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ABSTRACT:  We  discuss  how  MADNESS  (multiresolution  adaptive  numerical  environment  for 
scientific simulation) attempts to address issues of complexity, efficiency, and scalability with special 
emphasis on applications in chemistry and physics.
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1 Introduction

The number  of  applications  and  disciplines  benefiting 
from  the  nation’s  investment  in  massively-parallel 
computers  has  shrunk  significantly  as  we  have 
progressed from giga- to tera- to peta-scale computation. 
Certainly, some sub-fields of chemistry and physics are 
satisfied  by  the  power  of  modern  desktops  or  small 
clusters, but many others have pressing needs for high-
end  computation  and  yet  are  struggling  to  field  their 
applications  at  the  tera-  and  peta-scales.  Advances  in 
these  fields  are  being  inhibited  by  the  lack  of 
functionality on the largest computers and the time lag 
between theoretical innovation in small research groups 
and  its  realization  in  widely  available,  state-of-the-art 
codes. 

One particular motivation for this work is referred to by 
Colella  as  the  semantic  gap.  Why  is  it  that  we  can 
usually  state  our  problem in  a  few  lines  or  pages  of 
equations  and  yet  its  computational  realization  in 
software is  so much larger? Much scientific discovery 
now takes  place  at  the  interfaces  between  disciplines, 
which leads to the most demanding present applications 
now  being  multi-physics.  The  intrinsic  complexity  of 
such simulation is in addition to the complexity inherent 
to  the  parallel  computing  platform,  and  the  changing 
nature  of  scientific  programming  (no  longer  just 
FORmula TRANslation) is also reflected in shifts from 
regular data structures with conventional dense or sparse 
solvers to irregular data structures with fast hierarchical 
solvers.  Finally,  Each  additional  scale  of  parallelism 
multiplies  the  development  time  and  cost  by  a  large 
factor.

Below, we discuss how MADNESS attempts to address 
many  of  the  above  issues  with  special  emphasis  on 
applications in chemistry and physics.

2 Fast computation in many dimensions

MADNESS  (multiresolution  adaptive  numerical 
environment  for  scientific  simulation)  [Harrison04, 
Yanai04, Beste06, Sekino08] started with support from 
the  DOE  as  an  environment  for  fast  and  accurate 
numerical simulation in chemistry but rapidly expanded 

to include applications in nuclear physics (HF and DFT for 
nuclei) and atomic and molecular physics (time-evolution of 
few-electron systems in intense laser fields). It is now running 
at full scale on the NSF and DOE Cray supercomputers at UT/
ORNL, and elsewhere,  and is  open-source under the GPL2, 
hosted on Google.

For many applications the enabling numerical capability is the 
application  as  a  single  sparse-matrix-vector-product  the 
inverse  of  many  physically  important  differential  operators 
(i.e.,  Green’s  functions).  This  eliminates  the  need  for 
preconditioned  iterative  solvers  and  builds  in  the  correct 
asymptotic form of the solution.

From  the  outset  MADNESS  emphasized  a  high-level 
environment for the composition of massively parallel science 
applications. For instance, expectation value of a Hamiltonian
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is  compactly expressed as the following code fragment that 
with  appropriate  headers  and  typedefs  will  compile  and 
execute in parallel (k is the order of the underlying numerical 
approximation, rlo (i.e., r lo ) is the shortest lengthscale to be 
resolved, and thresh is the desired precision).

operatorT op = CoulombOperator(k, 
rlo, thresh);
functionT rho = psi*psi;
double twoe = 
inner(apply(op,rho),rho);
double pe = 2.0*inner(Vnuc*psi,psi);
double ke = 0.0;
for (int axis=0; axis<3; axis++) {
    functionT dpsi = diff(psi,axis);
    ke += inner(dpsi,dpsi);
}
double energy = ke + pe + twoe;

Vector and matrix APIs enable expression of coarser levels of 
parallelism, and each MADNESS operation can be modified 
to  run without  waiting  for  completion to  permit  overlap  of 
multiple unrelated operations.

