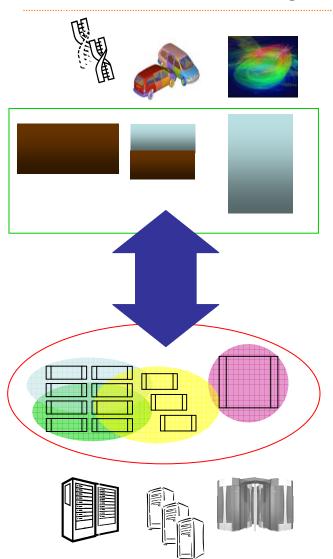


Select, Place, and Vnodes: Exploiting the PBS Professional Architecture on Cray Systems

Bill Nitzberg, Ph. D.


CTO, PBS GridWorks

Altair Engineering, Inc.

May 4, 2009

One-Slide Summary™

Virtualized job requirements MPI, OpenMP, SMP

Jobs select resources in "chunks"

• E.g., one MPI rank

Topology via grouping

PBS matches chunks & vnodes optimizing placement

Topology via placement sets

Machine resources in "vnodes"

E.g., one node/blade/socket

Virtualized machine resources SMP, Cluster, NUMA

🛕 Altair

Altair Overview

A global software and technology company focused on

- enterprise analytics,
- · product development, and
- advanced computing.

\$140M Revenue 1,300 Employees

\$100M

Global Expertise: 45 Offices in 17 Countries

Seattle, USA
Mtn View, USA
Los Angeles, USA
Austin, USA
Dallas, USA

Mexico City, Mexico

Toronto, Canada
Windsor, Canada

Boston, USA Milwaukee, USA Atlanta, USA

Sao Paulo, Brazil

Lund, Sweden

Gothenburg, Sweden

Coventry, UK

Manchester, UK

Boeblingen, Germany Cologne, Germany

Hanover, Germany

Munich, Germany

Paris, France

Sophia Antipolis, France

Torino, Italy

Milan, Italy

Moscow, Russia

Delhi, India

Pune, India

Chennai, India

Hyderabad, India

Bangalore, India

Kuala Lumpur, MY

Beijing, China

Shanghai, China

Tokyo, Japan

Osaka, Japan

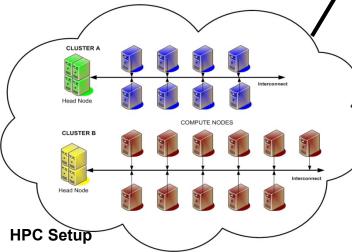
Nagoya, Japan

Seoul, Korea

Melbourne, Australia

3,800+ Customers World-wide

Local Customer Interface


Local Market Knowledge

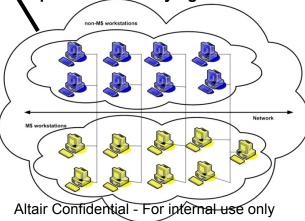
PBS GridWorks Solution Suite

GridWorks Portals- easy to use web based portals, rich domain knowledge

PBS Professional™- Robust (setup & forget), Scalable(10000s of cores), Flexible

GridWorks Analytics- accurate reporting, rich analysis

Enabling On-Demand Computing


onal PBS- drag and

GridWorks

Personal PBS- drag and drop job submission

Desktop Grid- utilize desktop power before buying new HPC

Green Provisioning™- save energy, save \$\$, save the planet

Why?

In the past... hardware was simple:

Symmetric Multiprocessors

and

"Clusters of "Workstations"

Today... a single system is a heterogeneous mix of technologies:

SMP + cluster + multi-core + NUMA + FPGA + ...

The PBS architecture provides <u>A Higher-level Abstraction</u> to easily and automatically access unique qualities and raw power of today's high performance computers

Abstract Application-level Job Submission

Jobs select application requirements, not hardware

E.g., MPI, OpenMP, cpus, memory, licenses, scratch space

Users do not need to know hardware details

→ improved productivity

Jobs are not restricted to particular hardware


→ improved utilization

Jobs can specify placement, sharing and exclusivity

→ improved performance

Add / change / replace hardware with minimal user impact

→ lower maintenance

Abstract Virtualized Hardware & Resources

Virtual nodes (vnodes) represent all types of hardware

• E.g., SMP, MPP, Sockets, NUMA, /tmp, NAS devices, software licenses, ...

