normalized Core Count

<=0.01
>0.01-0.10
>0.10-0.25
>0.25-0.5
>0.5-0.75
>0.75

As might be expected, jobs that requested relatively small
fractions of the system used a much smaller portion of
Jaguar's resources than those of Kraken. On Jaguar, jobs
which requested 10% or less of the system consumed 33.6%
of all CPU hours delivered, but on Kraken, they consumed
46.9%. Regarding larger jobs, jobs requesting 25% or more
of Jaguar consumed 50.8% of all CPU hours, while on
Kraken they used 16.6% of all CPU hours. However, jobs
requesting more than 75% of Jaguar (i.e. whole-system jobs)
consumed 9.9% of the total CPU hours, whereas on Kraken
they accounted for 13.4%. Another interesting facet of this is
the large disparity between the two systems as far as jobs
which use between 50% and 75% of the system. On Jaguar,
these jobs consumed 17.5% of the total CPU hours, whereas
on Kraken they consumed only 0.8%. In effect, Kraken has a
very bimodal job distribution with a large volume of small,
long-running jobs and a significant number of whole-system
jobs with relatively little in between, while Jaguar has a more
evenly distribution of job sizes than skews more toward large
but not whole-system jobs.

4.3 Quantifying User Experience

It can be difficult to gauge users' experiences with a system
quantitatively. However, there are a few metrics which can be
used to make inferences. The metric that is most immediately
visible to end users is queue time, the time between when a
job is submitted and when it starts running.

Queue times on Jaguar were, on average, shorter at smaller
processor cores count and longer at larger core counts than on
Kraken. At the low end, this is a reflection of the longer run
times allowed on Kraken for small jobs, making them more
difficult to backfill between large jobs. An additional factor
in the longer queue times at the low end on Kraken is the
1600-core limit on longsmall jobs; as there are many of
these jobs contending for the limited fraction of the system,
they tend to have much higher queue times. At the high end,
the shorter queue times on Kraken than on Jaguar are a
reflection of the fact that Jaguar had higher overall utilization
than Kraken did.

Considering queue time as a monolithic quantity can be
misleading, however. There are two significant components
of queue time: queue time due to resource availability, such
as a job not running due to not enough processor cores being
available; and queue time due to policy reasons, such as a job
not running because the job's owner has reached the limit of
concurrent running job that they are allowed. Disambiguating
between these two aspects of queue time is virtually
impossible using only the TORQUE accounting information,
as it requires access to policy information known only by the
scheduler, Moab in the case of Jaguar and Kraken. Being
able to quantify queue time due to resource availability versus
queue time due to policy reasons is an area of ongoing effort.

Another metric to consider with regard to user experience is
the expansion factor. As mentioned previously, the expansion

CUG 2009 Proceedings 5 of 7

Jaguar CPU Hours by Normalized Core Count

<=0.01
>0.01-0.10
>0.10-0.25
>0.25-0.5
>0.5-0.75
>0.75

Kraken CPU Hours by Normalized Core Count

<=0.01

>0.01-0.10
>0.10-0.25
>0.25-0.5

>0.5-0.75
>0.75

<=0.01
>0.01-0.10

>0.10-0.25
>0.25-0.5

>0.5-0.75
>0.75

0

5

10

15

20

25

Average Queue Time on Jaguar and Kraken

by Normalized Core Count

Jaguar
Kraken

Normal ized Core Count

A
ve

ra
ge

 Q
u

eu
e

Ti
m

e
(h

ou
rs

)

factor of a job is the ratio of the sum of the job’s queue time
and run time to the run time. Ideally, this number should be
unity.

Kraken had generally smaller expansion factors than Jaguar.
This is a result of Jaguar having significantly higher overall
utilization than Kraken. However, the one exception to this
was for jobs using between 50% and 75% of the system's
processor cores, where Kraken's expansion factor was almost
four times that of Jaguar. As discussed previously, the
number of jobs in this group was extremely small on Kraken,
as was the amount of resources that they consumed.

4.4 Application Usage

At the end of the day, what really matters with all scientific
computing systems is not the hardware and software they use
or the scheduling policies they implement, but rather the
scientific advanced made using results generated by the
applications running on them. By having the users' job scripts
stored in a database along with the accounting information, it
is relatively straightforward to develop queries to identify
jobs that run a particular application. This allows a site to
quantify which applications are most heavily used and
emphasize support accordingly.

