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ABSTRACT: The MPT 3.1.0 release allowed MPI and SHMEM codes to run on over 
150,000 cores and was necessary to help the Cray XT5 at ORNL to achieve over a 
petaflop in performance on HPL. MPT 3.1.0 was also used in quickly getting numerous 
other applications to scale to the full size of the machine. This paper will walk through 
the latest MPT features including both performance enhancements and functional 
improvements added over the last year including improvements for MPI_Allgather, 
MPI_Bcast as well as for MPI-IO collective buffering. New heuristics for better default 
values for a number of MPI environment variables resulting in less application reruns 
will also be discussed.  
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1.   Introduction 

The Cray XT5 systems have been purchased by 
customers with larger and larger total core counts.  This is 
especially true for the Oak Ridge National Laboratory 
machine called Jaguar.  The previous Jaguar machine was 
an XT4 with around 30,000 cores.   In order to support the 
XT5 machine MPI and SHMEM needed to scale to over 
150,000 cores.    In addition to the scaling changes needed 
to support the Cray XT5 at ORNL the MPT 3.1.0 and 
MPT 3.2.0 releases also contain a number of new 
functionality and performance features.  This paper 
describes the experience and changes needed to scale the 
MPT software as well as some of the new features 
recently added. 

2.   Scaling to Over 150,000 cores 

MPI and SHMEM Hard Limit Modifications 
 
 Prior to version 3.1.0, the Cray Message Passing 

Toolkit (MPT) had support for a maximum of 65,536 
ranks for a single MPI job.  Several internal data 
structures and various internal limits needed to be 
modified to allow support for a larger number of MPI 
ranks.   

One of the basic problems was the use of a 16-bit 
field to store the MPI rank number in some key data 
structures associated with internal packet headers and 
matchbits entries.  Originally these MPI rank fields were 
stored as 16-bit fields to help conserve memory in 
latency-sensitive data structures.  It is also probable that 
the original authors did not foresee the need for MPI 
programs running with more than 65,000 MPI ranks.  
However, in order to support the extreme scaling of the 
ORNL XT5 system and beyond, these rank values were 
changed to be full 32-bit (unsigned integer) fields.  This 
change caused some internal data structures to increase in 
size.  However, increasing the size of other internal data 
structures was not feasible.  Because of this, additional 
structure-specific modifications were required to keep the 
size of the structure constant. 

To allow larger MPI rank values in the MPI 
matchbits, reducing the number of bits used for the MPI 
tag field was necessary.  This reduced the maximum MPI 
TAG value from 32 bits to 24 bits.  Likewise the 
MPI_TAG_UB attribute was set to correctly reflect our 
reduced tag space size. 

Modifications were also necessary for a central 
structure used by the MPI portals device driver.  One of 
the internal portals header structures is a 64-bit structure, 
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and cannot be easily expanded.  The MPI rank value 
needs to be stored in this header structure.  Keeping the 
MPI rank value in this structure is required for 
checkpoint/restart capability, since the physical location 
of a rank may change during a restart operation. 

In order to accommodate a larger MPI rank value in 
this limited space, we chose to support an 18-bit rank 
field which allows support for a maximum of 256K 
(262,144) MPI ranks.  However, adding the 2 bits onto 
the rank field required taking away 2 bits from an 
allocation_ID field.  The allocation_ID field, which is 
used as part of the Portals driver messages matching 
ability, was now reduced to 14 bits.  The reduction in size 
of this field required an implementation of a new 
algorithm to manage this resource more precisely.  The 
existing increment/wraparound technique for the 
allocation_ID field was converted to a managed push-
down stack algorithm.  In addition, code was added to 
handle the case when this resource becomes exhausted 
during a job, by integrating this resource into our internal 
state engine flow-control feature.  This allows an MPI job 
to gracefully survive an allocation_ID out-of-resource 
situation should that condition ever arise. 

The changes to SHMEM also modified some hard 
limits for how high SHMEM jobs could scale on XT 
systems.  The new limit is 256,000 SHMEM PEs.  