Single representation for heterogeneous resources

→ greater expressive power

Separation of Host – MOM - node

→ greater scalability

All PBS Professional features for all architectures

→ agility to deliver more features, faster

Topology-aware scheduling with placement sets

→ increased performance & reduced fragmentation

select & place

Jobs Select Resources in "Chunks"

qsub -l select=128

Application with 128 chunks == simplest 128-way MPI

Default is 1 chunk == 1 MPI rank with 1 OpenMP thread on 1 cpu

Chunk: "natural" unit of allocation (for the application)

E.g., memory is shared by all processes in one chunk

MPI: ranks assigned left to right, override default with "mpiprocs=N"

qsub -l select=<u>1:mem=16gb</u>+15:mem=1gb

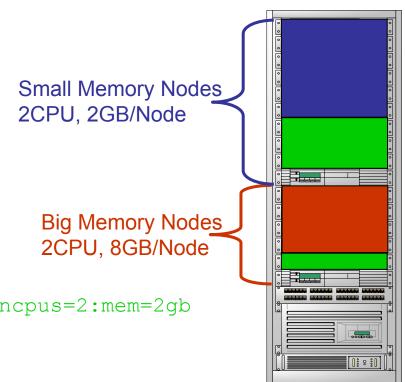
OpenMP: threads per MPI rank, override with "ompthreads=M"

qsub -l select=8:ompthreads=4

qsub -l select=...

Only specify application requirements (e.g., MPI)

4-way MPI job with 6GB ranks


qsub -l select=4:ncpus=1:mem=6qb

6-way MPI w/ 2 OpenMP threads & 2GB

gsub -l select=6:ncpus=2:mem=2qb

4-way MPI job with rank 0 of 2 OpenMP & 6GB and ranks 1-3 of 2 OpenMP & 2GB

qsub -l select=1:ncpus=2:mem=6gb+3:ncpus=2:mem=2gb

Place Modifies Resource Selection

-I place=scatter

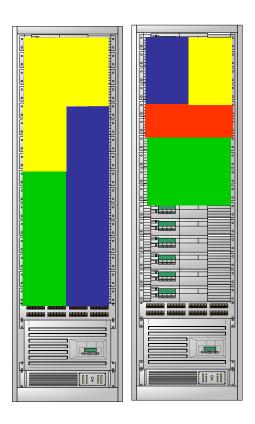
Each chunk is allocated to a separate host

```
qsub -l select=16:ncpus=1:mem=1GB -l place=scatter
```

-I place=pack

All chunks are allocated from vnodes on the same host

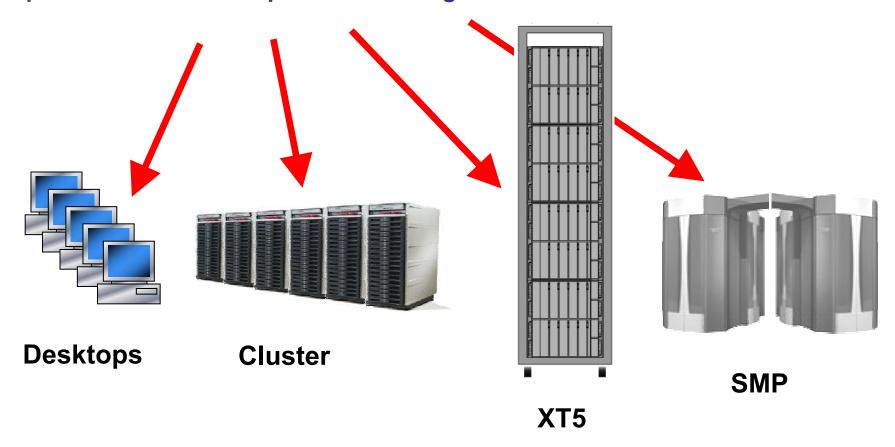
```
qsub -l select=2:ncpus=2:mem=1GB -l place=pack
```


