
HPCC STREAM and RA in Chapel:
Performance and Potential∗

Steven J. Deitz Bradford L. Chamberlain Samuel Figueroa David Iten

Cray Inc.
chapel info@cray.com

Abstract

Chapel is a new parallel programming language under development at Cray Inc. as part of the DARPA High Productivity
Computing Systems (HPCS) program. This paper reports on recent progress to implement Chapel for distributed-memory
computers. It provides a brief overview of Chapel and then discusses the concept of distributions in Chapel. Perhaps the most
promising abstraction in Chapel, the distribution is a mapping of the data in a program to the (potentially distributed) memory
in a computer. The paper presents preliminary results for two simple benchmarks, HPCC STREAM Triad and HPCC RA,
that make use of distributions and other features of the Chapel language. The highlights of this paper include a presentation of
performance results (STREAM performance of 5.68 TB/s on 4096 cores of an XT4), a detailed discussion of the core components
of the STREAM and RA benchmarks, a thorough analysis of the performance achieved by the current compiler, and a discussion
of future work.

1 Introduction

Chapel is a new parallel programming language being devel-
oped by a small team at Cray Inc. as part of its participa-
tion in DARPA’s High Productivity Computing Systems pro-
gram (HPCS). Our goal is to produce a language and com-
piler that makes it easier to prototype and develop general
high-performance computing applications on both single pro-
cessor and distributed memory systems.

While Chapel has proved to be an interesting language
for writing both serial and multi-threaded programs, it re-
ally begins to shine when used to develop programs that run
on distributed-memory systems. The programming model
for Chapel differs from most common approaches, including
Unified Parallel C (UPC), Co-Array Fortran (CAF), and C or
Fortran with MPI.

In these other models, program execution starts in main()

in every process. In Chapel, program execution starts in
main(), but only in a single process. This seemingly minor
distinction in program start-up leads to fundamentally differ-
ent views of parallel data and execution within the program-
ming model. To understand these distinctions, let’s look at
the MPI, CAF, and UPC models briefly.

When using MPI [7], the programmer must partition the
program’s data across processes with few abstractions. In the
MPI program, each processor must be directed to first deter-

∗This material is based upon work supported by the Defense Advanced
Research Projects Agency under its Contract No. NBCH3039003. Perfor-
mance on the Cray XT4 was measured by a grant of HPC time by Oak Ridge
National Laboratory.

mine how many processors are in play and its relationship to
the other processors. Then, to allocate the data within the pro-
gram, each processor needs to use this information to divide
the problem space amongst all of the processess and read in
or generate its portion of the input data. For the computation,
each processor needs to determine what portion of the prob-
lem to compute. All communication between the processors
is written by making calls into the MPI library to pass mes-
sages between them. The programmer must thus view every
aspect of the problem in per-process fragments of data and
control flow.

Co-Array Fortran [6] improves the situation significantly
but still requires the programmer to fragment both the data
and the computation. The co-dimension of an array, the key
abstraction in CAF, is useful for setting up an array that is
accessible from every processor, but the data still needs to
be partitioned by the programmer. Thus, even though CAF
supports a global address space that makes it easier to ac-
cess remote data, the data must still be partitioned across the
processors by the programmer. For the computation, the pro-
grammer is responsible for ensuring that each process com-
putes its own portion of the problem, thus fragmenting the
computation as well.

In addition to supporting a global address space like CAF,
Unified Parallel C [5] adds two abstractions that handle par-
titioning of data and computation in some simple cases. For
data partitioning, UPC supports distributed one-dimensional
arrays in a block-cyclic round-robin layout. However, if a
problem’s data is not one-dimensional or otherwise amenable
to this data distribution, which is narrow in its applicabil-

CUG 2009 Proceedings



ity, then the programmer must revert to fragmenting the data
within the global address space. For computations, UPC sup-
ports a parallel loop that can subdivide a one-dimensional it-
eration space. Even with these abstractions, however, the pro-
grammer is responsible for managing and synchronizing the
work of each processor with every other.

In Chapel, the program begins with a single logical thread
of control. This single thread of control is key to how a
Chapel programmer can view the data and computation. Par-
allelism is orthogonal to the processors, so the creation of
parallelism serves as a natural point of synchronization. This
is a stronger model than just supporting a global address
space. We say that Chapel supports a global-view program-
ming model, meaning that it provides abstractions that man-
age the details of partitioning the data and computation across
the processors. With fragmented models like MPI, CAF, and
UPC, partitioning data and computation across processors is a
big challenge. Abstractions for distributed multi-dimensional
arrays with a layout that can be specified by the programmer
(or supplied in a library) allow the distributed data to be re-
garded as a whole, rather than in parts. Partitioning of the
computation is also handled via these same abstractions; thus
programmers can separate their concerns for the implementa-
tion on multiple processors from the computation itself.

