
An Evaluation of UPC in the Ludwig Application

Alan Gray
EPCC, The University of Edinburgh, James Clerk Maxwell Building,

Mayfield Road, Edinburgh, EH9 3JZ, UK

April 29, 2009

Abstract

Unified Parallel C (UPC) is an extension to the C programming language offering the use of shared data
structures to facilitate parallel programming and potentially improve performance, and is fully supported on modern
systems such as the Cray X2. The introduction of UPC functionality to key sections of the Ludwig Lattice Boltzmann
application is seen to reduce complexity by circumventing the need for data structure halo cells, and associated
message passing halo-swap routines. A straightforward adaptation involving direct use of UPC shared structures
is observed to have a substantial negative impact on performance, mainly attributable to shared pointer operation
overheads. Optimisation involving use of regular C pointers (obtained from casting) where possible is found to
largely eliminate the performance gap, with the remaining difference likely attributable to overheads concerning the
remaining necessary shared array accesses.

KEYWORDS: UPC, Ludwig, Lattice Boltzmann, X2

1 Introduction

Modern HPC architectures typically comprise multiple
units connected together via a high performing intercon-
nect, where each unit, or node, contains one or several
processing cores and memory. Applications which wish
to utilise multiple nodes to solve a single problem must
incorporate a mechanism for each process to acquire re-
mote data. The Message Passing Interface (MPI) library,
which has become the de-facto standard, allows data to
be transferred between nodes via the sending and receiv-
ing of packets of data (messages). This has proved to be
an extremely effective solution but is not without caveats,
notably

• the need for complex coding to manage the message
passing

• performance overheads associated with the under-
lying 2-way communication

The advent of novel Partitioned Global Address Space
(PGAS) programming methods address these issues. At
the application level, PGAS languages allow remote data
to be accessed in a similar way to local data, avoiding the

need for message passing. This allows for the minimisa-
tion of code complexity and performance overheads (but
the latter depends on the hardware used and associated
PGAS implementation).

Chapel, X10, Fortress and Titanium are all new
PGAS languages currently in a developmental stage. The
former 3 were reviewed in an HPCx technical report [1],
and the latter in a recent EPCC MSc dissertation [2].
Unified Parallel C (UPC) and Co-Array Fortran (CAF)
are extensions to the C and Fortran languages which in-
corporate PGAS methods, and full implementations are
currently available. In particular, UPC and CAF are
supported at the compiler and hardware level on current
Cray vector systems. UPC was chosen as the subject of
this study over CAF for reasons of portability: CAF is
currently only supported by a handful of compilers (most
notably on Cray systems), whereas UPC is available on
a range of systems (as discussed in section 2.1.1).

For development of new HPC applications, or par-
allelisation of existing serial applications, the choice of
UPC over MPI will avoid the need to manage the passing
of messages and therefore will reduce the development
effort. However, there are many applications which al-
ready use MPI. For these, a conversion to UPC may be

1

CUG 2009 Proceedings



beneficial for both performance and maintenance reasons.
This study investigates the conversion of an existing

application, the Ludwig Lattice Boltzmann code, from
MPI to UPC. It was beyond the scope of the study to
perform a full conversion, but the ability of UPC and
MPI to co-exist in the same application allows for a con-
version of key sections, giving reliable indications as to
how a fully converted UPC code would compare to the
original MPI version, in terms of both complexity and
performance.

Section 2 gives an introduction to UPC and the Lud-
wig Application. The conversion work undertaken and
resulting performance comparisons are presented in Sec-
tion 3.

2 Background

2.1 UPC

An introduction to UPC was given in an HPCx technical
report [3]. This section recaps some basic concepts in the
context of the current work.

Note that the term process will be used to refer to a
single task (e.g. MPI task or UPC thread) with associ-
ated local memory. The number of processes per physical
node will depend on the architecture, but is generally not
relevant to the discussion.