-I place=free

 Resources within the chunk can be taken from any vnode where are available

```
qsub -l select=16:ncpus=1:mem=1GB -l place=free
```

-I place=excl


- Allocate vnodes exclusively for the use of this job
- Can be combined with above (e.g., place=scatter:excl)

One Select → Any Hardware

qsub -l select= 16 : ncpus=2 : mem=2gb

vnodes

"Virtual" Node

"Natural" resource container

hal[0]: ncpus = 2

hal[0]: mem = 1968448kb

hal[0]: fpga = True

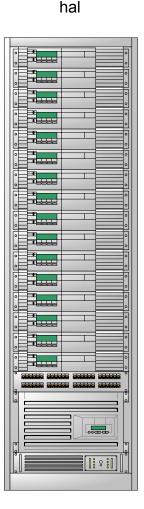
. . .

Canonical system is one vnode per host

- NUMA systems have >1 vnode per host
- PBS on XT5 today has <1 vnode per host

Resources can be shared at any level

Global, cluster-wide, rack-wide, host, blade, ...


Exclusive and shared allocations

- Shared vnodes → cpu-bound jobs
- Exclusive access → memory-bound jobs

Enables simulation of huge systems for test

50,000 vnodes on my laptop

hal[0] hal[1] hal[2] hal[3] hal[4] hal[5] hal[6] hal[7] hal[8] hal[9] hal[10] hal[11] hal[12] hal[13] hal[14] hal[15]

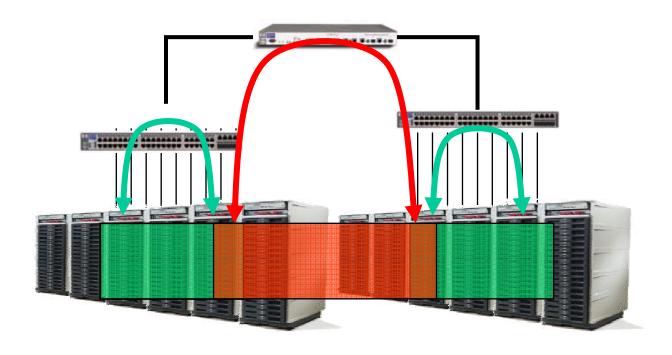
placement sets

Placement Sets are Sets of vnodes

Placement sets are defined by multi-valued string resources

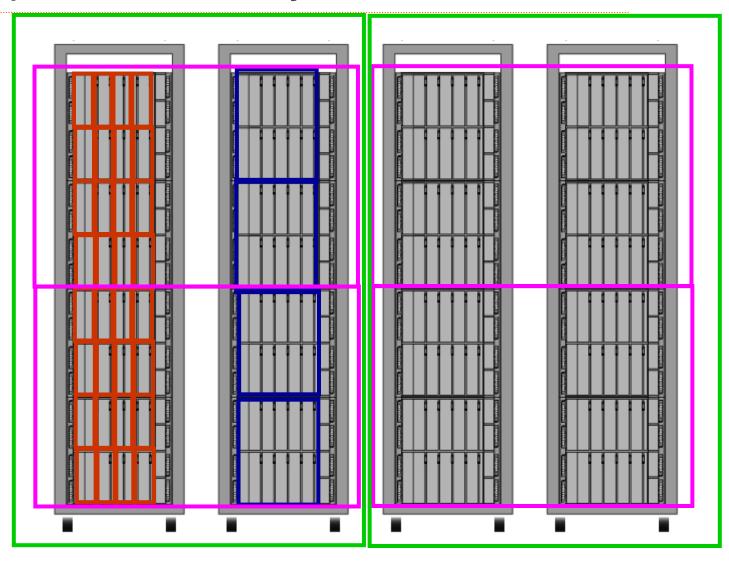
- hal[1] resources_available.router=board0,Top-01,Rack-01
- hal[2] resources_available.router=board0,Top-01,Rack-01
- ...
- hal[316] resources_available.router=board48,Top-01,Rack-02
- hal[317] resources available.router=board48,Top-01,Rack-02
- ...