In the past year, we’ve started to implement Chapel on dis-
tributed memory systems, allowing us to begin work on issues
of remote communication and scaling. This paper reports on
this progress and captures where we are in the implementa-
tion at this specific point. We present performance results
for our implementations of two of the HPCC benchmarks [4]:
STREAM and RA.

This paper is organized as follows: In Section 2, we dis-
cuss Chapel’s language support for multi-locale task paral-
lelism, i.e., task parallelism across processesors with (poten-
tially) distributed memory. Data parallelism in Chapel is built
on top of this more fundamental language support. In Sec-
tion 3, we discuss Chapel’s abstractions for multi-locale data
parallelism: domains, arrays, and distributions. For a more
thorough treatment of the syntax and semantics of Chapel,
refer to the Chapel specification [2]. In Sections 4 and 5, we
discuss Chapel versions of the HPCC STREAM Triad and
HPCC RA benchmarks. We conclude in Section 6.

2 Multi-Locale Task Parallelism
In Chapel, the definition of locale is specific to a machine,
but it is typically defined to be a unit in a system that includes
memory and processors such that all of the processors in that
unit have roughly uniform access to any given memory loca-
tion. For example, a locale may refer to a workstation in a
cluster of workstations or to a node in a cluster of SMPs.

Chapel supports multi-locale programs with a locale type
and an on statement, along with some intrinsics and oper-
ators. However, none of these constructs introduce concur-
rency. Task parallelism is independent of, but compatible
with, the locale type and on statement.

These basic concepts offer the programmer great flexibil-
ity and form the basis of the more advanced abstractions in
Chapel that support data parallelism.

2.1 The Locale Type
The locales available to a Chapel program are values of a
type called locale. The locale type supports several stan-
dard methods including id which returns a unique inte-
ger between zero and one less than the number of locales
on which the program is executing. (Other methods in-
clude name, which returns a machine-dependent locale name,
and physicalMemory(), which returns the amount of local
memory on the locale.)

2.1.1 Execution Context

When a multi-locale Chapel program is executed, the pro-
gram has access to the following standard constants:

config const numLocales: int;
const LocaleSpace = [0..numLocales-1];
const Locales: [LocaleSpace] locale;

The configuration constant numLocales specifies the num-
ber of locales that were requested at program start-up. This
is fixed throughout execution and is usually specified on a
command line via the -nl, or --numLocales, flag. (A con-
venient feature of Chapel is that a program can contain many
configuration constants that can be set on the command line.)
The domain LocaleSpace contains the indices from 0 to
numLocales-1 and defines the array Locales. The ele-
ments of the Locales array are the locale values on which
the program is executing.

2.1.2 Querying a Locale

In a Chapel program, the locale on which any variable (or,
more generally, lvalue) exists is easy to query. The expres-
sion expr.locale evaluates to the locale on which expr is
allocated. For example, to find out where the ith element of
array A exists, a programmer can write A(i).locale.

2.2 The On Statement
To execute code on a remote locale, Chapel supports the on
statement. The on statement evaluates an expression to de-
termine a locale and then executes a statement block on that
locale. For example, the simple code

on Locales(1) do
compute();

results in the compute function being executed on locale 1.
The expression part of the on statement, say expr, is

implicitly evaluated as expr.locale as discussed in Sec-
tion 2.1.2. Thus it is easy to execute a task where the element
of an array is stored. For example, to call a function compute
on the ith element of array A on the locale on which it is
stored, one could write

2

CUG 2009 Proceedings



on A(i) {
compute(A(i));

}

Chapel supports a partitioned global address space that per-
mits variables to be accessed regardless of locale. Consider
the simple example below:

on Locales(1) {
var x: int = 1;
on Locales(2) do
x = x + 1;

}

This code increments the value of x on locale 2; x is stored
on locale 1.

2.3 Task Parallelism

The abstractions discussed above do not introduce any par-
allelism even though they involve multiple processors. In
Chapel, parallelizing a code is orthogonal to executing a code
on multiple locales. (Chapel programs can thus be written for
both multi-core and multi-processor systems.) Two abstrac-
tions for creating parallel tasks are begin and coforall.

2.3.1 The Begin Statement

The begin statement spawns a new task. There is no implicit
join, and the execution of the spawning task continues with
the next statement. Synchronization between tasks can be
handled via synchronization variables or the sync statement
as described in the language specification [2].

The begin statement can be coupled with the on statement
to spawn a non-blocking remote task. For example, the code
in Section 2.2 can be modified to increment x in a remote task
as follows:

on Locales(1) {
var x: int = 1;
on Locales(2) do begin {
x = x + 1;

}
}

2.3.2 The Coforall Loop

The coforall loop is a typical loop except that each iteration
of the loop is executed in a new task. Unlike the task that
executes a begin statement, the task that initiates a coforall
loop will wait for each of its spawned tasks to complete before
continuing to the next statement.

