
1

Unifying Heterogeneous Cray Resources and Systems into
 an Intelligent Single-Scheduled Environment

Scott Jackson Cluster Resources, Inc.

ABSTRACT: As Cray systems are expanded and updated with the latest chip
sets and technologies (for example, memory and processors), system managers
may want to allow users to run jobs across heterogeneous resources to avoid
fragmentation. In addition, as next-generation platforms with key differences
(such as partition managers like ALPS and CPA) are added, system managers
want the ability to submit jobs to the combined system, automatically applying
workload to the best-available resources and unifying reporting for managers.
This paper will describe how Moab Workload Manager has been integrated with
Cray technologies to provide support for running jobs across heterogeneous
resources and disparate systems.

KEYWORDS: Moab, Torque, XT, batch, scheduling, workload management,
Cluster Resources

1. Introduction
Cray XT systems are high value investments

that are often updated, enhanced or extended during
the life of the deployment. Whether this is to update
software packages, enhance the system with more
memory, processors or swap or to extend the
capacity of the system with new racks that have the
latest technologies and infrastructure, the common
course is to either take the system down for one or
more extended upgrade periods or create a separate
compute resource. For larger systems, delivery of
updates, enhancements and resource extensions
can take months due to the scope of production,
delivery and implementation.

This paper will cover the use of Moab and its

technical capabilities that allow for effective utilization
during transitional periods and co-existence with
heterogeneous resources. Further, the paper will
cover how to achieve unified submission and
administration for disparate systems that have mixed
resource types and how the ability to intelligently run
jobs according to specific needs and availability of
matching resources can provide added efficiency.

Cluster Resources, Inc.

 Cluster Resources, Inc. is a leading provider of
workload and resource management software and
services for cluster, grid and utility-based computing
environments. As the developers of the popular Maui
Scheduler and the next generation Moab Cluster
Suite, Moab Grid Suite, and other associated
products, Cluster Resources has come to be
recognized as a leader in innovation and return on
investment. With more than 5,000 clients worldwide,
and drawing on more than a decade of industry
experience, Cluster Resources delivers the software
products and services that enable an organization to
understand, control and fully optimize their compute
resources.

Moab

 Moab Cluster Suite is a professional cluster
management solution that integrates scheduling,
managing, monitoring and reporting of cluster
workloads. Moab simplifies and unifies management
across one or multiple hardware, operating system,

CUG 2009 Proceedings

2

storage, network, license and resource manager
environments to increase the ROI of cluster
investments. Its task-oriented graphical
management and flexible policy capabilities provide
an intelligent management layer that guarantees
service levels, speeds job processing and easily
accommodates additional resources.

Torque.

 TORQUE is an open source resource manager
providing control over batch jobs and distributed
compute nodes. It is a community effort based on
the original PBS project and, with more than 1,200
patches, has incorporated significant advances in the
areas of scalability, fault tolerance, and feature
extensions contributed by NCSA, OSC, USC, the
U.S. Dept of Energy, Sandia, PNNL, U of Buffalo,
TeraGrid, and many other leading edge HPC
organizations. This version may be freely modified
and redistributed subject to the constraints of the
included license.

2. Scheduling Jobs across
Heterogeneous Resources

On Cray XT systems, system processes on the

compute nodes are strictly limited for performance
reasons and individual resource manager daemons
do not run out on the individual compute nodes.
Because of this, resource managers, such as PBS
and Torque, necessarily see these systems as a
single node SMP system. This view of things
presents a significant challenge when nodes in the
cluster are not truly homogeneous. In reality, the
nodes may differ in substantial ways such as number
of cores, amount of memory and swap, architecture
type, software levels, static features and other
characteristics.

Without an individual view of the nodes, a

scheduler would be unable to make decisions
regarding the placement of jobs. It would not be able
to support jobs requesting heterogeneous aspects of
the nodes (features, architecture, resources, node-
locked licenses, etc.). It would not be able to
optimize the utilization of the system by fitting the job
to the resources available on the nodes. It would not
be able to enforce node reservations. It would not be
able to run multiple jobs on the same nodes or load
balance them properly. It would not be able to
partition off groups of nodes for different policies. It
would not be able to track and respond to node
failures, high load issues, blocked resources, etc.