The application mix on Jaguar was considerably more diverse
than that on Kraken, due to NCCS' longer history and larger
user community than those of NICS. On Kraken, the ten most
heavily user applications consumed 87% of the total CPU
hours delivered, whereas on Jaguar the top ten applications
consumed only 54% of the total CPU hours. The mix of
applications is also very different between the two systems,
with only one application (NAMD) in common between the
top ten applications lists for the two.

5. Conclusions and Future Work

Several observations may be drawn from the above analyses.
The scheduling policies implemented on both Jaguar and
Kraken have proven effective in achieving the systems goals
of running jobs which use significant fractions of that
machine. This has been somewhat more successful on Jaguar
than on Kraken, largely because the INCITE allocation
process sends only highly scalable projects to Jaguar while
the TRAC allocation process sends a much different
community to Kraken. On the other hand, Kraken also has
maintained good quality of service to its users with whole-
system jobs despite its more diverse workload.

There are of course a number of areas for potential
improvement in the scheduling of both Jaguar and Kraken.
One idea that has been discussed at NICS is implementing a

CUG 2009 Proceedings 6 of 7

<=0.01
>0.01-0.10

>0.10-0.25
>0.25-0.5

>0.5-0.75
>0.75

0

10

20

30

40

50

60

Expansion Factor on Jaguar and Kraken

by Normal ized Core Count

Jaguar
Kraken

N ormalized Core Count

E
xp

an
sio

n
F

ac
to

r

Top 10 Kraken Applications

by CPU Hours

namd
amber
dns2d
hmc
milc
aces3
overlap
sovereign
wrf
enzo
other

Top 10 Jaguar Applications

by CPU Hours

chimera
ccsm
vasp
gtc
pwscf
qmc
xgc
pop
namd
cfd++
other

fair share system at the project allocation level, with the fair
share target of a project being based on its remaining
allocation balance. There has also been discussion of a more
fine-grained queue structure on Jaguar with explicit time
limits, more like what is done on Kraken. Another major
factor going forward is that NCCS and NICS did acceptance
testing of XT5 versions of Jaguar and Kraken respectively in
late 2008 and early 2009. These new systems are four to five
times larger than their predecessors, and adjustments in
scheduling policies will certainly be required to accommodate
the increased size of the systems. Indeed, the XT5
incarnation of Kraken has already had to change some of the
policies applied to longsmall and capability jobs to
improve turnaround time for whole-system jobs.

About the Authors:

Troy Baer is an HPC systems administrator for the University
of Tennessee's National Institute for Computational Sciences
at Oak Ridge National Laboratory. He can be reached by
emailing <tbaer@utk.edu>.

Don Maxwell is a senior HPC systems administrator for the
National Center for Computational Sciences at Oak Ridge
National Laboratory. He can be reached by emailing
<mii@ornl.gov>.

References

[1] "Cluster resources :: Products - Moab Workload
Manager",
http://www.clusterresources.com/pages/pr
oducts/moab-cluster-suite/workload-
manager.php.

[2] "Cluster resources :: Products - TORQUE Resource
Manager",
http://www.clusterresources.com/pages/pr
oducts/torque-resource-manager.php.

[3] "DOE - Science - ASCR - INCITE",
http://www.sc.doe.gov/ascr/incite/.

[4] "Teragrid User Support: Access: Access & Allocations",
http://www.teragrid.org/userinfo/access/
allocations.php.

[5] Baer, T. "OSC Configuration and Tools for PBS",
http://www.osc.edu/~troy/pbstools/.

[6] Maxwell, D, et al. "Restoring the CPA to CNL",
Proceedings of CUG 2008, Helsinki, May 2008.

CUG 2009 Proceedings 7 of 7

mailto:tbaer@utk.edu
http://www.osc.edu/~troy/pbstools/
http://www.teragrid.org/userinfo/access/allocations.php
http://www.teragrid.org/userinfo/access/allocations.php
http://www.sc.doe.gov/ascr/incite/
http://www.clusterresources.com/pages/products/torque-resource-manager.php
http://www.clusterresources.com/pages/products/torque-resource-manager.php
http://www.clusterresources.com/pages/products/moab-cluster-suite/workload-manager.php
http://www.clusterresources.com/pages/products/moab-cluster-suite/workload-manager.php
http://www.clusterresources.com/pages/products/moab-cluster-suite/workload-manager.php
mailto:mii@ornl.gov

