

CUG 2009 Proceedings 1 of 6

Scaling the MPT Software on the Cray XT5
System and Other New Features

Mark Pagel,
Kim McMahon, David Knaak

 Cray Inc.

ABSTRACT: The MPT 3.1.0 release allowed MPI and SHMEM codes to run on over
150,000 cores and was necessary to help the Cray XT5 at ORNL to achieve over a
petaflop in performance on HPL. MPT 3.1.0 was also used in quickly getting numerous
other applications to scale to the full size of the machine. This paper will walk through
the latest MPT features including both performance enhancements and functional
improvements added over the last year including improvements for MPI_Allgather,
MPI_Bcast as well as for MPI-IO collective buffering. New heuristics for better default
values for a number of MPI environment variables resulting in less application reruns
will also be discussed.

KEYWORDS: MPI, SHMEM, MPI-IO, Petaflop

1. Introduction

The Cray XT5 systems have been purchased by
customers with larger and larger total core counts. This is
especially true for the Oak Ridge National Laboratory
machine called Jaguar. The previous Jaguar machine was
an XT4 with around 30,000 cores. In order to support the
XT5 machine MPI and SHMEM needed to scale to over
150,000 cores. In addition to the scaling changes needed
to support the Cray XT5 at ORNL the MPT 3.1.0 and
MPT 3.2.0 releases also contain a number of new
functionality and performance features. This paper
describes the experience and changes needed to scale the
MPT software as well as some of the new features
recently added.

2. Scaling to Over 150,000 cores

MPI and SHMEM Hard Limit Modifications

 Prior to version 3.1.0, the Cray Message Passing

Toolkit (MPT) had support for a maximum of 65,536
ranks for a single MPI job. Several internal data
structures and various internal limits needed to be
modified to allow support for a larger number of MPI
ranks.

One of the basic problems was the use of a 16-bit
field to store the MPI rank number in some key data
structures associated with internal packet headers and
matchbits entries. Originally these MPI rank fields were
stored as 16-bit fields to help conserve memory in
latency-sensitive data structures. It is also probable that
the original authors did not foresee the need for MPI
programs running with more than 65,000 MPI ranks.
However, in order to support the extreme scaling of the
ORNL XT5 system and beyond, these rank values were
changed to be full 32-bit (unsigned integer) fields. This
change caused some internal data structures to increase in
size. However, increasing the size of other internal data
structures was not feasible. Because of this, additional
structure-specific modifications were required to keep the
size of the structure constant.

To allow larger MPI rank values in the MPI
matchbits, reducing the number of bits used for the MPI
tag field was necessary. This reduced the maximum MPI
TAG value from 32 bits to 24 bits. Likewise the
MPI_TAG_UB attribute was set to correctly reflect our
reduced tag space size.

Modifications were also necessary for a central
structure used by the MPI portals device driver. One of
the internal portals header structures is a 64-bit structure,

CUG 2009 Proceedings 2 of 6

and cannot be easily expanded. The MPI rank value
needs to be stored in this header structure. Keeping the
MPI rank value in this structure is required for
checkpoint/restart capability, since the physical location
of a rank may change during a restart operation.

In order to accommodate a larger MPI rank value in
this limited space, we chose to support an 18-bit rank
field which allows support for a maximum of 256K
(262,144) MPI ranks. However, adding the 2 bits onto
the rank field required taking away 2 bits from an
allocation_ID field. The allocation_ID field, which is
used as part of the Portals driver messages matching
ability, was now reduced to 14 bits. The reduction in size
of this field required an implementation of a new
algorithm to manage this resource more precisely. The
existing increment/wraparound technique for the
allocation_ID field was converted to a managed push-
down stack algorithm. In addition, code was added to
handle the case when this resource becomes exhausted
during a job, by integrating this resource into our internal
state engine flow-control feature. This allows an MPI job
to gracefully survive an allocation_ID out-of-resource
situation should that condition ever arise.