The  guaranteed  speed  and  precision  arising  from  dynamic 
adaptive  refinement  and  fast  algorithms  based  upon 
multiresolution analysis  makes this  much more  than  simple 
object-oriented  encapsulation.  Indeed,  it  establishes  a 
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numerical calculus equivalent to that of mathematics and 
enables  facile  translation of  many of  the  equations  of 
physics and chemistry into practical code rather than the 
currently standard tedious and error prone manipulation 
of large sparse lists of expensive integrals. Robust and 
efficient  code requires an end-to-end error  analysis  so 
that all intermediates have no more and no less than the 
requisite  precision.  To  guarantee  precision  every 
function  and  the  results  of  applying  operators  to 
functions  can  change  the  mesh  refinement,  and  in 
electron structure we may have thousands of functions 
(electronic wave functions)  each  with its  own distinct 
mesh.  This  very  dynamic  environment  forced  the 
development of the new runtime that presently sits upon 
MPI but a tuned version is being developed specifically 
for the Cray XT using portals.  

3 Scalable parallel runtime

In addition to the primary funding from DOE SciDAC, 
support  from  the  NSF  for  a  collaboration  with 
Sadayappan (computer science) enabled us to be much 
more ambitious with the scope of our parallel runtime 
and  programming  environment,  and  support  from  the 
DARPA as  part  of  their  evaluation of  the three high-
productivity languages (X10, Chapel, Fortress) enabled 
incorporation of some of their concepts and evaluation 
of them in a real application [Barrett08]. This work has 
resulted in the MADNESS parallel runtime being a very 
high-level  environment  for  the composition of  a  wide 
range of parallel algorithms.

Layered architecture of MADNESS.

The central elements of the parallel runtime are a) use of 
futures  [Fridman76,  Baker77]  for  hiding  latency  and 
managing  dependencies,  b)  global  namespaces  so that 
applications  are  composed  using  names  or  concepts 
central to the application rather than having to map onto 
a  partitioned  linear  memory  model  and/or  do  explicit 
pointer management, c) non-process centric computing 
through remote method invocation in objects in global 
namespaces,  and  d)  dynamic  load  balancing  and  data 
redistribution. The placement of data and scheduling of 
computation should be the responsibility of an intelligent 

runtime. Dependencies are expressed by using futures to pass 
results  of  still  incomplete  or  pending  tasks  (even  remote 
operations) as arguments of new tasks that are scheduled for 
execution  once  all  dependencies  are  satisfied  (using 
callbacks). An SMP node presently runs one MPI process that 
includes  the  main  application  thread,  a  remote  method-
invocation (RMI) server thread, and a pool of computational 
threads  to  which  tasks  may  be  submitted  either  locally  or 
remotely.   By  relieving  the  programmer  of  these  many 
burdens, he/she is freed to focus upon science and algorithm, 
and is responsible primarily only for expressing concurrency. 
Many  of  these  concepts  appear  in  [Cilk]  and  [Charm++], 
though MADNESS works portably in a distributed memory 
environment  and  unlike  Charm++  MADNESS  is  fully 
compatible  with  legacy  software,  which  is  a  nearly 
fundamental  constraint  in  scientific  computing.  Other 
motivating  projects  include  [ACE]  and  [STAPL]  but  the 
former emphasizes distributed systems rather than HPC and 
STAPL  is  not  available  for  use  by  others.  Due  to  limited 
computer  science resources  the MADNESS internal  parallel 
runtime  is  actually  far  from  intelligent  and  only  provides 
limited dynamic data redistribution. Both of these are central 
to programmability and performance for many applications at 
the petascale and part of the focus of our proposed activities. 