By utilizing its adaptable resource manager
interface, the Moab scheduler/workload manager is
able to combine information from the Torque
Resource Manager and the Cray partition managers
(CPA, ALPS) to give Moab a complete and accurate
view of the compute node resources, taking into
account their heterogeneous qualities. [see “Moab
and Torque on Cray XT3” by Scott Jackson, CUG
2007 - for a discussion of this architecture].

In this section, we will show how Cluster

Resources architected a solution that allowed Moab
to work with the Cray partition manager to support
the running of jobs across heterogeneous nodes. In
order to present a specific example, we will highlight
the case where Moab interacts with the Cray XT3
architecture and the CPA partition manager. A
similar solution has also been enabled for the Cray
XT4/XT5 architecture and the ALPS partition
manager but that solution will not be examined in
detail in this paper. Further, Moab Grid Suite can be
used to unify submission to XT3 and XT4/XT5
heterogeneous systems.

We shall highlight a case where a Cray XT3

customer started with an existing system composed
of dual core nodes having 2 gigabytes of memory
each and a node feature of DUAL. This customer
later augmented their system with an additional
number of quad core nodes having 8 gigabytes of
memory each and a node feature of QUAD. They
wanted to be able to achieve optimal use of these
heterogeneous nodes. Under such an environment,
an end user’s job may request specific node
characteristics based on node feature, configured
processors or configured memory.

Four Resource Selection Cases

There are a few different resource selection

cases that a workload manager might handle.

1) A job may request nodes of a specified

type. For example, a job might request to
run only on dual core nodes specifically,
or it might request to only run on nodes
with 8 gigabytes of memory. This is the
easiest case for a workload manager to
handle.

2) A job may require the nodes to be of the

same type, but it does not care which. For
example, the user may want the job to run
entirely on dual core nodes, or entirely on
quad core nodes, but not across both
simultaneously. The workload manager
has to allocate a single node type to the
job, but is free to choose amongst them.

CUG 2009 Proceedings

3

3) A job may specifically request disparate

chunks of nodes of multiple varieties. For
example, the user may want the job to run
a single master task on one quad core
node having 8 gigabytes of memory, and
20 slave tasks on 10 dual core nodes.
The workload manager, partition manager
and parallel launcher would need to
support running a job on a mixed set of
heterogeneous nodes.

4) A job may not care if it is allocated across

heterogeneous nodes. This gives the
scheduler the greatest flexibility in
maximizing utilization of the resources
and avoiding fragmentation, but it is the
hardest case to implement. For example,
a user may ask to run on 8 processors.
This may result in the allocation of 2 quad
core nodes, 1 quad core node plus 2 dual
core nodes, or 4 dual core nodes.

At first glance, these cases would appear to be

straightforward to implement, but the problem was
non-trivial because:

� The resource manager (Torque, PBS),

having the restriction of not being able to
run daemons on the compute nodes, is
not aware of the individual nodes

� There was originally no way to launch a
parallel command on heterogeneous
node types

� Intelligent support needs to exist in the
workload manager (scheduler and
resource manager) as well as the
partition manager for these various
cases

The Solution

We will now examine the solutions to the four

resource selection cases presented above:

1) For the first case where a job requests
nodes of a specified type:

The first task we must accomplish is to allocate

only nodes having the requested qualities. To do
this, the workload manager/scheduler must be aware
of the individual nodes and their differentiating
characteristics. Instead of querying the primary
resource manager directly, Moab uses its adaptable
resource manager interface to combine information
from the resource manager (Torque) with
information obtained from the partition manager
(CPA) to inform itself about the properties and state

of the individual nodes, as well as the list of compute
nodes allocated to each job.

By using this information, Moab is able to

allocate a set of nodes consistent with the user’s
request, reserve these nodes via CPA, push an
environment variable containing the CPA partition id
($BATCH_PARTITION_ID) into the job’s
environment, and start the job on an appropriate
resource manager client node (pbs_mom) via the
qrun command. The job script will typically contain a
parallel launcher (yod) command which launches the
parallel job across the allocated nodes which are
derived from the (CPA) partition manager using the
partition id that has been passed down from Moab.