The changes to SHMEM also modified some hard
limits for how high SHMEM jobs could scale on XT
systems. The new limit is 256,000 SHMEM PEs.

In order to support higher scaling, changes were
made to the SHMEM header files that require a recompile
when using this new version. The new library will detect
this incompatibility and issue a FATAL error message
telling you to recompile with the new headers.

Testing at Scale and Additional Modifications

In order to test some of the new scaling modifications

made to the MPT software, prior to having access to the
actual XT5 hardware, our plan was to use the existing
ORNL jaguar XT4 system, and over-subscribe those
30,000 cpus with multiple MPI processes. This plan
required several changes to the existing Application Level
Placement Scheduler(ALPS) and MPI software.

A custom version of the ALPS software was
enhanced to support an 'emulation' mode. This mode
allowed an over-subscription of processes to cpus, with a
maximum of 32 processes on a single node. In addition,
the MPT software was modified to support up to 32
processes per node, and an additional feature was added
to allow each MPI process to call sched_yield() in the
appropriate internal progress engines to allow forward
progress and fairer scheduling when the cpus are over-
subscribed.

During dedicated jaguar XT4 time, we ran with the
custom ALPS emulation mode to over-subscribe the
jaguar nodes by a factor of 5-6x (running 20-24 processes
on each node). Since the nodes were heavily over-

subscribed, this exercise was about functionality, not
performance.

We were able to run a multi_pingpong MPI test to
verify functionality. In this test, the desired number of
MPI processes are launched, with each process using
MPI_Send and MPI_Recv functions to ping pong data
messages back and forth between a pair of processes. The
data values were modified and verified for each pass.
This test was run successfully at several configurations,
up to 180,000 processes, each sending one thousand
16384-byte messages between the pairs. Several MPI
collective functions were also tested, including
MPI_Allreduce, MPI_Reduce, MPI_Bcast and
MPI_Barrier. These tests all ran successfully at 150,000
processes, and the resulting data was verified to be
correct.

One potential issue was identified during the over-
subscription testing. The MPT collective optimization
startup routine was taking a very long time to complete
during the launch of the over-subscribed MPI jobs. This
startup routine needed to be disabled in order to complete
the tests. This performance problem turned out to be an
issue when we tested on real hardware as well and was
then resolved as will be described later.

In addition to identifying and fixing some of the hard
limits for maximum MPI rank value in our software,
several other existing features were enhanced or expanded
to aid in application scaling to these extreme process
counts.

The first feature we looked at was the default values
for various MPI environment variables. In particular, we
looked closely at the environment variables used to tweak
the MPI portals device driver, since that is the driver that
takes the brunt of the scaling work on an XT5.

In MPT 3.0.0 and prior versions, we used static
constants for these default values. However, when
applications scale up to 150,000 processes, we found that
the underlying network communication patterns are quite
different from those network patterns at small process
counts. This required us to adjust our MPI portals driver
assumptions as well, since it was clear that static values
weren't the right choice.

To address this, we created a set of auto-scaling MPI
environment variables. These are environment variables
whose default values change as a function of the total
number of ranks of the given MPI job. Some of these
default values increase as the number of ranks increases,
others decrease. This feature is designed to allow higher
scaling of MPT jobs with fewer tweaks to environment
variables and to help reduce the number of required times
to run the MPI job. If necessary, the user is still able to
override any of these auto-scaling defaults, simply by
setting these variables to the desired value prior to the job
launch.

CUG 2009 Proceedings 3 of 6

The performance of the MPT collective optimization
startup routine was also investigated at scale. This was
identified in the over-subscription work done on the XT4
system as a potential performance bottleneck. Analysis of
the optimization startup routine showed the use of two
small message MPI_Allgather calls consuming the large
majority of the time. Further analysis of the small
message MPI_Allgather function confirmed that the
current algorithm was not scaling well on the XT5. To
resolve this, the MPI_Allgather algorithm used for small
messages (2048 bytes or less) was re-written to better suit
the Portals/Seastar interconnect properties. For some
message sizes, this new algorithm resulted in a 12X
performance boost. In addition, the new algorithm
significantly reduced the MPI_Init startup time (including
the collective optimization initialization) on very large
jobs. For example, the start-up time for a 86,000 MPI
rank job went from 280 seconds down to 128 seconds.