Placement sets can be hierarchical and overlapping


- Same technology works intra and inter machine
- Customer tunable you can create/modify any topology

Scheduler optimizes by fitting jobs into "smallest" set available

Can also directly specify, e.g., fit job into a 16x16x16 cube

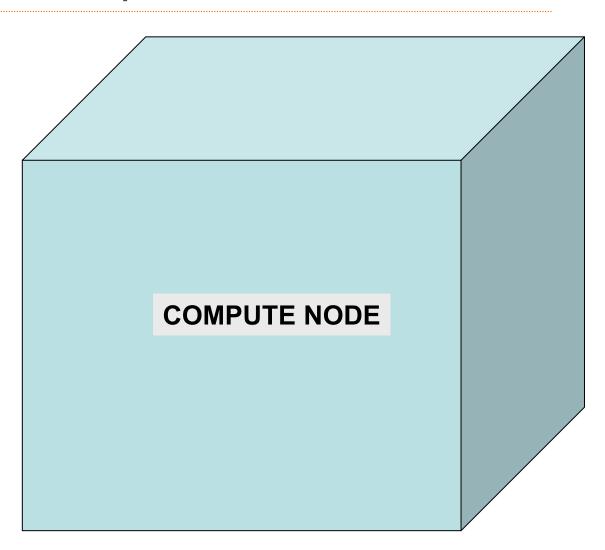

Example Placement for Cluster

Automatically keep MPI processes near each other Reduce interference and contention

Example Placement on K-ary N-tree

Cray Platforms

First: 100% Backward Compatibility


Our new "Hooks" capability provides the perfect mechanism to convert old "mpp*" syntax to new select & place

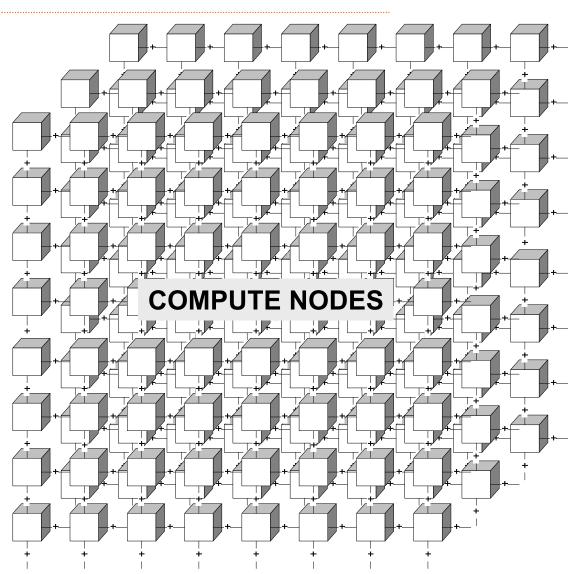
mppwidth	# of MPI ranks: (mpiprocs)		
mppdepth	# of OpenMP threads (ompthreads)		
mppnppn	# of MPI ranks per compute node		
mpphost	Host (host)		
mpparch	XT4 XT5 (arch)		
mppnodes	list of nodes (vnode)		
mppmem	Memory (mem)		
mpplabel	Any PBS resource for matching		

PBS Professional will continue to connect directly to ALPS

Old View: One "Super" Node

Future: Every Compute Node is a PBS vnode

One vnode per node


or

One vnode per socket

Address individual nodes

- Partition nodes to queues
- Use specific nodes (for benchmarking or test)

