
Introducing the MADNESS numerical framework for petascale computing
W. Scott Thornton, Nicholas Vence, and Robert Harrison University of Tennessee

ABSTRACT: We discuss how MADNESS (multiresolution adaptive numerical environment for
scientific simulation) attempts to address issues of complexity, efficiency, and scalability with special
emphasis on applications in chemistry and physics.

KEYWORDS: density functional theory, time evolution, multiresolution, wavelets, task parallelism

1 Introduction

The number of applications and disciplines benefiting
from the nation’s investment in massively-parallel
computers has shrunk significantly as we have
progressed from giga- to tera- to peta-scale computation.
Certainly, some sub-fields of chemistry and physics are
satisfied by the power of modern desktops or small
clusters, but many others have pressing needs for high-
end computation and yet are struggling to field their
applications at the tera- and peta-scales. Advances in
these fields are being inhibited by the lack of
functionality on the largest computers and the time lag
between theoretical innovation in small research groups
and its realization in widely available, state-of-the-art
codes.

One particular motivation for this work is referred to by
Colella as the semantic gap. Why is it that we can
usually state our problem in a few lines or pages of
equations and yet its computational realization in
software is so much larger? Much scientific discovery
now takes place at the interfaces between disciplines,
which leads to the most demanding present applications
now being multi-physics. The intrinsic complexity of
such simulation is in addition to the complexity inherent
to the parallel computing platform, and the changing
nature of scientific programming (no longer just
FORmula TRANslation) is also reflected in shifts from
regular data structures with conventional dense or sparse
solvers to irregular data structures with fast hierarchical
solvers. Finally, Each additional scale of parallelism
multiplies the development time and cost by a large
factor.

Below, we discuss how MADNESS attempts to address
many of the above issues with special emphasis on
applications in chemistry and physics.

2 Fast computation in many dimensions

MADNESS (multiresolution adaptive numerical
environment for scientific simulation) [Harrison04,
Yanai04, Beste06, Sekino08] started with support from
the DOE as an environment for fast and accurate
numerical simulation in chemistry but rapidly expanded

to include applications in nuclear physics (HF and DFT for
nuclei) and atomic and molecular physics (time-evolution of
few-electron systems in intense laser fields). It is now running
at full scale on the NSF and DOE Cray supercomputers at UT/
ORNL, and elsewhere, and is open-source under the GPL2,
hosted on Google.

For many applications the enabling numerical capability is the
application as a single sparse-matrix-vector-product the
inverse of many physically important differential operators
(i.e., Green’s functions). This eliminates the need for
preconditioned iterative solvers and builds in the correct
asymptotic form of the solution.

From the outset MADNESS emphasized a high-level
environment for the composition of massively parallel science
applications. For instance, expectation value of a Hamiltonian

E=〈∣−

1
2
∇ 2V∣〉∫2 x 1

∣x− y∣
2 y dx dy

is compactly expressed as the following code fragment that
with appropriate headers and typedefs will compile and
execute in parallel (k is the order of the underlying numerical
approximation, rlo (i.e., r lo) is the shortest lengthscale to be
resolved, and thresh is the desired precision).

operatorT op = CoulombOperator(k,
rlo, thresh);
functionT rho = psi*psi;
double twoe =
inner(apply(op,rho),rho);
double pe = 2.0*inner(Vnuc*psi,psi);
double ke = 0.0;
for (int axis=0; axis<3; axis++) {
 functionT dpsi = diff(psi,axis);
 ke += inner(dpsi,dpsi);
}
double energy = ke + pe + twoe;

Vector and matrix APIs enable expression of coarser levels of
parallelism, and each MADNESS operation can be modified
to run without waiting for completion to permit overlap of
multiple unrelated operations.

The guaranteed speed and precision arising from dynamic
adaptive refinement and fast algorithms based upon
multiresolution analysis makes this much more than simple
object-oriented encapsulation. Indeed, it establishes a

1

CUG 2009 Proceedings

numerical calculus equivalent to that of mathematics and
enables facile translation of many of the equations of
physics and chemistry into practical code rather than the
currently standard tedious and error prone manipulation
of large sparse lists of expensive integrals. Robust and
efficient code requires an end-to-end error analysis so
that all intermediates have no more and no less than the
requisite precision. To guarantee precision every
function and the results of applying operators to
functions can change the mesh refinement, and in
electron structure we may have thousands of functions
(electronic wave functions) each with its own distinct
mesh. This very dynamic environment forced the
development of the new runtime that presently sits upon
MPI but a tuned version is being developed specifically
for the Cray XT using portals.