Another MPT feature that was enhanced to allow for

better scaling was the allocation of internal MPI message
headers. In prior versions, if MPI ran out of headers, the
program would abort and request the user increase the
limit via the MPICH_MSGS_PER_PROC environment
variable. With the MPT 3.1.0 release, if additional
message headers are required during program execution,
MPI dynamically allocates more message headers in
quantities of MPICH_MSGS_PER_PROC. The user is
able to specify the value of MPICH_MSGS_PER_PROC
via an environment setting if desired.

3. MPI-IO Collective Buffering

In addition to these scaling features several new
features have been recently added. One of these features
is MPI-IO collective buffering improvements. The MPT
3.0.0 release (and earlier) supported the MPI-IO
optimization called collective buffering. The algorithm

used in that release was the original algorithm that is in
the ROMIO implementation of MPI-IO, which is the base
for the Cray implementation of MPI-IO. The collective
buffering is controlled by several MPI-IO hints, which are
documented in the "intro_mpi" man page. Using the
hints, collective buffering can be enabled, disabled, or left
in the default automatic mode.

After analysis of the I/O performance of some
benchmarks with MPT 3.0.0, we added a new collective
buffering algorithm in the MPT 3.1.0 release while
maintaining the old algorithm. The environment variable
MPICH_MPIIO_CB_ALIGN was introduced (by Cray
for our implementation) to control which algorithm to
use, with values of 0 or 1. The new algorithm reduced
Lustre extent lock contention by dividing the I/O
workload along Lustre stripe boundaries rather than a
simple equal division of the workload. This resulted in
significant improvement in some applications but not all.

The MPT 3.2.0 release contains a third algorithm
which does a better job of dividing the workload such that
each file stripe is accessed by one and only one
aggregator across all the collective I/O calls for that file.
It is controlled by the same environment variable, with a
value of 2.

A white paper written by David Knaak and Dick
Oswald, "Optimizing MPI-IO for Cray XT Applications"
is available that gives more details.

Here are 4 sets of benchmark results comparing the
I/O bandwith in MB/sec for the 4 modes: without
collective buffering (that is, collective buffering disabled),
and with collective buffering with algorithms 0, 1, and 2.
For IOR, there is also a comparison with POSIX shared-
file.

MPI-IO Benchmark descriptions and results

0

20000

40000

60000

80000

100000

120000

MPT 3.0 default

MPT 3.1 default

T
im

e
 (

m
ic

ro
se

co
n

d
s)

Message size (bytes)

Over 12X

improvement for 128

bytes

0

500

1000

1500

2000

M
B

/s
e

c

Chart 1. MPT 3.0 default compared with MPT 3.1 with

optimized MPI_Allgather default for 4096pes on an XT5

(lower is better)

IMB Allgather Performance

Chart 2. IOR benchmark 1,000,000 bytes , MPI-IO API ,

non-power-of-2 blocks and transfers, in this case blocks

and transfers both of 1M bytes and a strided access

pattern. Tested on an XT5 with 32 PEs, 8 cores/node, 16

stripes, 16 aggregators, 3220 segments, 96 GB file

CUG 2009 Proceedings 4 of 6

As you can see from Chart 2 collective buffering in

MPT 3.2.0 (CB=2) is significantly the best performer.

In the IOR benchmark test in Chart 3 the MPT 3.2

version performs about 2 times better than without
collective buffering and significantly better than the
default collective buffering.

In Chart 4 the original test did not use collective

buffering and had very poor scaling. For example,
without collective buffering, 8000 PEs take over 5
minutes to dump. Also very little difference in the
different implementations of collective buffering for this
case.