The main feature offered by UPC is the ability to use
a single data structure, declared using the shared qual-
ifier, which is distributed (in terms of physical storage)
between processes but fully accessible by any process. As
an example, consider an 8 element integer array to be de-
composed between 2 processes. The standard technique
would be to declare a 4-element array private to each of
the processes:

int p[4];

In order for a process to access non-local data, an addi-
tional data structure or extension of p, along with calls
to a message passing library, are required. If it is suf-
ficient to have access to only neighbouring cells (which
is commonly the case), halo cells can be added to the
boundaries of the array, which becomes

int p[6];

where p[1] to p[4] contain the interior data and the halo
cells p[0] and p[5] (assuming periodic boundary condi-
tions) contain a copy of remote data obtained via “Halo
Swapping” routines containing MPI calls.

The alternative UPC declaration

shared [8/THREADS] int s[8];

creates an array for which data storage is physically dis-
tributed between the 2 processes but is indexed globally
(and thus has 8 elements rather than 4) such that any
element can be accessed by any process. The THREADS
variable is automatically set to the number of UPC
threads (i.e. 2 in this case): the [8/THREADS] part of
the declaration instructs that a regular decomposition is
performed (with the first half of the array distributed to
the first process, and the second half to the second). An
access to s[0] would, if made on the first process, involve
a local memory access but if made on the second process
involve a remote memory access.

Figure 1 gives an illustration of these private and
shared data structures, where halo cells have been added
to the private arrays. It is clear that the shared structure
offers a substantial reduction in programming complexity,
since direct remote memory accesses remove the need for
both halo cells and routines to pass messages containing
remote data.

2.1.1 Platforms

Availability and performance of UPC is extremely depen-
dent on the platform and compiler. Use of UPC involves,
at the application level, direct accessing of remote data.
One way for a compiler to implement this is to translate
the UPC to calls to a message layer existing on the sys-
tem software stack. For example, on IBM machines such
as HPCx [7], available compilers using this technique [3]
include the proprietary (alpha version) XLUPC (which
translates to LAPI) [4] and the cross platform Berkeley
UPC [5] (which can translate to LAPI or MPI). The latter
is available across a range of platforms (and can translate
to a number of network layers).

New architectures, however, such as the Cray X2, have
global addressing capabilities and as such support lan-
guages such as UPC directly without the need for trans-
lation to message layers [6]. Clearly, this eliminates over-
heads. UPC code is compiled by the standard C compiler.
Such support is expected to become more widespread in
future architectures.

The X2 component of the HECToR service [8], con-
taining 112 vector processors, was used for the develop-
ments and performance analysis contained in this paper1.

1It should be noted that the fact that this architecture has vector rather than scalar processors is irrelevant here (since the study is
concerned with communication rather than serial performance).

2

CUG 2009 Proceedings



p[1] p[2] p[3] p[4]

s[0] s[1] s[2] s[3] s[4] s[5] s[6] s[7]

p[0] p[5] p[1] p[2] p[3] p[4]p[0] p[5]

globally accessible memory

private memory

Process 0 Process 1

globally accessible memory

private memory

Figure 1: A conceptual layout of private and shared array data in memory for a 1-D array which has 8 elements of data dis-
tributed between 2 processes. Each process has a locally addressed private array p[] located in private memory, and the arrows
represent data transfer from boundary interior elements to halo cells during halo-swapping. The globally addressed shared array
s[] has no halo cells since direct memory access is possible to globally accessible memory.

2.2 The Application: Ludwig

The LUDWIG application, currently active in research,
uses Lattice-Botzmann models to enable the simulation
of the hydrodynamics of complex fluids in 3-D [9]. A
comprehensive overview of the code, and Lattice Boltz-
mann methods in general, is given in a recent EPCC MSc
Dissertation [10].