3 Scalable parallel runtime

In addition to the primary funding from DOE SciDAC,
support from the NSF for a collaboration with
Sadayappan (computer science) enabled us to be much
more ambitious with the scope of our parallel runtime
and programming environment, and support from the
DARPA as part of their evaluation of the three high-
productivity languages (X10, Chapel, Fortress) enabled
incorporation of some of their concepts and evaluation
of them in a real application [Barrett08]. This work has
resulted in the MADNESS parallel runtime being a very
high-level environment for the composition of a wide
range of parallel algorithms.

Layered architecture of MADNESS.

The central elements of the parallel runtime are a) use of
futures [Fridman76, Baker77] for hiding latency and
managing dependencies, b) global namespaces so that
applications are composed using names or concepts
central to the application rather than having to map onto
a partitioned linear memory model and/or do explicit
pointer management, c) non-process centric computing
through remote method invocation in objects in global
namespaces, and d) dynamic load balancing and data
redistribution. The placement of data and scheduling of
computation should be the responsibility of an intelligent

runtime. Dependencies are expressed by using futures to pass
results of still incomplete or pending tasks (even remote
operations) as arguments of new tasks that are scheduled for
execution once all dependencies are satisfied (using
callbacks). An SMP node presently runs one MPI process that
includes the main application thread, a remote method-
invocation (RMI) server thread, and a pool of computational
threads to which tasks may be submitted either locally or
remotely. By relieving the programmer of these many
burdens, he/she is freed to focus upon science and algorithm,
and is responsible primarily only for expressing concurrency.
Many of these concepts appear in [Cilk] and [Charm++],
though MADNESS works portably in a distributed memory
environment and unlike Charm++ MADNESS is fully
compatible with legacy software, which is a nearly
fundamental constraint in scientific computing. Other
motivating projects include [ACE] and [STAPL] but the
former emphasizes distributed systems rather than HPC and
STAPL is not available for use by others. Due to limited
computer science resources the MADNESS internal parallel
runtime is actually far from intelligent and only provides
limited dynamic data redistribution. Both of these are central
to programmability and performance for many applications at
the petascale and part of the focus of our proposed activities.

3.1 Data structures used in MADNESS

The multiresolution adaptive nature of the numerical runtime
forces the architecture to meet stringent requirements. For
example, functions need to be adaptively refined each time
that they are modified. This implies that the data structure
representing a function needs to be dynamic and able to
seamlessly adapt to the complex and irregular flow of data.
Moreover, these manipulations need to be carried out in a
scalable fashion employing a high degree of parallelism.

A data structure that meets these requirements is that of a
multidimensional binary tree where each node of the binary
tree would possibly contain either scaling or wavelet
coefficients. In the scaling function basis, the only nodes to
contain coefficients would be the leaf nodes. Conversely, in
the wavelet basis, only the top node would contain scaling
function coefficients.

Another requirement of the implementation of this data
structure is that algorithms employed inside of the numerical

2

MADNESS thread SMP thread structure.

RMI Server
(MPI or
 portals)

Task
dequeue

Incoming active
messages

Application
logical main

thread

Outgoing active
messages

Work stealing

Binary tree.
MADNESS parallel runtime

MPI Global Arrays ARMCI GPC/GASNET

MADNESS math and numerics

MADNESS applications – chemistry, physics, nuclear, ...

CUG 2009 Proceedings

runtime need to be able to traverse the binary tree
recursively and in parallel. For example, when a
function is first projected into the scaling function basis,
the algorithm walks down the tree, computing the
wavelet coefficients, and checking for error bound
requirements, in a recursive fashion. In this and many
other instances, the algorithm has no a priori knowledge
about which function nodes will contain coefficients and
which will not.