In order to support higher scaling, changes were 
made to the SHMEM header files that require a recompile 
when using this new version. The new library will detect 
this incompatibility and issue a FATAL error message 
telling you to recompile with the new headers. 

 

Testing at Scale and Additional Modifications 
 
In order to test some of the new scaling modifications 

made to the MPT software, prior to having access to the 
actual XT5 hardware, our plan was to use the existing 
ORNL jaguar XT4 system, and over-subscribe those 
30,000 cpus with multiple MPI processes.  This plan 
required several changes to the existing Application Level 
Placement Scheduler(ALPS) and MPI software.   

A custom version of the ALPS software was 
enhanced to support an 'emulation' mode.  This mode 
allowed an over-subscription of processes to cpus, with a 
maximum of 32 processes on a single node.  In addition, 
the MPT software was modified to support up to 32 
processes per node, and an additional feature was added 
to allow each MPI process to call sched_yield() in the 
appropriate internal progress engines to allow forward 
progress and fairer scheduling when the cpus are over-
subscribed. 

During dedicated jaguar XT4 time, we ran with the 
custom ALPS emulation mode to over-subscribe the 
jaguar nodes by a factor of 5-6x (running 20-24 processes 
on each node).  Since the nodes were heavily over-

subscribed, this exercise was about functionality, not 
performance. 

We were able to run a multi_pingpong MPI test to 
verify functionality.  In this test, the desired number of 
MPI processes are launched, with each process using 
MPI_Send and MPI_Recv functions to ping pong data 
messages back and forth between a pair of processes.  The 
data values were modified and verified for each pass.  
This test was run successfully at several configurations, 
up to 180,000 processes, each sending one thousand 
16384-byte messages between the pairs.  Several MPI 
collective functions were also tested, including  
MPI_Allreduce, MPI_Reduce, MPI_Bcast and 
MPI_Barrier.  These tests all ran successfully at 150,000 
processes, and the resulting data was verified to be 
correct. 

One potential issue was identified during the over-
subscription testing.   The MPT collective optimization 
startup routine was taking a very long time to complete 
during the launch of the over-subscribed MPI jobs.  This 
startup routine needed to be disabled in order to complete 
the tests.  This performance problem turned out to be an 
issue when we tested on real hardware as well and was 
then resolved as will be described later. 

In addition to identifying and fixing some of the hard 
limits for maximum MPI rank value in our software, 
several other existing features were enhanced or expanded 
to aid in application scaling to these extreme process 
counts. 

The first feature we looked at was the default values 
for various MPI environment variables.  In particular, we 
looked closely at the environment variables used to tweak 
the MPI portals device driver, since that is the driver that 
takes the brunt of the scaling work on an XT5. 

In MPT 3.0.0 and prior versions, we used static 
constants for these default values.  However, when 
applications scale up to 150,000 processes, we found that 
the underlying network communication patterns are quite 
different from those network patterns at small process 
counts.  This required us to adjust our MPI portals driver 
assumptions as well, since it was clear that static values 
weren't the right choice. 

To address this, we created a set of auto-scaling MPI 
environment variables.  These are environment variables 
whose default values change as a function of the total 
number of ranks of the given MPI job.  Some of these 
default values increase as the number of ranks increases, 
others decrease.  This feature is designed to allow higher 
scaling of MPT jobs with fewer tweaks to environment 
variables and to help reduce the number of required times 
to run the MPI job.   If necessary, the user is still able to 
override any of these auto-scaling defaults, simply by 
setting these variables to the desired value prior to the job 
launch. 
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The performance of the MPT collective optimization 
startup routine was also investigated at scale.  This was 
identified in the over-subscription work done on the XT4 
system as a potential performance bottleneck.  Analysis of 
the optimization startup routine showed the use of two 
small message MPI_Allgather calls consuming the large 
majority of the time.  Further analysis of the small 
message MPI_Allgather function confirmed that the 
current algorithm was not scaling well on the XT5.  To 
resolve this, the MPI_Allgather algorithm used for small 
messages (2048 bytes or less) was re-written to better suit 
the Portals/Seastar interconnect properties.  For some 
message sizes, this new algorithm resulted in a 12X 
performance boost.  In addition, the new algorithm 
significantly reduced the MPI_Init startup time (including 
the collective optimization initialization) on very large 
jobs.  For example, the start-up time for a 86,000 MPI 
rank job went from 280 seconds down to 128 seconds. 