 In Chart 5 the HYCOM MPI-2 I/O application shows
the most dramatic improvement from the most recent
implementation for collective buffering in MPT 3.2.0.
The current plan is to make the CB=2 implementation the
user default in the MPT 3.3.0 release planned for June
2009 but this will be depend on user experience gained
over the next several weeks.

4. Improvements to MPI_Bcast and
MPI_Reduce

Other new features include performance

improvements for several MPI collectives. Both the
MPI_Bcast and MPI_Reduce algorithms were
significantly enhanced in MPT 3.1.1 and MPT 3.1.2
respectively. Prior to these enhancements, basic tree
algorithms were used for these collectives. In order to
provide better overall performance, and performance that
scales with large systems, we've introduced new SMP-
aware algorithms for these commonly used MPI
collectives.

The new SMP-aware algorithms are the default
algorithms in MPT 3.2.0. The key to these SMP-aware
algorithms is they take into consideration and exploit the
physical location of the ranks involved in the collective
operation. Emphasis is placed on reducing network
communication as much as possible. The focus of this
algorithm is to first manipulate and/or reduce the amount
of data locally on each node. Since this step only
involves local operations, all of the nodes participating in
the collective can do this in parallel. The amount and type
of local operations are dependent on the algorithm
semantics. When global network communication is
required, both the amount of processes involved in the
network communication as well as the amount of data
required to traverse the network is significantly reduced.
This technique can result in a sizeable performance gain

0
20
40
60
80

100
120
140
160

M
B

/s
e

c

1

10

100

1000

S
e

co
n

d
s

PEs

w/o CB

CB=0

CB=1

CB=2

0

1000

2000

3000

4000

M
B

/s
e

c

Chart 3. IOR benchmark 10,000 bytes , MPI-IO API ,

non-power-of-2 blocks and transfers, in this case blocks

and transfers both of 1M bytes and a strided access

pattern. Tested on an XT5 with 32 PEs, 8 cores/node, 16

stripes, 16 aggregators, 3220 segments, 96 GB file

Chart 4. HDF5 format dump file from all PEs. Total file

size 6.4 GB. Mesh of 64M bytes 32M elements, with

work divided amongst all PEs. Note that disabling data

sieving was necessary. Tested on an XT5, 8 stripes, 8

cb_nodes

Chart 5. HYCOM MPI-2 I/O On 5107 PEs, and by

application design, a subset of the Pes(88), do the writes.

With collective buffering, this is further reduced to 22

aggregators (cb_nodes) writing to 22 stripes. Tested on

an XT5 with 5107 Pes, 8 cores/node

CUG 2009 Proceedings 5 of 6

over a simple tree-based algorithm, especially when
scaling to high process counts.

In Charts 6 and 7 the performance improvements for

MPI_Bcast and MPI_Reduce can be seen especially for
message sizes of 65K bytes and smaller where it is at least
15 percent better and nearly 80 percent better for
MPI_Reduce.

5. Other Features

In addition to the above features several other new
features were added. These include:
• Moving from ANL MPICH2 1.0.4p1 to MPICH2

1.0.6p1
• Cpu affinity support

• MPI Thread Safety
• Wildcard matching for filenames when using

MPICH_MPIIO_HINTS environment variable
• Support for the Cray Compiling Environment (CCE)

7.0 compiler
• An MPI Barrier before collectives feature
• Improved performance for on-node very large

discontiguous messages
These will be described briefly below.

The move to MPICH2 1.0.6 fixed a number of

problems, some of which we had already applied to the
MPT 3.0 release on an as needed basis. Many of the new
features added in MPICH2 1.0.6 don’t affect XT users but
it is important that we stay close to the MPICH2 latest
releases to take advantage of improvements they are
making. That being said, we have already found and
fixed several regressions introduced by MPICH2 1.0.5 or
MPICH2 1.0.6. Here are just some of the features in
MPICH2 1.0.5 and MPICH2 1.0.6 listed from the ANL
MPICH2 changes document that may affect XT users:
• Performance improvements for derived datatypes

(including packing and communication) through
loop-unrolling and buffer alignment.