One common idiom uses the coforall loop to spawn a task
on each locale. Consider the following code:

def main() {
coforall loc in Locales {
on loc {
fragmentedMain();

}
}

}

When this idiom is used in main(), as above, a Chapel pro-
gram can support the fragmented model of MPI, CAF, and
UPC. However, this style does not benefit as greatly from
Chapel’s global-view abstractions.

2.4 Implementation
The current implementation of multi-locale task parallelism
in Chapel is built on top of other technologies. The Chapel
compiler is source-to-source, translating Chapel to C. Multi-
threading is supported via POSIX Threads (pThreads). Re-
mote memory operations and remote task invocation is sup-
ported via GASNet.

3 Multi-Locale Data Parallelism
Distributions are perhaps Chapel’s most promising abstrac-
tion. By changing the arrays in a program to use one distribu-
tion over another, a programmer can impact how the data is
partitioned across the locales and which computations end up
on which locales. In this section, we will first discuss domains
and arrays, Chapel’s data-parallel abstractions. Next we will
discuss distributions, first from the perspective of using them
and then from the perspective of defining them.

3.1 Domains and Arrays in Chapel
In Chapel, data parallelism is supported via arrays. Chapel
extends the abstraction of the ZPL region [1], a first-class in-
dex set over which arrays are declared and computations are
controlled, calling it a domain.

3.1.1 Arithmetic Domains and Arrays

An arithmetic Chapel domain is defined by a rank, an index
type, and rank-number of ranges where each range defines a
sequence of integers with a lower bound, an upper bound, and
a stride. In addition, whether or not any of the ranges can be
defined by a non-unit stride is part of its type. For example,
consider the following three domains:

const TableSpace: domain(1,int(64)) = [0..m-1];
var World: domain(2) = [1..n,1..n];
var BigWorld: domain(2) = [0..n+1,0..n+1];

The constant TableSpace is a one-dimensional domain con-
taining 64-bit integer indices from zero to m-1. The vari-
ables World and BigWorld are two-dimensional domains
that each contain indices composed of two 32-bit integers.
(The default integral type for index types for non-distributed
arithmetic domains is 32 bits.) The World domain contains
the indices (i, j) for all 1 ≤ i, j ≤ n; the BigWorld domain
contains the indices (i, j) for all 0 ≤ i, j ≤ n + 1.

An array is defined by a domain and an element type. For
example, consider the following array declarations:

var T: [TableSpace] uint(64);
var A,B,C: [BigWorld] real;

3

CUG 2009 Proceedings



The variable T is a one-dimensional array of elements of 64-
bit unsigned integer type. It is linked to the TableSpace do-
main which defines the indices for which T stores an element.
The variables A, B, and C are two-dimensional arrays of ele-
ments of floating-point type linked to the domain BigWorld.
Note that changes to BigWorld will ripple to these three ar-
rays. For example, if the size of BigWorld quadruples (i.e.,
changes to [1..2*n,1..2*n]), then each array will quadru-
ple as new elements are allocated.

3.1.2 Other Domains and Arrays

In addition to arithmetic domains and arrays, Chapel supports
sparse, associative, and opaque domains and arrays. Sparse
domains and arrays support sparse computations by contain-
ing a subset of the indices in a bounding domain. Associative
domains and arrays support dictionary-style data structures
(perhaps with hash-table implementations) by containing a
set of indices of any scalar type. Opaque domains and arrays
support graph-based data structures.

These other kinds of domains and arrays are beyond the
scope of this paper but it is worth mentioning that the distri-
bution abstraction presented here also applies to them. They
permit Chapel’s data-parallel mechanisms to apply to a more
varied set of data structures than standard arithmetic arrays
and Cartesian index spaces.

3.1.3 The Forall Loop

The forall loop is the key abstraction to introducing data par-
allelism into a program. All domains and arrays support par-
allel iteration (as well as serial iteration via the for loop). For
domains, this means iterating over their indices. For arrays,
this means iterating over their elements. For example, we can
specify a data-parallel computation in which we compute the
element-wise sums of A and B and store the results in C in
many ways, including the following:

1. We can iterate over the domain and index into the arrays
to do the actual assignment:

forall i in BigWorld do
C(i) = A(i) + B(i);

2. We can iterate over the domain, destructure the index
into its column and row components, and index into the
arrays to do the actual assignment:

forall (i,j) in BigWorld do
C(i,j) = A(i,j) + B(i,j);

3. We can iterate over all three arrays simultaneously and
assign the elements directly:

forall (a,b,c) in (A,B,C) do
c = a + b;

4. We can use an implicit forall loop via operator promo-
tion and whole array assignment:

C = A + B;

This is implemented via parallel iteration over the arrays;
it is similar to (3).

5. We can use slicing to limit the computation to the in-
terior indices (those defined by World) and then use an
implicit forall loop via operator promotion and whole ar-
ray assignment:

C(World) = A(World) + B(World);

In a sense, all domains and arrays in Chapel are distributed.
If a distribution is not specified, the default distribution ap-
plies and this default distribution maps all of the indices to a
single locale. The next section explains how to distribute do-
mains and arrays to multiple locales using either standard or
user-defined distributions.