 

 
 
 
 
 
Another MPT feature that was enhanced to allow for 

better scaling was the allocation of internal MPI message 
headers.  In prior versions, if MPI ran out of headers, the 
program would abort and request the user increase the 
limit via the MPICH_MSGS_PER_PROC environment 
variable.  With the MPT 3.1.0 release, if additional 
message headers are required during program execution, 
MPI dynamically allocates more message headers in 
quantities of MPICH_MSGS_PER_PROC.  The user is 
able to specify the value of MPICH_MSGS_PER_PROC 
via an environment setting if desired. 

 

3.  MPI-IO Collective Buffering  

In addition to these scaling features several new 
features have been recently added.  One of these features 
is MPI-IO collective buffering improvements.  The MPT 
3.0.0 release (and earlier) supported the MPI-IO 
optimization called collective buffering.  The algorithm 

used in that release was the original algorithm that is in 
the ROMIO implementation of MPI-IO, which is the base 
for the Cray implementation of MPI-IO.  The collective 
buffering is controlled by several MPI-IO hints, which are 
documented in the "intro_mpi" man page.  Using the 
hints, collective buffering can be enabled, disabled, or left 
in the default automatic mode. 

After analysis of the I/O performance of some 
benchmarks with MPT 3.0.0, we added a new collective 
buffering algorithm in the MPT 3.1.0 release while 
maintaining the old algorithm.  The environment variable 
MPICH_MPIIO_CB_ALIGN was introduced (by Cray 
for our implementation) to control which algorithm to 
use, with values of 0 or 1.  The new algorithm reduced 
Lustre extent lock contention by dividing the I/O 
workload along Lustre stripe boundaries rather than a 
simple equal division of the workload.  This resulted in 
significant improvement in some applications but not all. 

The MPT 3.2.0 release contains a third algorithm 
which does a better job of dividing the workload such that 
each file stripe is accessed by one and only one 
aggregator across all the collective I/O calls for that file.  
It is controlled by the same environment variable, with a 
value of 2. 

A white paper written by David Knaak and Dick 
Oswald, "Optimizing MPI-IO for Cray XT Applications" 
is available that gives more details. 

Here are 4 sets of benchmark results comparing the 
I/O bandwith in MB/sec for the 4 modes: without 
collective buffering (that is, collective buffering disabled), 
and with collective buffering with algorithms 0, 1, and 2.  
For IOR, there is also a comparison with POSIX shared-
file. 

 
MPI-IO Benchmark descriptions and results 
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Chart 1.    MPT 3.0 default compared with MPT 3.1 with 

optimized  MPI_Allgather  default for 4096pes on an XT5 

(lower is better) 

IMB Allgather Performance 

Chart 2.    IOR benchmark 1,000,000 bytes , MPI-IO API , 

non-power-of-2 blocks and transfers, in this case blocks 

and transfers both of 1M bytes and a strided access 

pattern.  Tested on an XT5 with 32 PEs, 8 cores/node, 16 

stripes, 16 aggregators, 3220 segments, 96 GB file 
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As you can see from Chart 2 collective buffering in 

MPT 3.2.0 (CB=2) is significantly the best performer. 

 
 
 
 
 
 
 
 
In the IOR benchmark test in Chart 3 the MPT 3.2 

version performs about 2 times better than without 
collective buffering and significantly better than the 
default collective buffering. 