An example of submitting a job using this mode

would be:

qsub -l procs=8:quad hello.job

2) For the second case where a job may

require the nodes to be of the same type, but
it does not care which:

Moab uses a mechanism referred to as node

sets which allows jobs to request sets of resources
without specifying exactly which resources are
required. For example, a node set can be defined
based on node feature which says that by default, a
job should run only on nodes having either the DUAL
feature or the QUAD feature, but not across both at
the same time.

An example of submitting a job using this mode

would be:

qsub -l procs=8,nodeset=one

of:feature:dual:quad hello.job

or Moab could be configured to enforce node sets as
a default behavior using a configuration setting in the
moab.cfg similar to the following:

NODESETPOLICY ONEOF
NODESETATTRIBUTE FEATURE
NODESETLIST DUAL,QUAD

3) For the third case where a job specifically
requests disparate chunks of nodes:

A single job might be permitted to specify tasks

defined with different node properties and then
request to run on collections of these disparate
tasks. This capability required support from the
workload management system (Moab), the partition
manager (CPA (also ALPS for XT4,5)) and the

CUG 2009 Proceedings

4

parallel command launcher (yod (also aprun for the
XT4,5)).

To support jobs running on heterogeneous

nodes, Cray modified the yod parallel command
launcher to accept environment variables of the
form:

BATCH_TUPLE0=2:1:dual
BATCH_TUPLE1=16:0:quad

The first colon-separated value is the number of
processors (cores) in the chunk, the second value is
the amount of memory per core in gigabytes, and the
third value is the chip type (implemented as a
partition or feature name). If the job script were to
invoke the command launcher `yod hello.exe` with
the above environment variables set, it would run the
hello.exe command on both processors of a single
dual core node requiring one gigabyte of memory per
core for the application plus 4 cores each of 4 other
quad core nodes (for a total of 16 cores) with no
specific memory requirement.

 Additionally, the partition manager interface
(CPA) was enhanced to support the stringing
together of chunks of cores with disparate memory
sizes and core counts for the partition reservation.

 A syntax was utilized in Moab/Torque of the
form:

qsub -l
select=X[:ncpus=N1][:mem=M1gb][:{dual|quad}][+Y[:
ncpus=N2][:mem=M2gb][:{dual|quad}]] …

which allowed the definition and numbers of the
different tasks to be passed to Moab in the job
submission request. Note that since yod preferred to
deal with per-core memory numbers, it was typical to
allow the ncpus definition to default to a value of 1
and specify the cores directly as the number of tasks
(X and Y in the example syntax).

Thus, an example of submitting a job using this

case would be:

qsub –l select=1:mem=8gb:quad+20:dual

hello.job

This would result in job environment variables of:

BATCH_TUPLE0=1:8:quad
BATCH_TUPLE1=20:0:dual

and would result in a job consisting of a single
master task on one quad core node using 8

gigabytes of memory plus 20 slave tasks on 10 dual
core nodes.

4) For the fourth case where a job may not
care if it is allocated across heterogeneous
nodes:

The freedom to run jobs across heterogeneous

nodes can result in improved cluster utilization and
job throughput. By contrast, if jobs are not allowed to
span nodes with different properties, fragmentation
will occur among the homogeneous collections of
nodes (those having similar memory, processor, and
feature characteristics – for example).

An example of submitting a job in this mode

would be:

qsub -l procs=8 hello.job

The scheduler would be free to pick the optimal

set of nodes for the job – including nodes with
heterogeneous qualities consistent with the job
request.

As in the third case described above, if

heterogeneous nodes were chosen, an appropriate
CPA partition would need to be created involving
multiple linked chunks, and the proper environment
variables would need to be set for use by the yod
parallel command launcher.

These capabilities can be extended/applied to

the XT4 and XT5 system and the ALPS partition
manager with the exception that the current ALPS
job launcher (aprun) does not currently support a
dynamic form of heterogeneous node chunking.
Although aprun does support a colon delimited
syntax which allows a command to be launched on
chunks of heterogeneous nodes, the aprun
command must be explicitly pre-constructed using
command line options in the job script and must
anticipate the characteristics of the nodes that will be
allocated to the job. This does not allow Moab the
freedom to support the fourth case as described
above.