The main data structure in Ludwig is a 3-D lattice
which is decomposed between the processes, such that
each process has a local sub-lattice. The actual decom-
position depends on the number of processes; for example,
by default a 1283 lattice is decomposed in all 3 dimensions
on 64 processes (such that the local sub-lattice size is 323),
but only decomposed in 2 dimensions on 4 processes (such
that the local sub-lattice size is 642× 128). The 3-D sub-
lattice is linearised into an array named site, where each
element contains a struct of type Site, containing phys-
ical variables2. The site array also contains elements
corresponding to halo cells in each of the X,Y and Z di-
rections, which are populated with edge data from neigh-
bouring processes (in a similar fashion to the simplified
illustration in Figure 1).

The left of Figure 2 provides a simplified illustra-
tion of the code’s operation. Included in the initialisa-
tion stage is the dynamic allocation of the site array.
For each timestep, the bulk of computation resides in
the Phi Gradients, Collision and Propagation stages.

The Phi Gradients and Collision stages involve only
local on-site data operations (i.e. no halo cells of site
are accessed). The Propagation stage involves non-local
data operations: each lattice site is updated based on
data from neighbouring sites, therefore a Halo Swap rou-
tine (which uses MPI) is needed to update the halo cells in
advance of this section. The Halo Swap accounts for the
vast majority of the application’s communication over-
head, but it should be noted that MPI is also used in
several other places (including management of I/O).

Figure 3 shows a timing breakdown for the main
timestep loop for a range of processing core counts. It
can be seen that the Collision stage is most dominant,
followed by the Propagation and Phi Gradient stages
which contribute roughly equally in terms of computation
time. The percentage contribution from the Halo Swap
stage is seen to increase with increasing core count, as
expected.

3 Integration of UPC into Ludwig

A full conversion from MPI to UPC was beyond the
scope of this work, but the ability of UPC to coexist
with MPI in the application allows for a gradual con-
version, and in particular it is possible to perform inves-
tigative tests by converting only critical sections of the
code: the Propagation section in this case (as discussed

2The Site structure contains a velocity density value for each forward and backward X, Y and Z direction, for each of two fluids.

3

CUG 2009 Proceedings



Figure 2: Pseudocode illustration of the original (left) and modified (right) Ludwig Application.

in the previous section). The strategy was to introduce a
new shared data structure for use in Propagation, whilst
maintaining the standard private structures and existing
MPI functionality such that the converted section can be
tested as part of a fully functioning application. In or-
der to do this, it was necessary to develop functionality
to map indices and copy data between the private and
shared structures.

Firstly, a new UPC shared array to mirror the site
data was created:

shared [SVOL/THREADS] Site s_site[SVOL];

where SVOL is defined to be the total volume (across all
processes) needed to store all interior Site data (not-
ing that halo cells are not required). Each process has
affinity to SVOL/THREADS elements corresponding to the
equivalent site private sub-lattice on that process (again
neglecting halo cells)3.

It was then required to create functionality for copy-
ing data between site and s_site. Firstly, a routine was
created to map the (local) indices of each private site
array to the corresponding (global) index of the s_site
array. To do this, it is necessary to know the process ID
on which the site element is resident, and local offset.
For interior site indices, the mapping is fairly straight-

forward since the corresponding s_site element will have
affinity to the same process. However, the halo site ele-
ments correspond to s_site elements resident on remote
processes, requiring knowledge of neighbouring process
IDs.

To illustrate, in reference to the simplified case in Fig-
ure 1, the mapping would be

sindex = local_interior_size*process_ID
+ index - halo_size

where sindex and index are the shared (s_site)
and private (site) indices respectively, and
local_interior_size=4 while halo_size=1 in this case.
For interior site indices, the process_ID is simply the lo-
cal process ID. For example, index=1 on process_ID=0
gives sindex=0 while index=1 on process_ID=1 gives
sindex=4.

For halo site indices, however, process_ID corre-
sponds to the neighbouring rather than local process, e.g.
the halo p[5] site on process_ID=0 corresponds to the
shared s[4] element, which is resident on process 1.