Other algorithms require random access to the
coefficients or need to access them in a manner that is
inefficient if restricted to a linked tree. For these reasons
and for generality, the coefficients are actually stored in
a globally addressable, distributed hash table. The
container employs a user-definable processor map
between items in the container and SMP nodes. One
benefit of using a processor map for the decomposition
of function nodes is that it provides a natural way of
load-balancing by reshuffling the map.

3.2 Task-oriented computing

To employ a maximum degree of parallelism,
MADNESS relies on an asynchronous model of
computing. Large operations such as an inner product
between to functions or the convolution of two functions
are divided in to smaller operations called tasks. Each
task is then executed somewhere on the machine in an
asynchronous manner. This modality of parallel
computing is what we term as task-oriented computing.

Task-oriented computing complements the more
common data parallelism. One can exploit task
parallelism within a given SMP node by using threading.
Coarse-grain parallelism is taken care of by domain
decomposition, while fine-grain parallelism is expressed
by having different threads that are local to each node
execute tasks in parallel.

Fine-grain parallelism is implemented by having each
SMP node host a task queue that functions like a virtual
processor by holding tasks to be executed by a pool of
worker threads. This works as follows:

1. In the main execution thread (not a worker
thread), the runtime decomposes a high level
mathematical instruction into a bevy of lower
level tasks.

2. Each one of these tasks is then submitted to the
task queue on a particular SMP node.

3. Each task, having a number of dependencies
such as input data or parameters, will remain in
a wait state until all of these dependencies are
satisfied.

4. Once all of the dependencies of a given task are

satisfied, the task will then enter a “ready to run”
state where it will eventual be executed by a worker
thread from the thread pool.

One feature of this approach is that tasks can execute locally
or remotely; this provides another avenue of load-balancing. If
certain tasks queues were to become idle, they could steal
tasks from other nodes. In addition to work stealing
algorithms, this approach provides a setting for fault tolerance.
If one node were to become disabled, its data and tasks could
be redistributed among all of the other nodes in a seamless
fashion.

3.3 Futures

To maintain causality, that is to satisfy the dependencies
between tasks, MADNESS makes use of a construct known as
a Future. A future is the result of an asynchronous
computation. When a task is submitted, all of the task’s
dependencies (input arguments) are wrapped in a Future.
Tasks count the number of unsatisfied dependencies, and
remain in a waiting status until all have been satisfied. As
dependencies become satisfied, the Future object notifies its
parent task. When all dependencies have been satisfied, the
task will submit itself to be executed.

4 Density functional theory and band structure

4.1 Density functional theory

A standard problem in computational physics and chemistry
applications is to compute the ground state of the following
Hamiltonian:

H=∑
k

N

−1
2
∇ k

2
V k rk 1

2∑k , l

N 1

∣rk−r l∣

The first and second terms describe the single-particle kinetic
and external potential energy pieces, respectively. The last
term describes the Coulomb interaction between different
electrons. “N” is the number of electrons. The solution to this
Hamiltonian is a multidimensional wavefunction,

 r1 ,r2 ,r3 ,, rN .

Three main difficulties arise in solving this problem.

1. The shear size of the problem is intractable. “N” is on
the order of 1023. If one were to compute the
contribution to the many-body wavefunction of one
electron per microsecond, the calculation would take
longer than the lifetime of the universe.

2. Electrons are fermions, therefore the many-body
wave function must be antisymmetric under
exchange of any two electrons.

3. The Coulomb interaction entangles different

3

CUG 2009 Proceedings

electrons. If it were zero or it could be ignored,
then the first two terms would split into N
single-particle Hamiltonians.

A breakthrough in modern theoretical physics and
chemistry was the advent of density functional theory.
Density functional theory, or DFT, reformulates that
problem in terms of the electronic density rather than the
many-body wavefunction. The electronic density is
defined as

n r =N∫ d3 r2d 3rN∣ r , r2, ,r N ∣
2

.

In 1964, Hohenberg and Kohn reformulated the many-
body Hamiltonian by showing that there is a unique
mapping between the electronic density, n r , and the
external potential, v r up to a constant. The implies
that the total energy of an electronic system is a
functional of the electronic density.