3.1 Data structures used in MADNESS

The multiresolution adaptive nature of the numerical runtime 
forces  the  architecture  to  meet  stringent  requirements.  For 
example,  functions  need  to  be  adaptively refined each  time 
that  they  are  modified.  This  implies  that  the  data  structure 
representing  a  function  needs  to  be  dynamic  and  able  to 
seamlessly adapt to the complex and irregular flow of data. 
Moreover,  these  manipulations  need  to  be  carried  out  in  a 
scalable fashion employing a high degree of parallelism.

A data  structure  that  meets  these  requirements  is  that  of  a 
multidimensional  binary tree where each node of the binary 
tree  would  possibly  contain  either  scaling  or  wavelet 
coefficients. In the scaling function basis, the only nodes to 
contain coefficients would be the leaf nodes. Conversely, in 
the wavelet  basis,  only the  top node would contain scaling 
function coefficients.

Another  requirement  of  the  implementation  of  this  data 
structure is that algorithms employed inside of the numerical 
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runtime  need  to  be  able  to  traverse  the  binary  tree 
recursively  and  in  parallel.  For  example,  when  a 
function is first projected into the scaling function basis, 
the  algorithm  walks  down  the  tree,  computing  the 
wavelet  coefficients,  and  checking  for  error  bound 
requirements, in a recursive fashion. In this and many 
other instances, the algorithm has no a priori knowledge 
about which function nodes will contain coefficients and 
which will not.

Other  algorithms  require  random  access  to  the 
coefficients or need to access them in a manner that is 
inefficient if restricted to a linked tree. For these reasons 
and for generality, the coefficients are actually stored in 
a  globally  addressable,  distributed  hash  table.  The 
container  employs  a  user-definable  processor  map 
between items in the container  and SMP nodes.   One 
benefit of using a processor map for the decomposition 
of  function nodes is  that  it  provides  a  natural  way of 
load-balancing by reshuffling the map.

3.2 Task-oriented computing

To  employ  a  maximum  degree  of  parallelism, 
MADNESS  relies  on  an  asynchronous  model  of 
computing.  Large operations  such as an inner  product 
between to functions or the convolution of two functions 
are divided in to smaller operations called  tasks.  Each 
task is then executed somewhere on the machine in an 
asynchronous  manner.  This  modality  of  parallel 
computing is what we term as task-oriented computing.

Task-oriented  computing  complements  the  more 
common  data  parallelism.  One  can  exploit  task 
parallelism within a given SMP node by using threading. 
Coarse-grain  parallelism  is  taken  care  of  by  domain 
decomposition, while fine-grain parallelism is expressed 
by having different threads that are local to each node 
execute tasks in parallel.

Fine-grain  parallelism is  implemented  by  having each 
SMP node host a task queue that functions like a virtual 
processor by holding tasks to be executed by a pool of 
worker threads. This works as follows:

1. In  the  main  execution  thread  (not  a  worker 
thread),  the  runtime decomposes  a  high level 
mathematical  instruction into a bevy of lower 
level tasks.

2. Each one of these tasks is then submitted to the 
task queue on a particular SMP node.

3. Each  task,  having  a  number  of  dependencies 
such as input data or parameters, will remain in 
a wait state until all of these dependencies are 
satisfied.

4. Once all of the dependencies of a given task are 

satisfied,  the  task  will  then  enter  a  “ready  to  run” 
state where it will eventual be executed by a worker 
thread from the thread pool.

One feature of this approach is that tasks can execute locally 
or remotely; this provides another avenue of load-balancing. If 
certain  tasks  queues  were  to  become idle,  they  could  steal 
tasks  from  other  nodes.  In  addition  to  work  stealing 
algorithms, this approach provides a setting for fault tolerance. 
If one node were to become disabled, its data and tasks could 
be redistributed among all  of the other nodes in a seamless 
fashion.