The mapping was developed for the more com-
plicated 3-D case, where existing MPI functionality
within the code was used to obtain neighbouring pro-
cess IDs. For efficiency, this routine was used to create

3It is worth noting that the original code offers flexibility in that the lattice volume is read in from an input file at runtime, with the
sub-lattice volume subsequently determined using MPI calls and the allocation done dynamically. This allows for a single executable which
can be used for a variable number of processes and lattice sizes. In contrast, this UPC version requires the lattice volume SVOL to be
hardwired in the code, and the number of THREADS declared on the compile line. This may be overcome using shared pointers and shared
memory allocation functions [11].

4

CUG 2009 Proceedings



Ludwig Timestep Loop Profile

0%

20%

40%

60%

80%

100%

4 8 16 32 64

Processing Cores

Halo Swap

Phi Gradients

Propagation

Collision

Figure 3: A profile of the main stages of the ludwig timestep loop displayed as a percentage of total loop runtime over a range
of processing core counts.

an lookup table array named sindex[]. This then al-
lowed the development of get_site_from_shared() and
put_site_in_shared() routines to copy data between
the site and s_site arrays. This indice mapping and
data copying functionality allows for the Propagation
code section to operate using the shared structure (and
direct remote memory accesses) rather than the local
structures (with halo cells and halo swaps).

To illustrate the conversion, consider an update to
part of the site structure. The original code resembled

loop over index
site[index].f[0] = site[index-1].f[0]+...;

To use the equivalent shared structure, the code is mod-
ified in a simple manner:

loop over index
s_site[sindex[index]].f[0]

=s_site[sindex[index-1]].f[0]+...;

which must then be sandwiched between
put_site_in_shared() and get_site_from_shared()
calls to integrate with the rest of the application.

The Propagation section was converted in this man-
ner4. The adapted application can be illustrated as in
the right of Figure 2. The qualatative benefits of UPC
are immediately clear: the message passing Halo Swap
section is not needed, and thus complexity is reduced5.

The original and adapted codes were run across a
range of processing core counts, with the timings of
the Propagation section, plus associated communica-
tion, recorded. For the UPC code, all communication
is performed directly within Propagation, but for MPI
the communication is done externally during the Halo
Swap section. Therefore, comparing the combined timing
for Propagation plus Halo Swap (original code) verses
Propagation alone (UPC) gives a reliable indication of
how a full UPC code would perform in comparison to the
original MPI version.

It is seen, from Figure 4, by comparing the (unopti-
mised) UPC performance results against the original MPI
(Propagation plus communication) results, that the over-
head in Propagation from use of UPC shared structure
is considerably higher than use of the private arrays plus
MPI halo swaps (across a range of core counts): the orig-
inal performance is up to a factor of 1.8 higher than the

4In practice, it was possible to avoid the get site from shared() call by actually using the site structure on the left hand side of the calls,
since in this case all non-local accesses occur on the right hand side.

5Of course, as discussed this version includes additional functionality to copy data between local and shared arrays, and map corre-
sponding indices etc. However, this added complexity is would not be required in a version of the code which had been fully converted to
UPC.

5

CUG 2009 Proceedings



Ludwig Propagation and Communication

1

10

100

1 10 100
Processing Cores

T
im

e
 (

s
)

MPI: Propagation

MPI: Propagation + Comms

UPC: Propagation (inc. Comms)

UPC: Propagation Opt. (inc. Comms)

Figure 4: The time taken for the propagation section of the Ludwig code plus associated communication. For the MPI version
(diamonds), the communication is done during a separate halo swap routine, whereas for the UPC version the communication is
done directly in the propagation section. Shown are results for a UPC version where accesses are done through direct indexing
of shared arrays (triangles), and an optimised version using regular pointers where possible (squares).

adapted UPC code for this section.

As already discussed, the one-sided remote memory
access communications underlying UPC are supported
at the hardware level on this system whereby MPI re-
quires 2-way communication, so communication is an un-
likely candidate for this UPC overhead. Indeed, it was
found that the performance difference is instead largely
attributable to the pointer operations involved with di-
rect access of shared array elements. UPC Shared point-
ers internally differ from regular C pointers, and are typ-
ically more costly to dereference. An optimised version
of the UPC code was created such that the memory ac-
cesses were performed using regular C pointers, obtained
by casting from the shared pointers, for those updates
(of non-boundary sites) which do not depend on remote
data. Boundary updates require remote data through
shared array indexing, as before. This adds complexity
to the code, but as is shown in Figure 4 such an optimisa-
tion vastly reduces the performance difference. The MPI
version still outperforms the optimised UPC version by a

factor of 1.03-1.2: it is expected that this is due to the
remaining shared pointer operation overheads.