3. Scheduling Jobs Across Disparate
Systems

Most large organizations today have multiple
clusters. In many cases it would be advantageous to
conceptually merge the nodes into a larger virtual
cluster and allow submission to the combined
system. Moab has been able to do this for many
years by using its Grid technology, combining

CUG 2009 Proceedings

5

systems by running a Moab workload manager on
each system and then coordinating the migration of
jobs between systems. It is also possible for a single
Moab workload manager to directly manage multiple
clusters via separate resource managers. This
becomes viable when the systems share a common
file space and a common user space. Using this
approach, users could direct their jobs toward
preferred systems or resources or they could leave it
to the scheduler to decide the best place for their job
to run. Statistics and accounting would be combined
into one system.

In this section we will describe how Moab was

enhanced to allow a single Moab daemon to
combine two Cray XT4 systems, managing the
scheduling of jobs across two Torque systems and
two separate ALPS domains.

Moab has long been able to coordinate the

workload on multiple simultaneous resource
managers. In fact, one of Moab’s key differentiators
from its predecessor, the Maui Scheduler, is its
ability to efficiently integrate resources from multiple
clusters and information sources.

Although this core capability already existed

within the Moab architecture, the Cray XT4 case
presented a number of additional challenges and
cases requiring special handling.

As a reference point, in a regular single-cluster

Cray XT4 Cluster running Moab and Torque, the
Moab workload manager daemon and the Torque
server daemon (pbs_server) runs on a head node
(often named the sdb node). The Torque client
daemon (pbs_mom) runs on the login nodes. If there
are more than one, this is usually to provide a
measure of fault tolerance and load distribution. A
user may submit a job by either using qsub which
submits the job directly to the Torque resource
manager (which is subsequently discovered by Moab
via an RM query), or via msub which submits the job
to Moab, wherewith Moab invokes a qsub command
to migrate the job down to the resource manager
(Torque).

In the multi-cluster design, Moab is installed onto

a head node independent of both clusters. Once
installed, its client commands (msub, showq, etc) are
installed on the head node and login nodes for each
cluster. This is done so that users can submit jobs to
the combined system as well as interact (query jobs,
query nodes, cancel jobs, etc). The two Torque
servers remain on the head nodes of the respective
clusters, while the Torque client commands (qsub,
qstat, etc.) are installed on the independent head
node, each in their own directory. For example, the

torque commands from cluster1 might be installed
into /opt/torque-cluster1 with /var/torque-cluster1 as
the home directory while the Torque commands from
cluster2 might be installed into /opt/torque-cluster2
with /var/torque-cluster2 as the home directory. Each
home directory has a server_name file which helps
the associated clients communicate with the
appropriate Torque server daemon.

Moab Configuration

Next, we must tell Moab about the two resource

managers and how to submit jobs for that cluster.
We add lines similar to the following in the Moab
configuration file (moab.cfg):

Resource Manager Configuration for Cluster1
RMCFG[cluster1] TYPE=NATIVE:XT4

SERVER=cluster1-pbs
RMCFG[cluster1] SUBMITCMD=/opt/torque-

cluster1/bin/qsub

Resource Manager Configuration for Cluster2
RMCFG[cluster2] TYPE=NATIVE:XT4

SERVER=cluster2-sys0
RMCFG[cluster2] SUBMITCMD=/opt/torque-

cluster2/bin/qsub

The resource manager definitions describe the

type as being native, meaning it uses the resource
manager native interface which uses customizable
translation scripts to interface with the resource
manager.

The subtype is given as XT4. This special

subtype allows special handling for a number of Cray
XT4 specific aspects such as the necessity for
creating allocation partitions through the ALPS
partition manager. The XT4 resource manager
native interface uses a hybrid approach for
interacting with the resource manager. It interacts
with the respective Torque directly via library calls to
the Torque API for querying the queue (class)
information, and canceling and requeuing jobs.

Moab references the SERVER parameter to

know which Torque server daemon to communicate
with for each resource manager interface. The node
and job information is obtained by calling tools
scripts (node.query.xt4.pl and job.query.xt4.pl
respectively). These scripts combine information
from Torque with information from ALPS and other
sources. When multiple resource managers are
involved, Moab passes an additional option to the
script (–rm=cluster1), indicating which resource
manager and ALPS system is to be queried by the
script. Moab will then combine the results of querying
each resource manager into a single combined

CUG 2009 Proceedings

6

system view. Additional scripts exist
(partition.query.xt4.pl, partition.create.xt4.pl,
partition.delete.xt4.pl) to assist Moab in the creation
and management of the ALPS partitions. These
scripts also may route requests to different clusters,
depending on the options passed to them by Moab.