3.2 Using Chapel Distributions
Distributions are classes in Chapel that can be instantiated
with the new keyword to create an instance of the distribution.
Domains can then be linked to instances of distributions in the
same way that arrays are linked to domains. Then all domains
and arrays linked to that distribution share it. Thus if arrays
A and B are linked, via potentially different domains, to the
same distribution, they share the same distribution, i.e., A(i)
will be stored on the same locale as B(i).

3.2.1 Example: Using the Block Distribution

For example, reconsider the declarations of domain
BigWorld and arrays A, B, and C:

var BigWorld: domain(2) = [0..n+1,0..n+1];
var A,B,C: [BigWorld] real;

We can use the Block distribution to partition this domain
and its arrays across the locales by modifying the declarations
as follows:

config const tpl = 4;
var Dist = new Block(2,int(32),[1..n,1..n],tpl);
var BigWorld: domain(2) distributed Dist

= [0..n+1,0..n+1];
var A,B,C: [BigWorld] real;

The Block distribution is defined by a rank and index type
used to define its domains, a bounding box, a specified num-
ber of tasks to use on each locale, and an array of locales. The
bounding box for the Block distribution is used to define the
mapping from indices to locales such that the bounding box
is partitioned into roughly equal-sized blocks across the lo-
cales. The configuration constant tpl (tasks per locale) is
used to specify the number of tasks to use on each locale. (By
making it a configuration constant, we can vary it at runtime.)
The default array of locales is Locales, the global constant
that specifies every locale accessible to the program. Since it
is not specified in the above code, this is the assumed array of
locales.

4

CUG 2009 Proceedings



For the Block distribution, the rank of the array of locales
must be one or must match the rank of the distribution. If
the rank does not match the distribution, then the locales are
copied into an array of appropriate rank such that each dimen-
sion is assigned some number of locales. The Block distri-
bution currently uses a heuristic to try to make the allocation
of locales to dimensions even. For example, if the above code
is run on 6 locales, the locales will be reorganized into a 3×2
array; on 16 locales, into a 4× 4 array.

3.2.2 Future Distributions

One of our implementation goals is to support several com-
mon distributions as part of the standard Chapel program-
ming environment. Other distributions can be written by and
shared amongst Chapel programmers. The following list in-
cludes a small selection of the standard distributions, other
than Block, that we expect will become part of the Chapel
environment:

1. Cyclic: In each dimension, the indices are distributed
round-robin to the locales.

2. BlockCyclic: In each dimension, uniformly sized blocks
of indices are distributed round-robin to the locales.

3. CutBlocks: In each dimension, li − 1 positions are spec-
ified that divide that dimension, i, across its li locales.

4. Scatter: Each index is distributed to a locale based on
the values in an array.

5. RecursiveBisection: The index space is divided in the
first dimension, then both parts are divided in the second
dimension, then all four parts are divided in the third
dimension, etc., but the dimensions are iterated over in
a round-robin fashion. This distribution is particularly
useful for sparse arrays where load-balancing concerns
make the divisions non-equal.

Note that there will be a different set of distributions for
supporting associative and opaque arrays.

3.2.3 Distribution Advantages

Distributions allow for a valuable separation of concerns. The
programmer can focus on the correctness of an array com-
putation and then later plug in different distributions. In
the fragmented programming model, changing a code from a
block distribution to a cyclic distribution requires a complete
rewrite. With the global-view programming model, it can be
as easy as changing the type of distribution. The complexity
is thus hidden in the implementation of the distribution.

3.3 Defining Chapel Distributions
The implementation of a distribution is not meant to be an
easy undertaking. That said, we expect there to be a (rela-
tively small) core interface that needs to be implemented and

a (very large) extended interface that may be implemented to
improve performance. Moreover, the artifact of a distribu-
tion can be reused in many applications and cleanly separates
the concerns that we expect applications programmers to en-
counter.

A distribution defines the implementation of domains and
arrays (what data they store and where). It is defined in a
class. The domain and array data structures associated with
this distribution are also defined in a class. These domain
and array classes are used indirectly; the programmer writes
codes with domains and arrays as described in Section 3.1,
and the compiler transforms that code to use the classes.

3.3.1 Example: Defining the Block Distribution

The block distribution is a class that stores a target array of
locales and a bounding box as described in Section 3.2. It
is also specialized to the rank and index type that define it.
Along with the block distribution class, classes are defined for
implementing arithmetic domains and arrays over this distri-
bution.

All of these classes inherit from classes in a standard hi-
erarchy. This hierarchy—with leaf classes associated with
the Block distribution’s classes, Block, BlockDom, and
BlockArr—is listed as follows:

BaseDist
Block

BaseDom
BaseArithmeticDom
BlockDom

BaseSparseDom
BaseAssociativeDom
BaseOpaqueDom

BaseArr
BlockArr

Indentation indicates a “derived from” relationship.