4 Conclusions

Novel PGAS programming paradigms aim to address the
complexity and performance issues relating to applica-
tions on modern massively parallel systems. UPC, a
PGAS extension of C, which is comparatively mature and
portable, offers the use of shared data structures allow-
ing a more simplistic mechanism to access remote data
than the current de-facto MPI library. UPC functional-
ity was added to the Ludwig Lattice Boltzmann applica-
tion. Although a full conversion was beyond the scope
of the work, the ability of UPC and MPI to coexist al-
lowed for the key section of the code to be converted to
use UPC rather than MPI communications, and perfor-
mance comparisons to be made. The use of UPC reduced
complexity by allowing data structure halo cells and as-

6

CUG 2009 Proceedings



sociated message passing halo-swap routines to be re-
placed by more intuitive direct remote memory accesses.
A straightforward adaptation involving direct use of UPC
shared data structures was found to perform significantly
worse than the MPI version, but it was found that this
was not primarily attributable to communication perfor-
mance degradation, but instead to overheads involving
shared pointer operations. An optimised version using
regular C pointers (obtained via casting) where possi-
ble was found to perform more comparably to, but still
slightly worse than, the MPI version. It is expected that
the remaining performance difference is due to overheads
with pointer operations involving the remaining (neces-
sary) shared array accesses. It is clear that the Ludwig
application is very sensitive to this issue, at least at the
modest core counts available to this study; it would be
interesting to obtain results for larger core counts.

5 Acknowledgements

Kevin Stratford (EPCC) provided access to, and use-
ful discussions regarding, the Ludwig Application. Ja-
son Beech-Brandt (Cray) provided helpful assistance and
suggestions regarding the optimisation of the UPC code.

References

[1] “Chapel, Fortress and X10: Novel Languages for
HPC”, M. Weiland, HPCx Technical Report 0706,
2007,
http://www.hpcx.ac.uk/research/hpc/
technical reports/HPCxTR0706.pdf

[2] “Parallel Programming in Titanium An Evaluation
of Usability and Performance”, Florian Scharinger,

EPCC MSc Dissertation, 2007, Available from
http://www.epcc.ed.ac.uk/msc/dissertations/2006-
2007/

[3] “Unified Parallel C: UPC on HPCx”, Ian Kirker,
Adrian Jackson, HPCx Technical Report 0709, 2007,
http://www.hpcx.ac.uk/research/hpc/
technical reports/HPCxTR0709.pdf

[4] IBM XLUPC compiler documentation,
http://www.alphaworks.ibm.com/tech/upccompiler

[5] Berkely UPC web site, http://upc.lbl.gov/

[6] “The Cray BlackWidow: A Highly
Scalable Vector Multiprocessor”, Denis
Abts et at., Supercomputing 2007 paper,
http://sc07.supercomputing.org/schedule/
pdf/pap392.pdf

[7] HPCx service website, http://www.hpcx.ac.uk

[8] HECToR service website, http://www.hector.ac.uk

[9] Ludwig - A general purpose Lattice-Boltzmann code
on the Cray T3E J. C. Desplat et al.
http://citeseer.ist.psu.edu/411388.html

[10] “Message-passing for Lattice Boltz-
mann”, Erlend Davidson, EPCC MSc
Dissertation, 2008, Available from
http://www.epcc.ed.ac.uk/msc/dissertations/2007-
2008

[11] “UPC Language Specification, v1.2, including UPC
collectives and UPC-IO libraries”, available from
http://upc.lbl.gov/docs/

7

CUG 2009 Proceedings




