

Task-oriented computing
within

MADNESS

Scott Thornton

University of Tennessee

MADNESS parallel runtime

MPI Global Arrays ARMCI GPC/GASNET

MADNESS math and numerics

MADNESS applications – chemistry, physics, nuclear, ...

MADNESS architecture

Intel Thread Building Blocks being considered for multicore

Ways to expand a function

d
j1

1

s
j0

0; d
j0

0

s
j0

1

s
j2

2 s
j3

2

Wavelet basis:

f x =∑
j=0

s j0
0  j0

0 x ∑
n '=0

n−1

∑
l=0

2n−1

∑
j=0

k−1

d jl
n ' jl

n '  x 

Scaling function basis:

f x =∑
l=0

2n−1

∑
j=0

k−1

s jl
n  jl

n  x 

There are two different ways to expand a function
Within the MADNESS framework:

1. Scaling function basis

2. Wavelet basis

Regular Irregular

Data structures

Parallelism can be implemented over
regular data structures by having
parallel loops over the structure.

Straight-forward using MPI or OpenMP

However, with irregular data
Structures such as a binary tree,
deciding how to parallelize is not
as straight-forward?

Loop 1

Loop 2

Data structures

MADNESS function objects have
1000's of nodes

Needs the ability to be able to “walk”
up and down the tree in a scalable fashion

Don't want to burden the application developer or
user with this complexity.

Functions are “adaptively refined” meaning
that the data structure are constantly changing

Irregular computing has a high degree of
complexity in the management and flow of
data in a parallel environment

MADNESS design

2 3

4 1

1

On each SMP, there is pool of worker threads
That execute the tasks in the task queue

Each SMP node has a task queue

Each node of a MADNESS function object
Lives on a different SMP node

Processor map

This decomposition allows for a mechanism of
load balancing through the reshuffling of the
processor map.

One worker thread per core

Tasks can be executed both locally and remotely (load balancing, work stealing, etc.)

One main thread on each SMP node that drives the whole process (executes main())

One thread on each SMP node that handles all communication between nodes

Dependencies
Due to the irregular nature of
the MADNESS execution flow,
dependencies between
tasks need to be expressed.

Dependencies are pieces of
information that are needed before a
given task is executed.

goo(c,d)

foo(a,b)
a

d

b

c

r

Task = asynchronous function calls

PE 1

PE 2

Dependencies provide a way to manage
latencies:
● Algorithmic latency
● Communication latency

“foo” MUST execute before “goo”The bottom line is:

Dependencies
Now, suppose we put our functions in a
queue to be executed.

How can we ensure that “foo” will not
execute until inputs, “a” and “b” are ready?

What about “goo”?

task queue

foo(a, b)
goo(c, d)

What we would like is an object that can “wrap”
a piece of data and manage the dependencies.

Observer Pattern OOD

Observer pattern

Futures
● Result of an

asynchronous
computation
– Cilk, Java, HPCLs

● Hide latency due to
communication or
computation

● Management of
dependencies
– Via callbacks

int f(int arg);
ProcessId me, p;

Future<int> r0=task(p, f, 0);
Future<int> r1=task(me, f, r0);

// Work until need result

cout << r0 << r1 << endl;

Process “me” spawns a new task in process “p”
to execute f(0) with the result eventually returned
as the value of future r0. This is used as the argument
of a second task whose execution is deferred until
its argument is assigned. Tasks and futures can
register multiple local or remote callbacks to
express complex and dynamic dependencies.

Task-oriented programming

for (things to be done):
world.task(where, &::do_this, arg1, arg2, arg3);
world.task(here, &::do_that, arg1, arg2);
.
.

end for

Main thread converts the algorithm /
calls to the API into a series of tasks
that get scheduled into a node's
task queue.

Tasks can run anywhere on the
machine.

Many algorithms used in MADNESS
require iterating through the tree
structure. The task-oriented nature of
the runtime is a natural fit for these
types of algorithms.

for (child in (my children)):
tree(child, &::go_forth, arg);

end for

parallel runtime overview

ThreadPool

WorldTaskQueue

do_this(...)
do_that(...)
do_another(...)
do_something(...)
do_this(...)

Future<> arg1
Future<> arg2
Future<> arg3
Future<> arg4
Future<> arg5 dependencies

satisfied? Submit
to ThreadPool

Thread

Thread Thread

Thread

Requests comes from API

do_this(...)
do_that(...)
do_more(...)

hardware level

Periodic DFT solver

[−1
2
∇

2
veff [nr ]r ] jr = j jr 

Kohn-Sham equation:

v eff r =v extr ∫
nr ' 
∣r−r '∣

d3 r 'v xc r 

nr =∑
j

∣ jr ∣
2

electronic density:

effective potential:

The Kohn-Sham equation is nonlinear and therefore
needs to be solved in a self-consistent manner.

Summary
● Multiresolution at the petascale offers interesting

challenges for the design of software
● Task­oriented computing is just the right fit for

the MADNESS architecture
● Multithreading used for fine grain parallelism
● Futures help maintain causality between tasks

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Futures
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

