1 Evaluation of UPC
in the Ludwig
Application

CUG 2009, Atlanta

Introduction

* Modern HPC architectures comprise multiple nodes
— connected via interconnect

* Applications must utilise these multiple nodes to solve single
problem
— Mechanism needed for each process to acquire remote data

* Message passing (MPIl) has become de-facto standard

— need for complex coding to manage the message passing
— performance overheads due to underlying 2-way communication

* Novel PGAS languages offer intuitive access of remote data
— Potentially increase productivity and performance in HPC

* UPC (arguably) most mature and portable PGAS language
today

4 May 2009 | | CUG 2009, Atlanta ‘

Introduction (cont.)

* AIM: evaluate UPC as a replacement of MPI
within real application (LUDWIG)

— measure performance

* Full conversion beyond scope of work
— But UPC and MPI can co-exist: can target area of
interest

* UPC fully supported at hardware level on Cray
X2

— This study uses X2 component of HECToR (112
processors)

— UPC will be fully supported on XT after upgrade to
GEMINI interconnect

CUG 2009, Atlanta

30 |)

- A

UPC

* Consider simplistic case: 8 elements distributed between 2

Processes
— Where updates require neighbouring values
Process 0 Process 1
&= = ~_ —
p[O] | p[1] | p[2] | P[3] | P[4] | P[S] p[O] | p[1] | p[2] | PI3] | P[4] ﬂ5]
private memory 5 private memory
R v T
s[0] | s[1] | s[2] | s[3] s[4] | s[3] | s[6] | s[7]
* Regular C array (local): int p[6];

e UPC shared array (global): shared [8/THREADS] int s[8];

LUDWIG

Time Step: 002000

* LUDWIG uses Lattice-Boltzmann models to enable simulation of
hydrodynamics of complex fluids (mixtures of fluids, solids/fluids)
in 3D

— Jean Christophe Desplat, Dublin Institute for Advanced Studies

— Kevin Stratford, Mike Cates, The University of Edinburgh
— Applications include personal care products, e.g. shampoo

N 06'9 “ CUG 2009, Atlanta k :

LUDWIG

"

* QOriginal Code:

initialisation

loop over timesteps
Phi Gradients
Collision
Halo Swap
Propagation

end loop

finalisation

Ludwig Timestep Loop Profile

100% -

H E R0 B

60% -

40% -

20% -

O Halo Swap
O Phi Gradients
Wl Propagation
@ Collision

OO/O T T T T 1
4 8 16 32 64

Processing Cores

— Halo cells only accessed in Propagation

4t May 2009

CUG 2009, Atlanta

LUDWIG Conversion TRAL

* Main data structure is array site[], where

— each element corresponds to a lattice site
— consists of a struct containing physical variables

* QOriginal Code Propagation section: updates require
values from neighbouring sites

Loop over index

site[index] .f[0]=site[index-1].£f[0]+..;

* Halo cells + message passing halo swap routines
required

4t May 2009 CUG 2009, Atlanta ‘

LUDWIG Conversion — Ny o

e Strategy: mirror site with UPC Shared structure s_site.
— New functionality:
sindex[index] Mapping of local (site) - global (s_site) index
put _site in shared() Copy data local -> shared
get site from shared() Copy data shared -> local

* Allows for specific area of application to be targeted

— Propagation section adapted to work with shared arrays
Loop over index

s _site[sindex[index]].£f[0]

=s site[sindex[index-1]].£[0]+..;

* No halo cells/swaps needed, remote accesses done directly

B RR LS TR
LUDWIG Conversion L ““m

* Modified LUDWIG code:

initialisation (including creation of local->shared mapping table)
loop over timesteps

Phi Gradients

Collision

//Halo Swap no longer required
copy local array to shared array
Propagation (using shared array)
copy shared array to local array

end loop

finalisation

4t May 2009 | | | CUG 2009, Atlanta

Performance results

100

Ludwig Propagation and Communication

-- -4 -- MPI: Propagation

—&— MPI: Propagation + Comms

10

ProcessingCores

100

4 May 2009

CUG 2009, Atlanta

Performance results

100

Ludwig Propagation and Communication

---¢ -- MPI: Propagation
—&— MPI: Propagation + Comms e
—+—UPC: Propagation (inc. Comms)

10

ProcessingCores

100

4 May 2009

CUG 2009, Atlanta

Performance results

* Nailve adaptation has substantial negative impact

* Underlying communication is not cause of this

* Shared pointer dereferencing more costly than for regular
pointers

* Optimised version: access memory through regular C

pointers where possible

— Obtained by casting from shared pointers

— Boundary updates must still use shared array accesses to get remote
data.

4t May 2009 | | CUG 2009, Atlanta

Performance results

Ludwig Propagation and Communication

100

---¢ -- MPI: Propagation
—&— MPI: Propagation + Comms

—+— UPC: Propagation (inc. Comms)
—&— UPC: Propagation Opt. (inc. Comms)

1 10 100

ProcessingCores

4 May 2009 CUG 2009, Atlanta

——1

-

'SR -
-~

.

Conclusions

e UPC allows for intuitive access to remote data
— Potentially increasing performance and productivity in HPC

* LUDWIG adapted to utilise UPC functionality

— Focusing on key section
— Shared structures remove need for complicated halo swaps

e Significant performance degradation with naive adaptation
— Due to sensitivity to costly shared pointer operations

* Optimised version uses regular C pointers to access data

where possible

— Performs similarly to (but slightly worse than) MPI version

— remaining degradation likely due to remaining shared pointer
operations

* Would be interesting to test on larger system (inc. future
Cray XT)

N 009 | | CUG 2009, Atlanta ‘ :

