
Mark Pagel

pags@cray.com

� New features in XT MPT 3.1 and MPT 3.2

� Features as a result of scaling to 150K MPI ranks

� MPI-IO Improvements(MPT 3.1 and MPT 3.2)

� SMP aware collective improvements(MPT 3.2)

� Misc Features (MPT 3.1)� Misc Features (MPT 3.1)

� Future Releases

� Support for over 256,000 MPI ranks

� Support for over 256,000 SHMEM PEs

� Automatically-tuned default values for MPI env vars

� Dynamic allocation of MPI internal message headers� Dynamic allocation of MPI internal message headers

� Improvements to start-up times when running at high

process counts(40K cores or more)

� MPI_Allgather significant performance improvement

80000

100000

120000

MPT 3.0 default

T
im

e
 (

m
ic

ro
se

co
n

d
s)

Over 12X improvement for

128 bytes

MPT 3.0 compared with MPT 3.1 with optimized
MPI_Allgather on by default for 4096pes on an XT5

(lower is better)

0

20000

40000

60000

0 1 2 4 8

1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

MPT 3.1 default

T
im

e
 (

m
ic

ro
se

co
n

d
s)

Message size (bytes)

� Wildcard matching for filenames in MPICH_MPIIO_HINTS (MPT 3.1)

� MPI-IO collective buffering alignment(MPT 3.1 and MPT 3.2)

� This feature improves MPI-IO by aligning collective buffering file

domains on Lustre boundaries.

� The new algorithms take into account physical I/O boundaries and

the size of the I/O requests. The intent is to improve performance the size of the I/O requests. The intent is to improve performance

by having the I/O requests of each collective buffering node

(aggregator) start and end on physical I/O boundaries and to not

have more than one aggregator reference for any given stripe on a

single collective I/O call.

� The new algorithms are enabled by setting the

MPICH_MPIIO_CB_ALIGN env variable.

� Additional enhancements in just released MPT 3.2

MPI-IO API , non-power-of-2 blocks and transfers, i n this case blocks and
transfers both of 1M bytes and a strided access patt ern. Tested on an
XT5 with 32 PEs, 8 cores/node, 16 stripes, 16 aggre gators, 3220
segments, 96 GB file

1200

1400

1600

1800

M
B

/S
ec

0

200

400

600

800

1000

1200

M
B

/S
ec

MPI-IO API , non-power-of-2 blocks and transfers, i n this case blocks and
transfers both of 10K bytes and a strided access pat tern. Tested on an
XT5 with 32 PEs, 8 cores/node, 16 stripes, 16 aggre gators, 3220
segments, 96 GB file

M
B

/S
ec

100

120

140

160

M
B

/S
ec

0

20

40

60

80

100

On 5107 PEs, and by application design, a subset of the Pes(88), do the
writes. With collective buffering, this is further reduced to 22 aggregators
(cb_nodes) writing to 22 stripes . Tested on an XT5 with 5107 Pes, 8
cores/node

3000

3500

4000

M
B

/S
ec

0

500

1000

1500

2000

2500

3000

Total file size 6.4 GiB. Mesh of 64M bytes 32M eleme nts, with work divided
amongst all PEs. Original problem was very poor sc aling. For example, without
collective buffering, 8000 PEs take over 5 minutes to dump. Note that disabling
data sieving was necessary. Tested on an XT5, 8 str ipes, 8 cb_nodes

100

1000

w/o CB

CB=0

S
ec

on
ds

PEs

1

10

100 CB=0

CB=1

CB=2

� MPI_Bcast has been optimized to be SMP aware

� The performance improvement varies depending on message size

and number of ranks but improvements of between 10% and 35%

for messages below 128K bytes have been observed.

� MPI_Reduce has been optimized to be SMP aware

� Performance improvements of over 3x for message sizes below

128K have been observed. A new environment variable

MPICH_REDUCE_LARGE_MSG can be used to adjust the cutoff for

when this optimization is enabled. See the man page for more

info.

20.00%

25.00%

30.00%

35.00%

40.00%

Percent Improvement of SMP-aware Bcast in

MPT 3.2 compared to default Bcast in MPT 3.0

for 256 pes on an XT5 HD

0.00%

5.00%

10.00%

15.00%

20.00%

Message size(bytes)

80.00%

100.00%

Percent Improvement of SMP-aware Reduce comparing
default MPT 3.2 against default MPT 3.0 on XT5 with 256 PEs

For this chart we show what would happen if we didn ’t have the cutoff at
128K to switch back to the original algorithm. See mpi man page for
more info on the MPICH_REDUCE_LARGE_MSG env variable .