E=∫ vr nr F [nr]

Furthermore, the energy is variational with respect to
n r , and hence the total energy will match the ground

state energy when n r coincides with the true ground
state electronic density.

The implementation of density functional theory is
centered around taking the functional derivative of this
energy functional with respect to the electronic density.
This functional derivative, along with the fact that the
density can be constructed from fictitious, non-
interacting single-particle states, allows the problem to
be reduced to solving the following single-particle
Hamiltonian.

[−1
2
∇ j

2
V eff [n]r] jr= j jr

r are fictitious, single-particle electronic states. The
density can be constructed as

n r =∑
j

∣ j r ∣
2

.

The effective potential is a functional of the density,
nr .

V eff [n]r=V ext r ∫ d3 s
n r
∣r−s∣

V xc [n]r

The first term is the nuclear potential. The second and
third terms are the Hartree and exchange-correlation
terms, respectively. Due to the effective potential being
a functional of the electronic density, the system of
equations must be solved self consistently.

4.2 Periodic systems

In a perfect crystalline material the effective potential is
periodic.

V eff rR=V eff r

T≡lattice translation

The single-particle wavefunctions have the form of Bloch
states.

n , k r=e ik⋅r un ,k r

The function un, k r is also is periodic within a translation of
a lattice vector. eik⋅r is a global phase factor that has a
periodicity of the entire crystal. Expanding the effective
potential and the Bloch states in a Fourier basis, the single-
particle Hamiltonian is transformed into the following matrix
equation.

[1
2

kG 2−G
k]G

k
∑

G '

V G−G ' G
k '=0

This method is know as the plane-wave expansion. The
benefits of the plane-wave technique is that it is the most
natural representation for a periodic system. Moreover, the
kinetic energy and Coulomb operators are diagonal in this
representation. Unfortunately, the high-frequencies associated
with core electrons (those closest to the nuclei) require many
plane-waves for accuracy. One way to circumvent this
problem is to represent the effect of the core electrons and the
nuclear potential into a smooth effective potential. This is
known as the pseudopotential method. The global extent of the
basis functions also makes it hard to derive algorithms that
scale less than cubically with the system size.

Another electronic structure technique used is sold-state
physics in the linearized augmented plane-wave method
(LAPW). The LAPW method is built around partitioning the
simulation space into two different regions. In the region
around the core of the nuclei, one constructs an atomic sphere,
inside of which mathematical objects are representation by
atomic-like orbitals. In between these atomic spheres (the
interstitial region) one expands in plane-waves. A
disadvantage of the LAPW method is that composing new
applications requires an intimate knowledge of this complex
basis set.

In contrast, the adaptive basis of MADNESS can efficiently
treat both the core and interstitial regions on an equal footing
and the multiresolution algorithms (combined with local
orbital methods) naturally yield fast algorithms. Finally, we
have already noted above the very high level at which
MADNESS applications are composed.

5 Time evolution of electronic wave functions

Advances in short pulse laser technology have opened the
door for experimentalists to probe new regions of fundamental

4

CUG 2009 Proceedings

science. Theory and computation have been searching
for new algorithms to outpace Moore's Law as they race
to keep up. These few cycle laser pulses delve into the
attosecond regime which gives us, for the first time, a
tool to probe electron motion around the atom.

We solve the time-dependent Schrödinger equation
(TDSE),

i d
dt
r ,t =H t r , t

using a time stepping method (see below).Presently this
is being performed in three (one electron) and four
dimensions (one electron and one internuclear distance).
Upon completion of the femto-second laser pulse,
analysis of the wave packet is complicated by the finite
separation of the ionized electrons that continue to repel
each other. Experimentally observable differential cross
sections can be obtained by projecting the time evolved
wave function onto the scattering eigenstates of the
system.

The adaptive MADNESS basis enables use of box so
large that the wave packet does not reach the edge of the
simulation volume. This avoids the need to introduce a
complex absorbing potential or other technique to avoid
spurious reflections.

The propagation scheme employed is the fourth-order
accurate gradient symplectic integrator due to Chin et al.
[Chin01].