 

 
 
 
 
 
 
 
In Chart 4 the original test did not use collective 

buffering and had very poor scaling.  For example, 
without collective buffering, 8000 PEs take over 5 
minutes to dump.  Also very little difference in the 
different implementations of collective buffering for this 
case. 

 
 
 
 

 
 

 
 
 
 
 

 
       In Chart 5 the HYCOM MPI-2 I/O application shows 
the most dramatic improvement from the most recent 
implementation for collective buffering in MPT 3.2.0.  
The current plan is to make the CB=2 implementation the 
user default in the MPT 3.3.0 release planned for June 
2009 but this will be depend on user experience gained 
over the next several weeks. 

4. Improvements to MPI_Bcast and 
MPI_Reduce 

 
Other new features include performance 

improvements for several MPI collectives.  Both the 
MPI_Bcast and MPI_Reduce algorithms were 
significantly enhanced in MPT 3.1.1 and MPT 3.1.2 
respectively.  Prior to these enhancements, basic tree 
algorithms were used for these collectives.  In order to 
provide better overall performance, and performance that 
scales with large systems, we've introduced new SMP-
aware algorithms for these commonly used MPI 
collectives.   

The new SMP-aware algorithms are the default 
algorithms in MPT 3.2.0.  The key to these SMP-aware 
algorithms is they take into consideration and exploit the 
physical location of the ranks involved in the collective 
operation.  Emphasis is placed on reducing network 
communication as much as possible.  The focus of this 
algorithm is to first manipulate and/or reduce the amount 
of data locally on each node.  Since this step only 
involves local operations, all of the nodes participating in 
the collective can do this in parallel. The amount and type 
of local operations are dependent on the algorithm 
semantics.  When global network communication is 
required, both the amount of processes involved in the 
network communication as well as the amount of data 
required to traverse the network is significantly reduced.   
This technique can result in a sizeable performance gain 
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Chart 3.    IOR benchmark 10,000 bytes , MPI-IO API , 

non-power-of-2 blocks and transfers, in this case blocks 

and transfers both of 1M bytes and a strided access 

pattern.   Tested on an XT5 with 32 PEs, 8 cores/node, 16 

stripes, 16 aggregators, 3220 segments, 96 GB file 

 

 

Chart 4.    HDF5 format dump file from all PEs.  Total file 

size 6.4 GB.  Mesh of 64M bytes 32M elements, with 

work divided amongst all PEs.  Note that disabling data 

sieving was necessary. Tested on an XT5, 8 stripes, 8 

cb_nodes  

 

Chart 5.    HYCOM MPI-2 I/O  On 5107 PEs, and by 

application design, a subset of the Pes(88), do the writes.  

With collective buffering, this is further reduced to 22 

aggregators (cb_nodes) writing to 22 stripes. Tested on 

an XT5  with 5107 Pes,  8 cores/node 
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over a simple tree-based algorithm, especially when 
scaling to high process counts.    

 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
In Charts 6 and 7 the performance improvements for 

MPI_Bcast and MPI_Reduce can be seen especially for 
message sizes of 65K bytes and smaller where it is at least 
15 percent better and nearly 80 percent better for 
MPI_Reduce. 

5. Other Features 

In addition to the above features several other new 
features were added.  These include:  
• Moving from ANL MPICH2 1.0.4p1 to MPICH2 

1.0.6p1 
• Cpu affinity support 

• MPI Thread Safety 
• Wildcard matching for filenames when using 

MPICH_MPIIO_HINTS environment variable   
• Support for the Cray Compiling Environment (CCE) 

7.0 compiler 
•  An MPI Barrier before collectives feature  
•  Improved performance for on-node very large 

discontiguous messages  
These will be described briefly below. 
 
The move to MPICH2 1.0.6 fixed a number of 

problems, some of which we had already applied to the 
MPT 3.0 release on an as needed basis.  Many of the new 
features added in MPICH2 1.0.6 don’t affect XT users but 
it is important that we stay close to the MPICH2 latest 
releases to take advantage of improvements they are 
making.  That being said, we have already found and 
fixed several regressions introduced by MPICH2 1.0.5 or 
MPICH2 1.0.6. Here are just some of the features in 
MPICH2 1.0.5 and MPICH2 1.0.6 listed from the ANL 
MPICH2 changes document that may affect XT users: 
• Performance improvements for derived datatypes 

(including packing and communication) through 
loop-unrolling and buffer alignment. 