3.3 Futures

To  maintain  causality,  that  is  to  satisfy  the  dependencies 
between tasks, MADNESS makes use of a construct known as 
a  Future.  A  future  is  the  result  of  an  asynchronous 
computation.  When  a  task  is  submitted,  all  of  the  task’s 
dependencies  (input  arguments)  are  wrapped  in  a  Future. 
Tasks  count  the  number  of  unsatisfied  dependencies,  and 
remain  in  a  waiting status  until  all  have  been  satisfied.  As 
dependencies become satisfied,  the Future object notifies its 
parent  task.  When all  dependencies have been satisfied,  the 
task will submit itself to be executed.

4 Density functional theory and band structure

4.1 Density functional theory

A standard problem in computational physics and chemistry 
applications is to compute the ground state of the following 
Hamiltonian:

H=∑
k

N

−1
2
∇ k

2
V k  rk 1

2∑k , l

N 1

∣rk−r l∣

The first and second terms describe the single-particle kinetic 
and external  potential  energy pieces,  respectively.   The last 
term  describes  the  Coulomb  interaction  between  different 
electrons. “N” is the number of electrons. The solution to this 
Hamiltonian is a multidimensional wavefunction,

  r1 ,r2 ,r3 ,, rN .

Three main difficulties arise in solving this problem.

1. The shear size of the problem is intractable. “N” is on 
the  order  of  1023.  If  one  were  to  compute  the 
contribution to the many-body wavefunction of one 
electron per microsecond, the calculation would take 
longer than the lifetime of the universe.

2. Electrons  are  fermions,  therefore  the  many-body 
wave  function  must  be  antisymmetric  under 
exchange of any two electrons. 

3. The  Coulomb  interaction  entangles  different 
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electrons. If it were zero or it could be ignored, 
then  the  first  two  terms  would  split  into  N 
single-particle Hamiltonians.

A  breakthrough  in  modern  theoretical  physics  and 
chemistry was the advent of density functional theory. 
Density  functional  theory,  or  DFT,  reformulates  that 
problem in terms of the electronic density rather than the 
many-body  wavefunction.  The  electronic  density  is 
defined as 

n r =N∫ d3 r2d 3rN∣ r , r2, ,r N ∣
2

.

In 1964, Hohenberg and Kohn reformulated the many-
body  Hamiltonian  by  showing  that  there  is  a  unique 
mapping between the electronic density,  n r , and the 
external potential,  v r  up to a constant. The implies 
that  the  total  energy  of  an  electronic  system  is  a 
functional of the electronic density.

E=∫ vr nr F [ nr ]

Furthermore,  the  energy  is  variational  with  respect  to 
n r , and hence the total energy will match the ground 

state energy when n r   coincides with the true ground 
state electronic density.

The  implementation  of  density  functional  theory  is 
centered around taking the functional derivative of this 
energy functional with respect to the electronic density. 
This functional derivative,  along with the fact that the 
density  can  be  constructed  from  fictitious,  non-
interacting single-particle states, allows the problem to 
be  reduced  to  solving  the  following  single-particle 
Hamiltonian.

[−1
2
∇ j

2
V eff [n ]r ] jr= j jr

r  are fictitious, single-particle electronic states. The 
density can be constructed as

n r =∑
j

∣ j r ∣
2

.

The  effective  potential  is  a  functional  of  the  density, 
nr  .

V eff [n ]r=V ext r ∫ d3 s
n r 
∣r−s∣

V xc [ n ]r

The first term is the nuclear potential. The second and 
third  terms  are  the  Hartree  and  exchange-correlation 
terms, respectively. Due to the effective potential being 
a  functional  of  the  electronic  density,  the  system  of 
equations must be solved self consistently.

4.2 Periodic systems

In  a  perfect  crystalline  material  the  effective  potential  is 
periodic.

