
An Evaluation of UPC
in the Ludwig

Application

Alan Gray
EPCC, The University of Edinburgh

CUG 2009, Atlanta

4th May 2009 CUG 2009, Atlanta 2

Introduction

•  Modern HPC architectures comprise multiple nodes
–  connected via interconnect

•  Applications must utilise these multiple nodes to solve single
problem
–  Mechanism needed for each process to acquire remote data

•  Message passing (MPI) has become de-facto standard
–  need for complex coding to manage the message passing
–  performance overheads due to underlying 2-way communication

•  Novel PGAS languages offer intuitive access of remote data
–  Potentially increase productivity and performance in HPC

•  UPC (arguably) most mature and portable PGAS language
today

4th May 2009 CUG 2009, Atlanta 3

Introduction (cont.)

•  AIM: evaluate UPC as a replacement of MPI
within real application (LUDWIG)
–  measure performance

•  Full conversion beyond scope of work
–  But UPC and MPI can co-exist: can target area of

interest

•  UPC fully supported at hardware level on Cray
X2
–  This study uses X2 component of HECToR (112

processors)
–  UPC will be fully supported on XT after upgrade to

GEMINI interconnect

4th May 2009 CUG 2009, Atlanta 4 4

UPC

•  Regular C array (local): int p[6];

•  UPC shared array (global): shared [8/THREADS] int s[8];

•  Consider simplistic case: 8 elements distributed between 2
processes
–  Where updates require neighbouring values

4th May 2009 CUG 2009, Atlanta 5

LUDWIG

•  LUDWIG uses Lattice-Boltzmann models to enable simulation of
hydrodynamics of complex fluids (mixtures of fluids, solids/fluids)
in 3D
–  Jean Christophe Desplat, Dublin Institute for Advanced Studies
–  Kevin Stratford, Mike Cates, The University of Edinburgh
–  Applications include personal care products, e.g. shampoo

4th May 2009 CUG 2009, Atlanta 6

LUDWIG

•  Original Code:

–  Halo cells only accessed in Propagation

4th May 2009 CUG 2009, Atlanta 7

LUDWIG Conversion

•  Main data structure is array site[], where
–  each element corresponds to a lattice site

–  consists of a struct containing physical variables

•  Original Code Propagation section: updates require
values from neighbouring sites
Loop over index
 …
 site[index].f[0]=site[index-1].f[0]+…;
 …

•  Halo cells + message passing halo swap routines
required

4th May 2009 CUG 2009, Atlanta 8

LUDWIG Conversion

•  Strategy: mirror site with UPC Shared structure s_site.
–  New functionality:
sindex[index] Mapping of local (site) - global (s_site) index
put_site_in_shared() Copy data local -> shared
get_site_from_shared() Copy data shared -> local

•  Allows for specific area of application to be targeted
–  Propagation section adapted to work with shared arrays
Loop over index
 …
 s_site[sindex[index]].f[0]
 =s_site[sindex[index-1]].f[0]+…;
 …

•  No halo cells/swaps needed, remote accesses done directly

4th May 2009 CUG 2009, Atlanta 9

LUDWIG Conversion

•  Modified LUDWIG code:

4th May 2009 CUG 2009, Atlanta 10

Performance results

4th May 2009 CUG 2009, Atlanta 11

Performance results

4th May 2009 CUG 2009, Atlanta 12

Performance results

•  Naïve adaptation has substantial negative impact

•  Underlying communication is not cause of this

•  Shared pointer dereferencing more costly than for regular
pointers

•  Optimised version: access memory through regular C
pointers where possible
–  Obtained by casting from shared pointers
–  Boundary updates must still use shared array accesses to get remote

data.

4th May 2009 CUG 2009, Atlanta 13

Performance results

4th May 2009 CUG 2009, Atlanta 14

Conclusions

•  UPC allows for intuitive access to remote data
–  Potentially increasing performance and productivity in HPC

•  LUDWIG adapted to utilise UPC functionality
–  Focusing on key section
–  Shared structures remove need for complicated halo swaps

•  Significant performance degradation with naïve adaptation
–  Due to sensitivity to costly shared pointer operations

•  Optimised version uses regular C pointers to access data
where possible
–  Performs similarly to (but slightly worse than) MPI version

–  remaining degradation likely due to remaining shared pointer
operations

•  Would be interesting to test on larger system (inc. future
Cray XT)