For job submission, each resource manager

must be told the full path to the submission
command via the SUBMITCMD parameter. When a
job is submitted directly to Torque via qsub on one of
the clusters, the job will be queued and run on that
cluster only. However, if a job is submitted via msub
then Moab will make a decision as to where the best
place is to run the job and will then migrate the job to
the chosen cluster via the appropriate qsub
command.

The name of each resource manager is given by

the name used between the square brackets of the
RMCFG parameter (i.e. cluster1, cluster2 in our
example). This name is used as the cluster name for
job accounting purposes. Additionally, the nodes
reported by the respective resource manager will
belong to a partition of the same name. A job may be
directed to one cluster or another by requesting a
particular partition. Jobs may also be steered toward
or away from certain clusters by other specifications
as well, such as requested node features, resource
properties, reservations, etc. If no particular cluster is
targeted, Moab will make a decision based on
available resources, scheduling policies and other
factors, and submit the job via qsub to the selected
cluster.

By default, a job will be allocated to nodes that

reside exclusively on one cluster (partition) or the
other. It is possible, through the use of a special
“SPAN” quality of service flag, to allow a single job to
span clusters. However, this must be specifically
requested and access to this capability must be
explicitly granted to the user by the system
administrator.

Native RM Script Configuration

In order for the resource manager native

interface scripts to carry out their remote functions, a
Moab tools configuration file (config.xt4.pl) must be
customized with the appropriate information.

ALPS Partition management calls (apbasil) are

made via ssh using pre-established ssh keys so
need to know the remote host and the user name
which has been granted the privileges to create,
query and destroy ALPS partitions, as well as the
remote hosts on which these commands can be run.

$alpsUser = "root";
%alpsHost = (cluster1 => "cluster1-login",

cluster2 => "cluster2-login");

Torque calls (qstat, qdel, qrun, etc.) are made

locally on the independent head node and need to
know the appropriate path and server host name.

%torquePath = (cluster1 => "/opt/torque-

cluster1/bin", cluster2 => "/opt/torque-cluster2/bin");
%torqueHost = (cluster1 => "cluster1-pbs",

cluster2 => "cluster2-pbs");

Resolving Name Collision

Special Consideration needs to be given to the

fact that there are potential name collision issues
within Moab for both job and node ids. Firstly, it is
highly possible that the same job id might be in use
by the several Torque resource managers at the
same time. However, since Torque allows one to
specify the next job id number to be used, this can
be easily remedied by causing the disparate systems
to use different job id ranges. Another issue that can
arise is that the same node ids may be in use on
different clusters at the same time. This will regularly
be the case since on Cray XT systems, the compute
nodes are referred to by their nid (node id) numbers
which are generated automatically as integer
numbers.

In order for them to be recognized as distinct

nodes within Moab, the node.query.xt4.pl script must
prepend the node names with the cluster name. For
example, node 3 on cluster1 will be reported to Moab
as “cluster1.3”, while node 3 on cluster2 will be
reported to Moab as “cluster2.3”. By this means, all
nodes may be reported unambiguously when users
or administrators query the nodes or when Moab
allocates nodes to jobs. This prefix is removed from
the node name when the original node ids are
needed for use in Torque or ALPS, such as when
creating partitions or setting the environment variable
containing the node list for the job.

Multi-RM Scheduling Flow

The following is a high-level narrative breakdown

of the sequence of actions performed in a typical
scheduling iteration by Moab.

Moab starts out by obtaining the node

information for the clusters. For each resource
manager defined, it will call the node.query.xt4.pl
script with the option “—rm=<cluster_name>”. This
script combines information from the apbasil
inventory query (via ssh) with pbsnodes information
(locally by PATH) from Torque. Moab will read these

CUG 2009 Proceedings

7

in as unique node names because of the prepended
cluster prefixes and automatically assigns them to
the partition corresponding to the resource manager
(cluster) name. Next, Moab will query the class
(queue) information on each cluster using the
Torque API – communicating with the appropriate
Torque server as configured in the RMCFG[]
SERVER value. Then Moab will query the job
information by invoking the job.query.xt4.pl script for
each resource manager. This script combines
information from the Torque qstat command (locally
by PATH) with the apbasil inventory query (via ssh).