3.3.2 Block Distribution Core Interface

The Block distribution must define a set of methods that com-
pose a core interface. The compiler can then insert calls to
these methods when processing domains and arrays declared
over the Block distribution.

For example, the distribution class includes, but is not lim-
ited to, the following methods:

• newArithmeticDomain supports arithmetic domains.
The compiler generates code to call this function when
domains are linked to this distribution in their declara-
tion.

• ind2loc takes an index and returns the locale where an
element of one of its distributed arrays would exist.

The domain class includes, but is not limited to, the follow-
ing methods:

5

CUG 2009 Proceedings



• buildArray supports arrays declared over this domain.
The compiler generates code to call this function when
arrays are linked to this domain in their declaration.

• these is an overloaded iterator that supports both serial
and parallel iteration over the domain.

• dim takes an integer and returns the range in this dimen-
sion.

The array class includes, but is not limited to, the following
methods:

• this takes a domain index and returns the correspond-
ing element in the array.

• these is an overloaded iterator that supports both serial
and parallel iteration over the array.

• reallocate takes a domain of the same type and dis-
tribution as its domain and reallocates itself over this do-
main.

Distributions are defined using the constructs we have al-
ready discussed. They can be written entirely in Chapel us-
ing its task-parallel and locality-aware constructs. The com-
piler thus can transform high-level data-parallel array code
into low-level task-parallel fragmented code.

3.3.3 Extended Interface Discussion

The extended interface defines methods that are optional. If
they exist, the compiler may generate calls to them in order
to optimize the Chapel program. For example, the extended
interface includes, but is not limited to, methods that support
the following functionality:

• Replicating the classes across the locales in order to op-
timize accesses from any given locale.

• Accessing or iterating over an array in a way that the
compiler can prove is aligned.

• Managing halos (i.e., ghost cells or fluff) so that array
accesses to elements that border local elements are opti-
mized.

• Optimizing array assignment from arrays with specific
distributions.

The first item, called privatization, is discussed further in
Section 4.2.1. The second item, alignment detection, is dis-
cussed further in Section 4.2.2.

4 HPCC STREAM in Chapel
The HPCC STREAM Triad benchmark implements the sim-
ple vector computation a = b + α · c where a, b, and c are
vectors and α is a scalar. The problem size is large, roughly
1/4 – 1/2 of the system memory, requiring the arrays to be
partitioned across the locales. Distributed arrays allow for an
elegant implementation.

4.1 STREAM Computation Core
The core of the STREAM benchmark in Chapel consists of
one or two lines of computation and a handful of declarations.

4.1.1 Declarations

Our version of STREAM defines a distribution, a domain,
and three arrays as follows: (These declarations are similar
to those in Section 3.2.1.)

config const m: int(64) = ...;
config const tpl = ...;
const BlockDist = new Block(1, int(64), [1..m], tpl);
const ProblemSpace: domain(1, int(64))
distributed BlockDist = [1..m];

var A, B, C: [ProblemSpace] real(64);

The configuration constant m specifies the problem size.
The Chapel benchmark uses the locale.physicalMemory
method to set m if it is not specified at program start-up. The
configuration constant tpl is passed to the Block distribu-
tion so that we can vary the number of tasks per locale that
are used for parallel array and domain iteration.

4.1.2 Main Loop

Our version of STREAM computes the main kernel as fol-
lows:

forall (a, b, c) in (A, B, C) do
a = b + alpha * c;

While we could have written any of the alternatives
enumerated in Section 3.1.3 including the one-liner
A = B + alpha * C, we use the above statement because
it has the best performance due to the current state of the im-
plementation. All of the alternatives disable the alignment
detection optimization discussed in Section 4.2.2. However,
in the future, this optimization will be made more robust so
that it applies to all of the alternatives.

This is a high-level implementation of STREAM. Using
the interface of the Block distribution, the compiler is able to
transform this high-level code into a low-level task-parallel
code, partitioning the data and computation.

4.2 STREAM Optimization Notes
The STREAM benchmark is straightforward but a simple
translation of the Chapel would not result in acceptable per-
formance. There are two optimizations that we’ve imple-
mented, along with tuning of the Block distribution, that are
absolutely crucial to STREAM and probably most other pro-
grams. We call these optimizations privatization and align-
ment detection.

4.2.1 Privatization

In a simple translation of Chapel, distributions, domains, and
arrays are all entities that are logically stored on the locale on
which they are declared, even though the domain and array

6

CUG 2009 Proceedings



link to data that is stored on other locales. Access to any of
these entities must thus go through the single locale on which
they were declared. This is a tremendous bottleneck. Privati-
zation is an optimization in which these entities are replicated
across the locale. They can then be accessed from any locale
without communication.