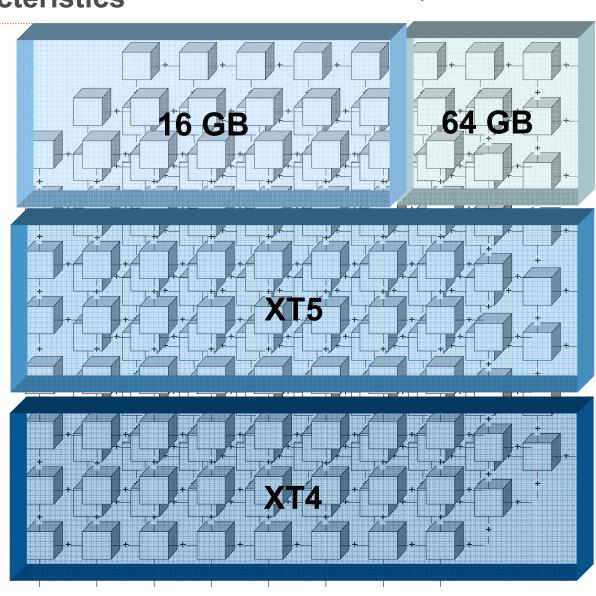
Address individual nodes/sockets/cores

Select Unique Characteristics

Heterogeneous nodes

Memory

CPUs

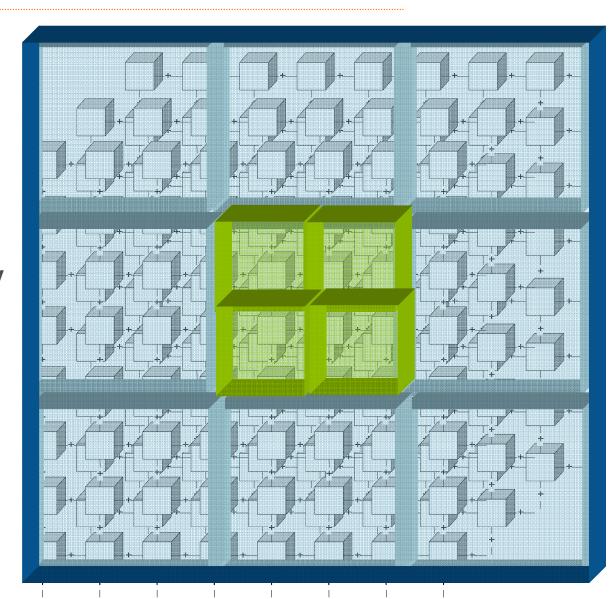

Architectures

Ready to support

Accelerators

NUMA

Any unique feature


Optimize for Topology

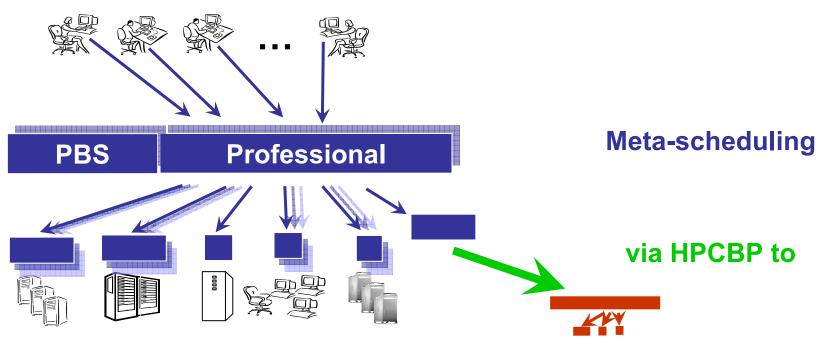
Create your own sets to suite unique needs

Topology mapping via "node numbering" too

Jobs/Queues can directly request placement

Different queues can have different placements

What Else?



Metascheduling (targeted for Jun 2009 v10.1 release)

No changes needed to Server & Scheduler

They only deal in "vnodes"

Leverages Open Grid Forum OGSA HPC Basic Profile Standard

Thank You!

e-Compute	e-Render	5	e-BioChem	Personal PBS
Fail-over	Huge scalability		<pre>\$restrict_user</pre>	Checkpoint / Restart
Scheduling Formula	Standing Reservations	®	Select & Place	Job Arrays
Backfill	Green Provisioning	Easy to Use	Preemption	Eligible Time
License Scheduling	Age-based Scheduling	Hard to Break	Dynamic resources	Topology Placement Sets
Job Dependencies	Desktop harvesting	<u>Do More</u> (with Less)	Analytics	Multi-core
24x7 On-line Community	Policy-based scheduling	Keep Track and Plan	Meta- scheduling	Peer Scheduling
On-demand Licensing	Hooks	Open Architecture	MPI integrations	Web Services