U t =e−i t V t/6e−i t T / 2e−i 2 t V t /2 /3e−i t T /2e−i tV 0 /6

V=V −
t 2

48
[V , [T , V]]

where T and V are the kinetic and potential energy
operators, respectively. Matrix elements of the free-
particle propagator e−i t T (combined with a projector
onto a band limit corresponding to a maximum grid
resolution) are computed so that the operator may be
applied as a single sparse matrix-vector product in the
wavelet basis.

6 Acknowledgments

This research was supported by the Division of
Chemical Sciences, Geosciences, and Biosciences,
Office of Basis Energy Sciences, U.S. Department of
Energy, under contract DE-AC05-00OR22725 with Oak
Ridge National Laboratory, managed and operated by
UT-Battelle, LLC, and in part by ORNL Laboratory
Directed Research and Development Funds. This
research was performed in part using the resources of the
Center for Computational Sciences at Oak Ridge
National Laboratory under contract DE-AC05-
00OR22725. This document describes activities

performed under contract number DE-AC0500OR22750
between the U.S. Department of Energy and Oak Ridge
Associated Universities.

7 Contact Information

Scott Thornton and Nicholas Vence are graduate students in
the physics at the University of Tennessee. Robert Harrison is
a professor of chemistry at the University of Tennessee.

8 References

[ACE] http://www.cs.wustl.edu/~schmidt/ACE.html

[Baker77] H. Baker (August 1977). "The Incremental
Garbage Collection of Processes". Proceedings of the
Symposium on Artificial Intelligence Programming
Languages, SIGPLAN Notices 12.

[Barrett08] R. F. Barrett, S. R. Alam, V. F. de Almeida, D. E.
Bernholdt, W. R. Elwasif, J. A. Kuehn, S. W. Poole,
and A. G. Shet, Exploring HPCS Languages in
Scientific Computing, in Rick Stevens, editor,
SciDAC 2008, 14-17 July 2008, Seattle

[Beste06] A. Beste, R. J. Harrison and T. Yanai, “Direct
computation of general chemical energy differences:
Application to ionization potentials, excitation, and
bond energies”, J. Chem. Phys. 125, 074101 (2006)
[Charm++] http://charm.cs.uiuc.edu

[Cilk] http://supertech.csail.mit.edu/cilk/

[Charm++] http://charm.cs.uiuc.edu

[Chin01] S.A. Chin and C.R. Chen “Fourth order gradient
symplectic integrator methods for solving the time-
dependent Schrödinger equation,” J. Chem. Phys.
114 (2001) 7338.[Friedman76] D. Friedman (1976).
"CONS should not evaluate its arguments". S.
Michaelson and R. Milner, editors, Automata,
Languages and Programming, pages 257-284.
Edinburgh University Press, Edinburgh.

[Harrison04] R. J. Harrison, G. I. Fann, T. Yanai, Z. Gan and
G. Beylkin, “Multiresolution Quantum Chemistry:
Basic Theory and Initial Applications,” J. Chem.
Phys., 121 (2004) 11587

[Sekino08] H. Sekino, Y. Maeda, T. Yanai, R. J
Harrison,”Basis set limit Hartree-Fock and density
functional theory response property evaluation by
multiresolution multiwavelet basis,” J Chem Phys.
2008 Jul 21;129 (3):034111[Yanai04] T. Yanai, G.
Fann, Z. Gan, R. Harrison and G. Beylkin,
Multiresolution quantum chemistry: Hartree-Fock
exchange J. Chem. Phys. 121 (14) (2004) 6680-6688.

[STAPL]http://parasol.tamu.edu/groups/rwergergroup/researc
h/stapl

5

CUG 2009 Proceedings

http://www.cs.wustl.edu/~schmidt/ACE.html
http://parasol.tamu.edu/groups/rwergergroup/research/stapl
http://parasol.tamu.edu/groups/rwergergroup/research/stapl
http://charm.cs.uiuc.edu/

	1 Introduction
	2 Fast computation in many dimensions
	3 Scalable parallel runtime
	3.1 Data structures used in MADNESS
	3.2 Task-oriented computing
	3.3 Futures

	4 Density functional theory and band structure
	4.1 Density functional theory
	4.2 Periodic systems

	5 Time evolution of electronic wave functions
	6 Acknowledgments
	7 Contact Information
	8 References