Privatization is implemented via the extended interface of
the distribution as discussed in Section 3.3.3. The Chapel
runtime keeps track of all privatized objects. Each privatized
domain or array is given a unique integer that the runtime
can then map to the appropriate replicated class on any given
locale. When a domain or array that supports privatization
is declared, this unique integer is generated and the compiler
inserts a call to the privatize() method on every locale
(other than the one on which the domain or array is declared)
to create the replicated instances. This makes accesses quick
from any locale.

4.2.2 Alignment Detection

Alignment detection optimizes the case in which a Chapel
program iterates over multiple domains or arrays that share
the same distribution instance. In the STREAM kernel, the
arrays A, B, and C all share the same distribution. This means
that the blocks of each array that we iterate over will be
aligned. So the compiler can generate calls to specialized it-
erators that rely on the blocks of array elements being local.
If the distributions were different, this may not be the case,
because iterating over one array may result in blocks of ele-
ments that are not local to another array. The net result is that
the compiler can emit faster code because it can assume there
is no communication required to access the array elements in
a block.

4.3 STREAM Performance
To evaluate the performance of the Chapel code, we exam-
ine the speedup curve to see if we can obtain linear speedup.
Figure 1 shows the performance of our version of STREAM
executed on a Cray XT4 installed at Oak Ridge National Lab-
oratory. This particular machine has 7,832 compute nodes,
each of which contains a quad-core 2.1 GHz AMD Opteron
processor and 8 GB of memory. We use up to 1,024 compute
nodes.

The STREAM benchmark should be expected to achieve
linear speedup since the only overhead is that needed to syn-
chronize between iterations of the computation kernel. The
performance of the Chapel code is not quite linear because of
the overhead involved in spawning the remote tasks that do
the actual computation. We discuss future work to address
the overhead in the next section. That said, it is worthy to
note that near-linear scaling is achieved despite the high-level
nature of the Chapel code and the indirect implementation via
the distribution class.

The performance achieved, when varying the number of
tasks per locale, peaks at 4 tasks per locale on fewer than
eight locales; above eight locales, the performance peaks at 3

tasks per locale. Since the system has four cores, we don’t see
performance improve on more than 4 tasks per locale. That
it peaks with 3 tasks per locale is due to a detail of the GAS-
Net implementation; we use a polling thread to handle remote
communication on every locale.

4.4 STREAM Optimization Potential
The STREAM benchmark performs well but there is nothing
inherent in the Chapel code that should keep it from achieving
linear speedup. There are two optimizations, task tree and
SPMD detection, that we expect will address the remaining
overhead.

4.4.1 Task Tree

The code that implements the forall loop of the main kernel
is encapsulated in iterators in the Block distribution, but it’s
basic structure is essentially equivalent to the following code:

coforall loc in Locales do
on loc do
coforall t in 1..tpl do
for i in myPartOfTheWholeDomain do
// local computation

Note that the idiom of using an on statement as the only state-
ment in a coforall loop is optimized such that the system
does not create all of the tasks locally and then do the re-
mote spawns. Instead, these steps are combined to produce
properly synchronized code from a serial loop.

It is this serial loop, however, that is the main issue. The
loop becomes a performance bottleneck on many locales. The
idea of the task tree is to parallelize this loop by creating a tree
in which remote tasks spawn other remote tasks. If the locale
that starts the loop just spawns a few tasks, then the rest of the
spawning can be done concurrently.

4.4.2 SPMD Detection

Even with a task tree, starting up new tasks will introduce
logarithmic overhead into the program. The idea of SPMD
(Single Program, Multiple Data) detection is to identify data-
parallel regions of code and implement them using a model
more akin to MPI, UPC, and CAF in which we start remote
tasks on each locale and use synchronization and communi-
cation primitives to coordinate them.

5 HPCC RA in Chapel
The HPCC RA benchmark tests the performance of making
global pseudo-random updates to a large array of data. The
benchmark tests the performance of many small communica-
tions.

5.1 RA Computation Core
The core of the RA benchmark in Chapel consists of a single
loop that implements the random updates and a handful of

7

CUG 2009 Proceedings



declarations. The code relies on the same Block distribution
used in our version of STREAM.

5.1.1 Declarations

Our version of RA defines two distributions, two domains,
and a single array. The first distribution and domain are used
for the array of data; the second distribution and domain are
used to specify the update space. By default, it is four times
the size of the table. These declarations are as follows:

config const m: uint(64) = ...;
config const tpl: int = ...;
const
TableDist =
new Block(1,uint(64),[0..m-1],tpl),

UpdateDist =
new Block(1,uint(64),[0..N_U-1],tpl),

TableSpace: domain(1,uint(64))
distributed TableDist = [0..m-1],

Updates: domain(1,uint(64))
distributed UpdateDist = [0..N_U-1];

var T: [TableSpace] uint(64);

The constant m specifies the size of the table, T. The config-
uration constant N_U specifies the number of random updates
done in the benchmark. Note that we use the same config-
uration constant tpl, as in STREAM, to vary the number of
tasks per locale that the distribution should use when iterating
over domains and arrays.

