

CUG 2009 Proceedings 1 of 11

Performance Evaluation of Chapel’s Task Parallel Features

Michèle Weiland, EPCC and Thom Haddow, Imperial

College London

ABSTRACT: Chapel, Cray’s new parallel programming language, is specifically

designed to provide built-in support for high-level task and data parallelism. This paper

investigates the performance of the task parallel features offered by Chapel, using

benchmarks such as N-Queens and Strassen’s algorithm, on a range of different

architectures, including a multi-core Linux system, an SMP cluster and MPP.

KEYWORDS: Chapel, task parallelism, benchmarks.

1. Introduction

Over the past few years the United States Department

of Defence research agency, DARPA, has been funding

several diverse HPC projects under the heading of its

High Productivity Computer Systems (HPCS) [1]

research and development program. The HPCS program

aims to increase supercomputer productivity by 2010 by

fostering progress across the whole HPC domain, from

computer hardware and architecture development, to

software tools and programming environments. The stated

aims of this program is to develop systems with

“Performance, Programmability, Portability and

Robustness” as key properties. One of the component

projects of the HPCS program is the development of new

programming languages for HPC which focused on these

properties. Three new programming languages, from three

supercomputing companies, were sponsored by this

project: Sun Microsystems developed Fortress, a

language aiming to map mathematical and algorithmic

concepts into a programming language, IBM developed

X10, a high-performance subset of Java, and Cray Inc.,

under its Cascade project, developed Chapel, the Cascade

High Productivity Language.

Chapel

Chapel [2] is a new high-level parallel programming

language primarily aimed at the programmability aspect

required by the HPCS program. It aims to provide a more

expressive interface to parallel programming, in which

algorithmic details can be abstracted from underlying

optimisation details, and it takes inspiration from both

existing HPC languages such as HPF and parallel dialects

of C, as well as implementing high level language

concepts typical of more modern languages, such as Java

and Python. In terms of parallelism, Chapel implements a

global-view interface (i.e. data is not tied to any particular

parallel entity), and it provides high-level abstractions for

both the data and task parallel programming paradigms.

The Chapel programming language is still in its

development stage - the primary focus in Chapel has been

on creating a functionally complete and correct language

implementation, rather than on specific optimisations. The

version of the compiler used for the present work, v0.9,

was released on the 16
th
 April 2009.

The aims of our work are to characterise the

performance of the task-parallel constructs in the Chapel

language by means of developing a suite of benchmarks

suitable for the task parallel model. The aim was to

objectively analyse compare the performance of these

benchmarks across a range of platforms, with a view to

identifying aspects of the language implementation that

were performing sub-optimally and to isolate targets for

optimisation.

Implementation status

Chapel is very much still work in progress. While the

language now supports distributed memory architectures,

certain features are not yet (fully) implemented. These

include distributed arrays and domains, as well as some

data parallel statements, which are currently made serial

CUG 2009 Proceedings 2 of 11

by default by the compiler. The task parallel statements

are much more mature, which is why this work has

concentrate on that aspect of the language.

2. Chapel’s Task Parallel Features

While Chapel supports implicit (through whole-array

operations) and explicit (through the forall loop) data

parallelism, the main focus on this study is on the task

parallel aspects of the Chapel language. The underlying

task-parallel entity is the concept of a “task”, an

independent thread of potentially parallel computation.

Chapel manages these in task lists, and uses a specified

number of physical threads (as specified by the --

maxThreads parameter) to process these tasks. When

these threads become idle or are blocked by Chapel’s

synchronisation constructs1, then they use these task lists

in order to find new unprocessed tasks in order to

progress the computation.

“begin” and “sync” statements

The begin structure is the most basic of Chapel’s

task parallel constructs. It spawns a new parallel task to

handle the statement block and immediately continues

execution beyond it. It is classed as an unstructured

parallel construct because it only acts to introduce

parallelism, and requires external synchronisation in order

to cooperate with other threads.

The sync statement acts as a means of

synchronisation for begin statements, essentially acting as

a join that waits for completion of all the dynamically

encountered begin statements dispatched within the sync

block.

“cobegin” statement

The cobegin statement essentially acts as a

compound begin/sync statement block. Each statement

or block within the cobegin block is dispatched as a

separate task, and at the end of the block the dispatching

thread will wait until all the tasks dispatched within until

returned.