-20.00%

0.00%

20.00%

40.00%

60.00%

Message size (bytes)

� Move from MPICH2 1.0.4p1 to MPICH2 1.0.6p1

� Cpu affinity support

� Support for the Cray Compiling Environment (CCE) 7.0

� MPI Barrier before collectives

� MPI Thread Safety

� MPI SMP device improvements for very large discontiguous

messages

� Improvements have been made to the

MPICH_COLL_OPT_OFF env variable(MPT 3.2)

� Bugfix updates every 4-8 weeks

� MPT 3.3 (scheduled for June 18, 2009)

� Collective buffering enhancements from MPT 3.2 enabled as

default

� MPT 4.0 (scheduled for Q4 2009)� MPT 4.0 (scheduled for Q4 2009)

� Merge to ANL MPICH2 1.1

� Support for the MPI 2.1 Standard

� Additional MPI-IO Optimizations

� Lustre ADIO device

� Istanbul Support

� Better performing MPI thread-safety (fine grain locking)

� Man pages

� intro_mpi

� Intro_shmem

� aprun

� MPI-IO white paper� MPI-IO white paper

(ftp://ftp.cray.com/pub/pe/download/MPI-IO_White_Paper.pdf)

� MPI Standard documentation

(http://www.mpi-forum.org/docs/docs.html)

� MPICH2 implementation information

(http://www-unix.mcs.anl.gov/mpi/mpich2)

� Move from MPICH2 1.0.4p1 to MPICH2 1.0.6p1

� Performance improvements for derived datatypes and

MPI_Gather

� MPI_Comm_create now works for intercommunicators.

� Many other bug fixes, memory leak fixes and code cleanup.

� Fixes for regressions in MPICH2 1.0.6p1 that were fixed in MPICH2 � Fixes for regressions in MPICH2 1.0.6p1 that were fixed in MPICH2

1.0.7.

� Cpu affinity support

� This allows MPI processes to be pinned to a specific CPU or set of

CPUs, as directed by the user via the new aprun affinity and

placement options. Affinity support is provided for both MPI and

MPI/OpenMP hybrid applications.

� Support for over 64,000 MPI ranks

� New limit for how high MPI jobs can scale on XT systems. The new

limit is 256,000 MPI ranks.

� Support for over 32,000 SHMEM PEs

� New limit for how high SHMEM jobs can scale on XT systems. The

new limit is 256,000 SHMEM PEs. new limit is 256,000 SHMEM PEs.

� In order to support higher scaling, changes were made to the

SHMEM header files that require a recompile when using this new

version. The new library will detect this incompatibility and issue a

FATAL error message telling you to recompile with the new

headers.

� Automatically-tuned default values for MPICH environment

variables

� Higher scaling of MPT jobs with fewer tweaks to environment

variables.

� User can override by setting the environment variable.

� The env variables affected are: MPICH_MAX_SHORT_MSG_SIZE, � The env variables affected are: MPICH_MAX_SHORT_MSG_SIZE,

MPICH_PTL_OTHER_EVENTS MPICH_PTL_UNEX_EVENTS,

MPICH_UNEX_BUFFER_SIZE

� Dynamic allocation of MPI internal message headers

� Apps no longer abort if it runs out of headers, and require

MPICH_MSGS_PER_PROC environment variable to be

increased. Now MPI dynamically allocates more message headers

in quantities of MPICH_MSGS_PER_PROC

� Improvements to start-up times when running at high process

counts(40K cores or more)

� This change significantly reduces our MPI_Init startup time on very

large jobs. For example for a 86,000 PE job, start-up time went

from 280 seconds down to 128 seconds.

� MPI_Allgather significant performance improvement

� New MPI_Allgather collective routine which scales well for small � New MPI_Allgather collective routine which scales well for small

data sizes. The default is to use the new algorithm for any

MPI_Allgather calls with 2048 bytes of data or less. Can be

changed by setting a new env varariable called

MPICH_ALLGATHER_VSHORT_MSG.

� Some MPI functions use allgather internally and will now be

significantly faster. For example MPI_Comm_split.

� Initial results show improvements of around 2X around 16 cores to

over 100X above 20K cores.

� Wildcard matching for filenames in MPICH_MPIIO_HINTS

� Allows easier specification of hints for multiple files that are

opened with MPI_File_open in the program. The filename

pattern matching follows standard shell pattern matching rules

for meta-characters ?, \\, [], and *.

� Support for the Cray Compiling Environment (CCE) 7.0 � Support for the Cray Compiling Environment (CCE) 7.0

compiler

� Allows the x86 ABI compatible mode of the Cray Compiling

Environment (CCE) 7.0 to be compatible with the Fortran MPI

bindings for that compiler.

� MPI Barrier before collectives

� In some situations an MPI_Barrier inserted before a collective

may improve performance due to load imbalance. This feature

adds support for a new environment variable MPICH_COLL_SYNC

which will cause a MPI_Barrier call to be inserted before all

collectives or only certain collectives.collectives or only certain collectives.