With all information updated, scheduling can

begin. Moab prioritizes the workload and grants a
configured number of job reservations, and proceeds
to schedule as many of these as the available
resources on the various clusters will permit. After
this, Moab will proceed with the remaining jobs
according to priority order, backfilling jobs that could
complete without adversely impacting the jobs with
existing reservations. As jobs are able to be started,
Moab calls the partition.create.xt4.pl script (with the
–rm=<cluster_name> option) to create an ALPS
partition for the job. If successful, the partition Id is
recorded in a job variable and the job.start.xt4.pl
script is called (with the appropriate –
rm=<cluster_name> option) which issues a qrun
command using the appropriate PATH and
server_name to launch the job within the assigned
partition. At the end of the scheduling cycle, Moab
calls the partition.query.xt4.pl script for each cluster
to see if there are any stale ALPS partitions
(partitions for which there are no associated running
jobs). If it finds, any, it will call partition.delete.xt4.pl
to remove it from the associated ALPS domain.

Next, Moab handles all user interface requests

that have come in since the last iteration. Here is
where it services Moab job queries (showq,
checkjob), node queries (mdiag –n), Moab job
cancellations (canceljob), Moab job submissions
(msub), etc. If a job was cancelled or requeued,
Moab will issue the appropriate Torque API library
call using the Torque SERVER name corresponding
with the partition the job is running in associated
with. If a new job was submitted via msub, Moab will
make a decision as to which cluster the job should
be submitted to based on job requests, resource
availability and load, and other scheduling policies.
The job will then be migrated to the chosen cluster
by invoking the qsub command using the PATH as
given by the target resource manager’s
SUBMITCMD variable.

Finally, Moab handles all pending resource

manager events that have taken place since the
previous iteration. Examples of events include a job

finishing, a new job being submitted to Torque via
qsub, a job being cancelled via Torque (qdel), etc.
Incidentally, Torque events will immediately wake up
the Moab scheduler and cause it to start a new
iteration if the scheduling timer has not yet expired. If
a job has finished or has been cancelled via Torque,
Moab will remove the associated ALPS partition
using the partition.delete.xt4.pl script with the –
rm=<cluster_name> option.

The above capabilities combine to allow

organizations to unify disparate systems thereby
increasing utilization and ROI of the systems,
reducing complexity to the end user, and allowing
administrators and managers to gain a unified view
of what is being used by whom.

4. Leadership Sites and Moab

When an organization invests in a Cray XT

system, it represents a serious and carefully
considered investment is the system and how it is
managed. The following list illustrates examples of
customers for whom a Moab/Torque solution was
required:

Jaguar from Oak Ridge National Laboratory

runs Moab and Torque on a Cray part XT4 part XT5
system with around 181,000 cores achieving a single
1.64 petaflop system by 2009.

Red Storm from Sandia National Laboratory

runs Moab and Torque on a Cray XT3 with 12,960
nodes and 38,400 compute processors (by means of
AMD Opteron dual and quad core processors)
running the Linux/Catamount operating system. Red
Storm peaks at 284.16 teraOPS theoretical
performance, with 78.75 terabytes of memory, 1.7
petabytes of disk storage and 2.5 megawatts of
power and cooling.

Another Leading Government Site also chose

Moab and Torque to run on a Cray XT4 with over
18,000 AMD Opteron cores in roughly 100 racks.

Leadership sites chose Moab because of its

ability to resolve complexity issues they encounter,
while providing more flexibility, ROI and control over
their resources and doing so at an equal or better
price to alternatives. All sites can equally benefit in
the ROI and control benefits, while applying the
management technology that allows them to more
easily update, enhance or extend their investment
with confidence.

CUG 2009 Proceedings

8

5. Benefits for Each Audience

Within installations such as these, there are

several tiers of customers to whom the solution must
appeal. Beyond the heterogeneity and unification
benefits, the management tool will inevitably play a
crucial role in the overall satisfaction of the funding
managers, site managers, system administrators
and users.

 The following, though admittedly an

oversimplification, are some of the added qualities
that must be delivered by a workload management
system for a sophisticated Cray XT customer.