“coforall” statememt

The coforall statement is the task-parallel variant

of the data-parallel forall statement, which is in turn a

parallel variant of the plain for loop. Whereas in the

forall statement implies that independent loop

operations may be dispatched in parallel, the coforall

statement guarantees this, which may be necessary to

enforce correct behaviour in concurrent programs.

“serial” statement

In the task parallel programming model, and

especially in the case of nested parallelism, it is fairly

easy to expose too much potential parallelism in

algorithm implementations. This can result in suboptimal

performance due to threading overheads. Chapel provides

the serial statement as a convenient means of

suppressing parallelism — its effect is to disable the

spawning of parallel tasks within its scope.

The statement takes a conditional as an argument,

and if that conditional resolves to true, then any dynamic

parallelism (i.e. any of the above parallel statements)

reached inside its scope will instead be dispatched

serially. Notably, the scope of the serial statement

extends beyond the local scope to that of any statements

called from within it, and it is in turn possible to have an

inner serial statement inside the scope of some outer

serial statement which could re-enable dynamic

parallelism.

Synchronisation variables

Chapel supplies the type modifier keywords sync

and single to enable concurrent tasks to synchronise

and communicate over specialised variables. Their

interface as presented to the programmer is interesting in

that they are manipulated in the exact same manner as

regular variables, except that they have special read and

write semantics. Synchronised variables carry extra state

information that classes them as either full of empty,

depending on whether they contain a value or not.

Attempts to read from an empty variable will cause the

reading thread to block until another thread fills (i.e.

writes to) the variable, and similarly, an attempt to write

to a full variable will block until another thread empties it.

These variables essentially act as classes, and thus have a

selection of instance methods available which allow the

semantics of read and write, in terms of whether they

block or not, and whether they leave the variable full or

empty, to be chosen fairly arbitrarily. The single is

just a specialised case of the sync variable which is only

allowed to be filled once, and it causes a runtime

exception to attempt otherwise. While the functionality

(aside from the single-write semantics) of the single

variable type can be easily emulated with a sync

variable, it is imagined that the single variable type

leaves room for future compiler optimisation (for

instance, not checking the full/empty status of a single

variable twice within the same block).

It’s also notable that the form of blocking employed by

these synchronisation variables can cause a Chapel

program to deadlock if the allowable number of threads

running synchronously has already been reached—this is

especially likely if the –maxThreads option has been

set to 1. This is in contrast to the form of blocking

employed by the explicit and implicit synchronisation

statements, in which a blocked thread will check if there

are an unprocessed tasks present on the task list that could

CUG 2009 Proceedings 3 of 11

be executed, and thus progress the computation

(However, enabling this kind of continuous progression

computation on the context-less synchronisation variables

would be very complicated indeed, so this is

understandable).

3. Benchmarks

This work has aimed to cover a range of task parallel

benchmarks, starting with some very small and trivial

benchmarks designed to stress or demonstrate particular

language features, while the remaining benchmarks are

more based around computational kernels, ending with

something resembling a very small application-level

benchmark.

Some of the benchmarks were used on shared-

memory nodes only (N-Queens, Strassen, Mandelbrot),

others were aimed at distributed memory architectures (Pi

and Black-Scholes). The latter benchmarks were chosen

to avoid the use of distributed datastructures, which,

although supported, are in very early stages of

optimisation.

Microbenchmarks

Chapel’s parallel constructs there are different ways

to achieve the same thing, but essentially only a few

forms of underlying mechanisms. In a bid to quantify the

difference in performance that might arise from the choice

of parallel construct employed, a few short

microbenchmarks were written. The benchmarks show

five different implementations to call an arbitrary function

eight times. The functions are repeated 5000 times in

order to gather more reasonable timing statistics. The five

implementations use: cobegin; begin with single

variables; begin with a sync block; begin with a sync

block and a parameterised for loop; coforall loop.

N-Queens

The eight queens puzzle is the problem of

enumerating the number of configurations in which eight

queens can be placed on a standard 8×8 chess board in a

non-conflicting fashion, i.e. no two queens are on the

same row, column or diagonal on the board. There are

over 4 billion possible ways of placing eight queens on a

chess board, and yet there are only 92 possible solutions.

The n-queens problem is a generalised formulation of

the eight queens puzzle in which n queens have to be

placed on an n×n chessboard. While serving little

practical purpose, it is a fairly well developed problem in

the field of computer science as it serves as an example of

many forms of algorithms and concepts, such as the cost

of brute-force search and the use of heuristics. As such,

there exist many standard implementations of the problem

in a large number of computer programming models.