� To enable this feature for all MPI collectives, set

MPICH_COLL_SYNC to 1 or a comma separated list of collectives.

See man page for more info.

� MPI-IO collective buffering alignment

� This feature improves MPI-IO by aligning collective buffering file

domains on Lustre boundaries.

� The new algorithms take into account physical I/O boundaries

and the size of the I/O requests. The intent is to improve

performance by having the I/O requests of each collective performance by having the I/O requests of each collective

buffering node (aggregator) start and end on physical I/O

boundaries and to not have more than one aggregator reference

for any given stripe on a single collective I/O call.

� The new algorithms are enabled by setting the

MPICH_MPIIO_CB_ALIGN env variable.

� Additional enhancements in just released MPT 3.2

� MPI Thread Safety

� The MPI Thread Safety feature provides a high-performance

implementation of thread-safety levels MPI_THREAD_SINGLE,

MPI_THREAD_FUNNELED, and MPI_THREAD_SERIALIZE in the

main MPI library.

� The MPI_THREAD_MULTIPLE thread-safety level support is in a � The MPI_THREAD_MULTIPLE thread-safety level support is in a

separate "mpich_threadm" library and is not a high-performance

implementation.

� Use "-lmpich_threadm" when linking to MPI_THREAD_MULTIPLE

routines.

� Set MPICH_MAX_THREAD_SAFETY environment variable to the

desired level.

� MPI SMP device improvements for very large discontiguous messages

� This feature enables a new algorithm for the on-node SMP device

to process large discontiguous messages. The new algorithm

allows the use of our on-node Portals-assisted call that is used in

our MPT 3.0 single-copy feature rather than buffering the data

into very small chunks as was currently being done.

� Some applications have seen as much as a 3X speedup with

discontiguous messages in excess of 4M bytes.

� Initial MPT 3.1 – released on 12/11/08

� MPT 3.1.1 – released on 2/19/09

� 744991 turning on Argonne memory debugging causes RMA

tests to fail

� 745025 Memory leakage in a communication routine when

using self defined MPI-datatypes.

� 745198 MPI communication in SMP mode seems to block

single sided comms

� 746416 data type mismatch in MPI-IO sometimes causes I/O

stats to be displayed

� 747035 IMB-EXT fails intermittently with MPT 3

� 747183 Application CTH reports being killed by OOM Killer

when compiled with MPT 3.0 or 3.1

� MPT 3.1.2 – released on 3/19/09

� 747752 Unsupported datatype error from MPI library

� 747708 Seg fault in program using RMA mpi_get and

mpi_send/mpi_recv

Current outstanding issues:� Current outstanding issues:

� 744363 GAMESS claims to have run out of memory and be

killed by oom when it should not

� Update releases every 4-8 weeks

� MPI_Bcast has been optimized to be SMP aware and this optimization is

enabled by default. The performance improvement varies depending on

message size and number of ranks but improvements of between 10% and

35% for messages below 128K bytes have been observed.

� MPI_Reduce has been optimized to be SMP aware and this optimization is

enabled by default. The SMP aware algorithm performs significantly better enabled by default. The SMP aware algorithm performs significantly better

than the default algorithm for most message sizes. Performance

improvements of over 3x for message sizes below 128K have been observed.

A new environment variable MPICH_REDUCE_LARGE_MSG can be used to

adjust the cutoff for when this optimization is enabled. See the man page for

more info.

� Improvements have been made to the MPICH_COLL_OPT_OFF environment

variable by allowing a finer-grain switch to enable/disable the optimized

collectives. The user may now:

� Enable all of the optimized collectives (this is the default)

� Disable all the opt collectives (export MPICH_COLL_OPT_OFF=0)

� Disable a selected set of the optimized collectives by providing a comma-

separated list of the collective names separated list of the collective names

e.g. export MPICH_COLL_OPT_OFF=MPI_Allreduce,MPI_Bcast

Note: If a user chooses to disable any Cray-optimized collective, they will

get the standard MPICH2 algorithm.

� Bugs fixed:

� 748815 - segfault in MPIDI_CRAY_search_posted

� MPI-IO performance improvements for collective

buffering on MPI collective writes

� This optimization is enabled by setting the MPI-IO hint

romio_cb_write to "enable" and setting the environment

variable MPICH_MPIIO_CB_ALIGN to 2.

Other values of this environment variable are 0 and 1, where � Other values of this environment variable are 0 and 1, where

0 is for the original algorithm in MPT 3.0 and earlier and 1 is

for the algorithm introduced in MPT 3.1.

� The MPICH_MPIIO_CB_ALIGN section of the "mpi" man page

gives more details. If you are not already using collective

buffering, read the MPICH_MPIIO_HINTS section for more

information.