• Performance improvements for MPI_Gather when 
non-power-of-two processes are used, and when a 
non-zero ranked root is performing the gather. 

• MPI_Comm_create now works for 
intercommunicators. 

• Many other bug fixes, memory leak fixes and code 
cleanup.  
Support for CPU affinity has been added to this 

release.  This allows MPI processes to be pinned to a 
specific CPU or set of CPUs, as directed by the user via 
the new aprun affinity and placement options.  Affinity 
support is provided for both MPI and MPI/OpenMP 
hybrid applications. 

Support has been added for wildcard pattern 
matching for filenames in the MPICH_MPIIO_HINTS 
environment variable.  This allows easier specification of 
hints for multiple files that are opened with 
MPI_File_open in the program.  The filename pattern 
matching follows standard shell pattern matching rules for 
meta-characters ?, \\, [], and *. 

Support was added that allows the x86 ABI 
compatible mode of the Cray Compiling Environment 
(CCE) 7.0 to be compatible with the Fortran MPI 
bindings for that compiler.  The CCE 7.0 compiler was 
released Q408 and has a dependency on the MPT 3.1 
release or newer. 

In some situations a Barrier inserted before a 
collective may improve performance due to load 
imbalance.   This feature adds support for a new 
environment variable MPICH_COLL_SYNC which will 
cause a Barrier call to be inserted before all collectives or 
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Chart 7.   Percent Improvement  of SMP-aware Reduce 

comparing default MPT 3.2 against default MPT 3.0 on 

XT5 with 256 PEs .  For this chart we show what would 

happen if we didn’t have the cutoff at 128K to switch 

back to the original algorithm.  See  mpi man page  for  

more info on the MPICH_REDUCE_LARGE_MSG env 

variable. 

 

Chart 6.   Percent Improvement  of SMP-aware Bcast 

comparing default MPT 3.2 against default MPT 3.0 on 

XT5 with 256 PEs 
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only certain collectives.   See the “mpi” man page for 
more information. 

This MPI Thread Safety feature is enabled by setting 
the MPICH_MAX_THREAD_SAFETY env variable.  
Setting this new env variable specifies which thread-
safety level should be returned by MPI_Init_thread() in 
the "provided" argument. The MPI_THREAD_SINGLE, 
MPI_THREAD_FUNNELED, as well as the 
MPI_THREAD_SERIALIZED cases are high-
performance implementations in the main MPI library. 
The MPI_THREAD_MULTIPLE case is not a high-
performance implementation and for performance reasons 
is in a separate library that replaces the main MPI library, 
therefore the library reference “-lmpich_threadm” must be 
included when linking.  See the “mpi” man page for more 
information.   

Finally a new algorithm for the on-node SMP device 
to process large discontiguous messages was also added.  
The new algorithm allows the use of our on-node Portals-
assisted call that is used in our MPT 3.0.0 single-copy 
feature rather than buffering the data into very small 
chunks as was previously being done.  Some applications 
have seen as much as a 3X speedup with discontiguous 
messages in excess of 4M bytes. 

6. Conclusion 

      The Cray MPT software stack continues to improve as 
can be seen the number of functional and performance 
features added in the MPT 3.1 and MPT 3.2 releases.  The 
challenges in scaling software with limited access to large 
machines will continue to be a challenge in the future but 
the technique of over-subscribing to test functionality can 
be beneficial in discovering and resolving some issues 
prior to the build up of petascale machines.   Improving 
performance of the MPI-IO collective buffering should 
provide noticeable speedups on many applications and 
continues to be one of the key areas where we believe 
further improvements in the MPT software will be 
realized. 
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