• Performance improvements for MPI_Gather when
non-power-of-two processes are used, and when a
non-zero ranked root is performing the gather.

• MPI_Comm_create now works for
intercommunicators.

• Many other bug fixes, memory leak fixes and code
cleanup.
Support for CPU affinity has been added to this

release. This allows MPI processes to be pinned to a
specific CPU or set of CPUs, as directed by the user via
the new aprun affinity and placement options. Affinity
support is provided for both MPI and MPI/OpenMP
hybrid applications.

Support has been added for wildcard pattern
matching for filenames in the MPICH_MPIIO_HINTS
environment variable. This allows easier specification of
hints for multiple files that are opened with
MPI_File_open in the program. The filename pattern
matching follows standard shell pattern matching rules for
meta-characters ?, \\, [], and *.

Support was added that allows the x86 ABI
compatible mode of the Cray Compiling Environment
(CCE) 7.0 to be compatible with the Fortran MPI
bindings for that compiler. The CCE 7.0 compiler was
released Q408 and has a dependency on the MPT 3.1
release or newer.

In some situations a Barrier inserted before a
collective may improve performance due to load
imbalance. This feature adds support for a new
environment variable MPICH_COLL_SYNC which will
cause a Barrier call to be inserted before all collectives or

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

Message size(bytes)

-20.00%

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

Chart 7. Percent Improvement of SMP-aware Reduce

comparing default MPT 3.2 against default MPT 3.0 on

XT5 with 256 PEs . For this chart we show what would

happen if we didn’t have the cutoff at 128K to switch

back to the original algorithm. See mpi man page for

more info on the MPICH_REDUCE_LARGE_MSG env

variable.

Chart 6. Percent Improvement of SMP-aware Bcast

comparing default MPT 3.2 against default MPT 3.0 on

XT5 with 256 PEs

CUG 2009 Proceedings 6 of 6

only certain collectives. See the “mpi” man page for
more information.

This MPI Thread Safety feature is enabled by setting
the MPICH_MAX_THREAD_SAFETY env variable.
Setting this new env variable specifies which thread-
safety level should be returned by MPI_Init_thread() in
the "provided" argument. The MPI_THREAD_SINGLE,
MPI_THREAD_FUNNELED, as well as the
MPI_THREAD_SERIALIZED cases are high-
performance implementations in the main MPI library.
The MPI_THREAD_MULTIPLE case is not a high-
performance implementation and for performance reasons
is in a separate library that replaces the main MPI library,
therefore the library reference “-lmpich_threadm” must be
included when linking. See the “mpi” man page for more
information.

Finally a new algorithm for the on-node SMP device
to process large discontiguous messages was also added.
The new algorithm allows the use of our on-node Portals-
assisted call that is used in our MPT 3.0.0 single-copy
feature rather than buffering the data into very small
chunks as was previously being done. Some applications
have seen as much as a 3X speedup with discontiguous
messages in excess of 4M bytes.

6. Conclusion

 The Cray MPT software stack continues to improve as
can be seen the number of functional and performance
features added in the MPT 3.1 and MPT 3.2 releases. The
challenges in scaling software with limited access to large
machines will continue to be a challenge in the future but
the technique of over-subscribing to test functionality can
be beneficial in discovering and resolving some issues
prior to the build up of petascale machines. Improving
performance of the MPI-IO collective buffering should
provide noticeable speedups on many applications and
continues to be one of the key areas where we believe
further improvements in the MPT software will be
realized.

About the Authors

Mark Pagel is the manager of the MPT group at Cray Inc.
and can be reached by email at pags@cray.com. Kim
McMahon and David Knaak are key members of the MPT
development team and continue to make many
improvements in the XT MPT software.