V eff rR=V eff r

T≡lattice translation

The  single-particle  wavefunctions  have  the  form  of  Bloch 
states.

n , k r=e ik⋅r un ,k r

The function un, k r   is also is periodic within a translation of 
a  lattice  vector.  eik⋅r is  a  global  phase  factor  that  has  a 
periodicity  of  the  entire  crystal.  Expanding  the  effective 
potential and the Bloch states in a Fourier basis, the single-
particle Hamiltonian is transformed into the following matrix 
equation.

[ 1
2

kG 2−G
k ]G

k
∑

G '

V G−G ' G
k '=0

This  method  is  know  as  the  plane-wave  expansion.  The 
benefits  of  the  plane-wave  technique  is  that  it  is  the  most 
natural  representation  for  a  periodic  system.  Moreover,  the 
kinetic  energy  and  Coulomb operators  are  diagonal  in  this 
representation. Unfortunately, the high-frequencies associated 
with core electrons (those closest to the nuclei) require many 
plane-waves  for  accuracy.  One  way  to  circumvent  this 
problem is to represent the effect of the core electrons and the 
nuclear  potential  into  a  smooth  effective  potential.  This  is 
known as the pseudopotential method. The global extent of the 
basis functions also makes it  hard to derive algorithms that 
scale less than cubically with the system size.

Another  electronic  structure  technique  used  is  sold-state 
physics  in  the  linearized  augmented  plane-wave  method 
(LAPW). The LAPW method is built around partitioning the 
simulation  space  into  two  different  regions.  In  the  region 
around the core of the nuclei, one constructs an atomic sphere, 
inside  of  which  mathematical  objects  are  representation  by 
atomic-like  orbitals.  In  between  these  atomic  spheres  (the 
interstitial  region)  one  expands  in  plane-waves.  A 
disadvantage  of  the  LAPW method is  that  composing  new 
applications requires an intimate knowledge of this complex 
basis set.

In contrast, the adaptive basis of MADNESS can efficiently 
treat both the core and interstitial regions on an equal footing 
and  the  multiresolution  algorithms  (combined  with  local 
orbital  methods) naturally  yield fast  algorithms.  Finally,  we 
have  already  noted  above  the  very  high  level  at  which 
MADNESS applications are composed.

5 Time evolution of electronic wave functions

Advances  in  short  pulse  laser  technology  have  opened  the 
door for experimentalists to probe new regions of fundamental 
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science.  Theory and computation have been searching 
for new algorithms to outpace Moore's Law as they race 
to keep up. These few cycle laser pulses delve into the 
attosecond regime which gives us, for the first time, a 
tool to probe electron motion around the atom.

We  solve  the  time-dependent  Schrödinger  equation 
(TDSE), 

i d
dt
r ,t =H t r , t 

using a time stepping method (see below).Presently this 
is  being  performed  in  three  (one  electron)  and  four 
dimensions (one electron and one internuclear distance). 
Upon  completion  of  the  femto-second  laser  pulse, 
analysis of the wave packet is complicated by the finite 
separation of the ionized electrons that continue to repel 
each other. Experimentally observable differential cross 
sections can be obtained by projecting the time evolved 
wave  function  onto  the  scattering  eigenstates  of  the 
system.

The adaptive MADNESS basis  enables  use of  box so 
large that the wave packet does not reach the edge of the 
simulation volume. This avoids the need to introduce a 
complex absorbing potential or other technique to avoid 
spurious reflections.

The propagation  scheme employed  is  the  fourth-order 
accurate gradient symplectic integrator due to Chin et al. 
[Chin01].

 
U t =e−i t V t/6e−i t T / 2e−i 2 t V t /2 /3e−i t T /2e−i tV 0 /6

V=V −
t 2

48
[V , [T , V ] ]

where  T  and  V  are the kinetic and potential energy 
operators,  respectively.  Matrix  elements  of  the  free-
particle  propagator  e−i t T  (combined  with  a  projector 
onto  a  band  limit  corresponding  to  a  maximum  grid 
resolution)  are  computed  so  that  the  operator  may be 
applied as a single sparse matrix-vector product in the 
wavelet basis.
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