5.1.2 Main Loop

The main loop of RA uses simultaneous iteration over the
Updates domain and a parallel random number iterator,
RAStream, that efficiently yields sequences of random num-
bers. Note that the first iterator controls the distribution of
work. Thus each locale handles a roughly even number of
updates because the domain Updates is evenly distributed
across the locales using the Block distribution. We use an on
statement to do the update on the locale that owns this portion
of the array. Our version of RA computes the main loop as
follows:

forall (i, r) in (Updates, RAStream()) do
on T.domain.dist.ind2loc(r & (m-1)) do
T(r & (m-1)) ˆ= r;

There are many other ways to write RA in Chapel. Some
of these alternatives are discussed in Section 5.4.

5.2 RA Optimization Notes
Our implementation of RA in Chapel benefits immensely
from privatization since the table needs to be accessed on all
locales. In addition, the RA benchmark benefits from remote
value forwarding.

5.2.1 Remote Value Forwarding

An unoptimized version of the main loop in RA requires com-
munication that can be easily optimized away. Consider the

accesses to r within the body of the on statement. Since r is
stored on the locale from which the on statement was invoked,
the access to r requires a remote read. Moreover, there are
two such accesses.

Remote value forwarding is an optimization in which the
value associated with a variable is forwarded to a spawned
task rather than the address of the value. Our current imple-
mentation of remote value forwarding requires that the vari-
able is only read within the on statement and that there is no
synchronization within the on statement that would change
the program semantics if the value is read early. Future work
involves making this optimization flow sensitive so that it can
apply in more cases.

As an aside, note that STREAM benefits from remote value
forwarding as well; the benefits, however, apply to code em-
bedded in the domain and array class iterator implementa-
tions.

5.3 RA Performance

We have more optimization work to do to make RA competi-
tive with the reference version of the benchmark. To evaluate
our current status, we have executed the Chapel code on the
Cray XT4 at ORNL already mentioned in Section 4.3.

Figure 2 shows the results. The performance graph on the
top clearly shows that the performance of RA on one locale,
especially when optimized by the compiler under the assump-
tion that the code will only be executed on one locale, is better
than that achieved on between two and 64 locales. That is, we
only see better performance on at least 128 nodes. This indi-
cates first and foremost that there is significant overhead in
the Chapel implementation. There are some relatively easy
optimizations that we can make that should be able to im-
prove performance greatly (decreasing message sizes, etc.).
Other ideas are discussed in the next two sections.

All that said, one should expect to see this dip because
when the data is distributed across two or more locales, there
are remote accesses that will take more time. The efficiency
graph on the left shows that the Chapel implementation fails
to scale when compared to the best one-locale performance.
On the other hand, the graph on the right shows that the
Chapel code is scaling better when compared from eight lo-
cales onward.

5.4 Alternatives of RA in Chapel

There is much experimentation left to do with the RA bench-
mark. We plan to compare our current version with alterna-
tives that use non-blocking updates with a begin statement,
that aggregate updates, and that use remote updates without
an on statement.

5.4.1 Non-Blocking Updates

A non-blocking version of RA changes the main loop as fol-
lows:

8

CUG 2009 Proceedings



Figure 1: Graphs showing the performance and efficiency of the HPCC STREAM benchmark in Chapel. These graphs depict
the same data. The graph on the left is included for completeness because we found it useful to use such a graph when
discussing the HPCC RA results. The graph on the left shows the raw performance (GB/s) achieved by the Chapel version
of the STREAM benchmark while varying the number of locales and the number of tasks per locale (TPL). The graph on the
right shows the efficiency of the performance when compared to linear scaling of the best 1-locale performance. The results
show near-linear scaling of the Chapel program.

Figure 2: Graphs showing the performance and efficiency of the HPCC RA benchmark in Chapel. These graphs depict the
same data but we found that examining all three makes it easier to understand the results. The graph on the top shows the
raw performance (GUP/s) achieved by the Chapel version of the RA benchmark while varying the number of locales and the
number of tasks per locale (TPL). The graphs on the bottom show the efficiency of the performance when compared to linear
scaling of the best 1-locale performance and when compared to linear scaling of the best 2-locale performance. The results
show a steep drop in performance when increasing the number of locales to eight, but near-linear scaling beyond eight locales.

9

CUG 2009 Proceedings



sync {
forall (i, r) in (Updates, RAStream()) do
on T.domain.dist.ind2loc(r & (m-1)) do begin
T(r & (m-1)) ˆ= r;

}

Note the introduction of the begin statement. This has the
effect of spawning a non-blocking task for each update. The
sync statement is used to wait until all of the spawned tasks
complete.