High Utilization/ROI = Happy Investors

Funding managers have commissioned the

procurement of the computer to achieve specific
results. They want to be able to show high utilization
and return on investment for their constituents. They
often want to ensure that system cycles are
prioritized for specific workload types and groups.
Statistics and reports are important to them to
provide evidence of delivered performance and
utilization.

Enforce Site Objectives = Happy Managers

Site managers perform a balancing act between

the principals, competing department heads, and the
users. They often make heavy use of Service Level
Enforcement and Guarantees to apply various
qualities of service and fairness criteria to different
project groups and workload types. They need
flexible policies to meet performance objectives.
They need to enforce resource sharing between
competing political and technical interests. They can
show success in these efforts to their principals via
graphical charting tools. With expansion and
progress always on their minds, capacity planning
reports and simulation capabilities are critical tools.

Manageability = Happy Administrators

System administrators have to translate policy

into action. The more powerful and flexible the tools
at their disposal, the better they are able to perform
their jobs. Much is expected from them, so the more
that can be automated to eliminate repetitive work
the more time they have to devote to system
customization. Powerful diagnostics and monitoring
tools are indispensable. The ability to evaluate the
impact of new policies without impacting production
cycles prevents unnecessary risk or policy
stagnation. The more the users can do for

themselves the better. Although most admins tend to
favor the command line, some of the more abstract
or complex analysis or customization is made easier
via a graphical administrative interface.

Usability = Happy Users

Most end users don’t want to learn much about

the batch system. They want simple and standard
job submission and batch environments that don’t
change from system to system. There will also
always be those power users that require a flexible
and powerful set of submission options. These can
utilize sophisticated job information and control
utilities to great advantage. All want reliable cycle
delivery and predictable job execution. A web-based
job submission portal is also highly desirable due to
users logging in from myriads of different
environments.

5.1. Other Moab Benefits

There are many compelling reasons that

sophisticated sites are choosing Moab Workload
Manager.

 System utilization is improved to run between

90-99 percent due to intelligent resource allocation
and workload ordering.

Advance Reservations (administrative,

standing, job and personal) allow for high utilization
around maintenance periods, coexistence of
different workload types, enforcement of policy
agreements and vastly stretch the capabilities of
legacy queues.

Moab enforces Service Level Guarantees

through the use of features such as Quality of
Service, flexible priority mechanisms, fairshare and
usage throttling.

Through the use of Resource Manager
Translation , which lets Moab emulate scripts and
job language translation of other resources
managers, such as PBS Pro, users can continue to
use the batch submission interfaces they are used to

Additionally, Moab can create a Grid across

your Clusters – bringing together different resource
manager types, operating systems and architectures.
Unifying an organization’s clusters in this way helps
to improve overall utilization, turnaround, access to a
greater variety of resource types, co-allocation of
disparate resources and unified batch management.

CUG 2009 Proceedings

9

5.2 Why Torque?

There are also compelling reasons to choose to

use Torque with Moab on XT systems.

Torque is an Industry Standard Batch System

that is well understood and familiar to users
worldwide.

It is free, open source and commercially

supported .

Torque provides built-in underlying support for

Moab’s advanced features.

Torque permits Moab to handle partition

creation which permits:

� Better Failure Recovery
� Reservations (Admin, Standing, etc.)
� Heterogeneous Resources
� Node Features

6. Conclusion
 Whether updating, enhancing or extending

your Cray XT systems or ensuring your new
purchase is able to do so throughout your usage, the

ability to unify heterogeneous Cray resources into an
intelligent single-scheduled environment will improve
your ROI, reduce your costs and risk over time,
improve usability and ultimately aid your organization
to accomplish its objectives faster. By adding
Moab’s intelligence to your Cray system, it is able to
get more work accomplished and improves your
experience over the life time of the investment.

About the Author

Scott M. Jackson is the Vice President of
Software Engineering at Cluster Resources, Inc. He
previously worked at IBM as well as MHPCC (DOD)
& PNNL (DOE) computing facilities. Jackson is the
architect/developer of QBank & Gold (resource
allocation management software tools) & has
actively participated in the Global Grid Forum
developing grid standards and acting as a chair for
the Usage Record working Group.

Note: All third party marks are the property of their respective owners.

CUG 2009 Proceedings