The potential advantage to this variation is that it overlaps
computation and communication. In order to make this scale,
we need to improve our implementation of the sync statement.
One possible implementation is to use the Dijkstra-Scholten
algorithm. [3]

5.4.2 Aggregating Updates

An important optimization that has been implemented in the
reference version of the RA benchmark is aggregation. In this
approach, the loop is written to examine multiple updates,
group them according to locale, and then do them all at once.

5.4.3 Remote Updates

Another way to write this in Chapel is to simply remove
the on-statement. In this case, the update itself is done re-
motely. In order to optimize this alternative, we need to look
at caching as described in Section 5.5.1.

5.5 RA Optimization Potential
The RA benchmark will allow us to explore a variety of opti-
mizations depending on how it is written in Chapel. In this
section, we’ll discuss two such optimizations. First, we’ll
discuss remote descriptor caching which will amortize array
accesses of remote data. Second, we’ll discuss an optimiza-
tion that will allow a simplification of our version of the RA
benchmark.

5.5.1 Remote Descriptor Caching

In our current implementation of the Block distribution, ac-
cessing a remote element of an array involves more than just
a single remote access. This is because we need to access the
base address where the data exists on the remote locale and
additional information stored in the remote local array class to
compute the offset from this address used to locate the actual
array element.

One optimization is to cache these values such that they
can be reused. In that case, additional accesses of elements
that exist on the same remote locale will require exactly one
access.

5.5.2 Locale Query Optimization

In the main loop of the RA benchmark, we write the following
line of code:

on T.domain.dist.ind2loc(r & (m-1)) do

This is meant to compute the locale on which T(r&(m-1))

exists. It would be cleaner to write simply:
on T(r & (m-1)) do

However, doing so with our Block distribution requires mak-
ing a number of additional remote accesses. This is a result
of running the access function and remotely reading informa-
tion stored in a remote local array class in order to compute
the exact address of the remote data. However, we don’t need
the exact address. We only need to determine the locale. This
is completely local as written above.

To implement this locale query optimization, we plan to
use a compiler rewrite to convert locale accesses related to
domains and arrays into more optimal code. For example, in
the case above, we expect the compiler to effectively change
the latter code into the former.

6 Summary
In this paper, we presented an overview of Chapel’s task-
parallel and data-parallel abstractions for programs that can
execute on multiple nodes of a distributed-memory system.
We’ve described a snapshot of the current implementation of
Chapel and presented Chapel versions of two benchmarks,
HPCC STREAM and RA, offering discussions of optimiza-
tions and performance.

The task-parallel multi-locale abstractions of Chapel can
be used on their own to write general high-performance
computing applications. When coupled with the data-
parallel multi-locale abstractions, Chapel provides a high-
productivity parallel programming environment for use on
distributed memory systems. The library of distributions that
we envision should make it easier for less sophisticated users
to write applications on large-scale supercomputers.

As mentioned throughout this paper, we expect many de-
tails to change in the near future. That said, the code segments
and interfaces listed in this paper are compatible with version
0.9.44 of Chapel. Chapel is available on SourceForge.net.

Acknowledgments
We would like to recognize the following people for their
prior work and impact on the Chapel language and its
implementation—Robert Bocchino, David Callahan, Roxana
Diaconescu, James Dinan, Shannon Hoffswell, Mary Beth
Hribar, Mark James, Mackale Joyner, John Plevyak, Andy
Stone, Wayne Wong, and Hans Zima. In addition, we would
like to thank Sung-Eun Choi for reading and commenting on
an earlier draft of this paper.

References
[1] Bradford L. Chamberlain, E Christopher Lewis, Calvin

Lin, and Lawrence Snyder. Regions: An abstraction

10

CUG 2009 Proceedings



for expressing array computation. In Proceedings of the
ACM International Conference on Array Programming
Languages, 1999.

[2] Cray Inc., Seattle, WA. Chapel Specification.
(http://chapel.cs.washington.edu).

[3] Edsger W. Dijkstra and C. S. Scholten. Termination de-
tection for diffusing computations. Information Process-
ing Letters, 11(1):1–4, August 1980.

[4] Jack Dongarra and Piotr Luszczek. HPC chal-
lenge awards: Class 2 specification. Available at:
http://www.hpcchallenge.org, June 2005.

[5] Tarek El-Ghazawi, William Carlson, Thomas Sterling,
and Katherine Yelick. UPC: Distributed Shared-Memory
Programming. Wiley-Interscience, June 2005.

[6] Robert W. Numerich and John Reid. Co-array Fortran
for parallel programming. SIGPLAN Fortran Forum,
17(2):1–31, 1998.

[7] Marc Snir, Steve Otto, Steve Huss-Lederman, David
Walker, and Jack Dongarra. MPI: The Complete Refer-
ence, volume 1. Scientific and Engineering Computation.
MIT Press, 2nd edition, September 1998.

11

CUG 2009 Proceedings