As a benchmark, the problem is interesting because

of the explosive size of the search space. Viewed naïvely,

there are ∏ ��� � ���	
� possible solutions for an n×n

chessboard, providing a very high computational

complexity but the configurations of the problem can be

expressed in an n-tuple of integers between 1 and n,

meaning the problem has a very low memory complexity

and additionally the problem requires no floating point

calculations. In this project we are aiming to benchmark

the parallel capabilities of the language, not the memory

or floating point properties of any particular machine

(which are generally the targeted factors of HPC

benchmarks), so this benchmark presents an ideal testing

ground, with a large range of different problem sizes to

work with, and a variety of possible programming

approaches to solving the problem.

The most relevant algorithmic approach here is the

recursive backtracking search, due to its natural mapping

onto task parallel constructs. Restricting the

implementation to be based on this particular algorithm is

not particularly limiting as here the focus is on the means

of parallelisation, in which there are several options, and

not the details of the algorithm itself.

Implementation in Chapel

The serial algorithm, which also forms the core of the

parallel algorithm, is represented as a recursive function

which takes as arguments the current row number and the

current configuration of queens, and returns the number

of solutions found as an integer.

def nqueens_solv(row : int, queens : [] int) : int {
 var solutions = 0;

 // iterate over columns
 for col in 1..n
 {
 // test current config
 if (isSafe(col, row, queens))
 {

 //place queen in row
 queens[row] = col;

 // not complete -> recurse & accumulate
 if (row < n) then

 solutions += nqueens_solver(row + 1, queens);
 // complete -> increment count
 else solutions+=1;
 }
 }
 return solutions;

}

Figure 1: Recursive serial n-queens solver in Chapel

The naive form of task parallel decomposition of this

algorithm is to simply assign each first row queen

CUG 2009 Proceedings 4 of 11

position to a parallel task (of which there will be n in

total) and sum the results. This however presents severe

load balance issues because the algorithm only searches

through safe configurations and the various starting

columns each give rise to different numbers of safe

configurations, thus differing quantities of computational

work. In order to supply a non trivial amount of

computational work for benchmarking, n is chosen to be

in the 12-14 range, and this approach will only scale

while n (and thus the number of potential parallel tasks) is

much larger than the number of processors.

A slightly more advanced solution involves spawning

a parallel task for each of the possible configurations for

the first two rows, thus providing O(n
2
) possible parallel

tasks, which is much greater than the potential number of

processors. This will involve a substantial overhead due

to dispatching significantly more parallel tasks, but

providing a much finer granularity of decomposition

means the load balance issue is alleviated and the

algorithm will scale to a greater number of processors.

def parallel_nqueens(n: int) {

 var partialSolutions : [1..n, 1..n] int;

 sync {

 // for each possible configuration
 // for row 1 and 2 (r1,r2)
 for (r1,r2) in [1..n, 1..n] {

 // if the configuration is safe
 // (ie queens do not conflict)
 if(r1!=r2 && r1!=r2+1 && r1!=r2-1) {

 begin {

 // form row 1 and 2 as a
 // configuration array
 var qconfig : [1..n] int;
 qconfig[1..2] = (r1,r2);

 partialSolutions[r1,r2]=nqueens_solver(3,qconfig);

 }
 }

 }
 }

 var totalSolutions = + reduce partialSolutions;
 return totalSolutions;
}

Figure 2: Dispatching the n-queens solver in parallel

Strassen

Matrix multiplication forms the dominant aspect of

the runtime for many computer applications because of

it’s relatively high complexity — ���
� in the naive case.
Strassen’s algorithm is a reformulation of matrix

multiplication which reduces its complexity for certain

specialised cases, specifically square matrices of size

2
n
×2

n
. While this is a not insignificant improvement in

runtime, it should be noted that Strassen’s algorithm does

suffer from certain numerical stability problems —

however, it serves as an excellent benchmarking example

because it naturally exhibits both recursive parallelism

and task decomposition, while introducing a fairly

significant amount of floating point calculation.

Strassen’s algorithm is based around decomposing

each of the matrices, say A and B, to be multiplied into

four equally-sized block matrices, each representing a

quadrant of the original. Seven new matrices M1−7, each

the size of a quadrant, are calculated based on these

decompositions and are used to define a new matrix C,

the result of the multiplication.

In the ideal case this algorithm is applied recursively

in order to perform the matrix multiplications necessary to

calculate M1−7 until the size of the matrix quadrants have

degenerated into scalars. In practical terms it is more

optimal to use naive matrix multiplication once the matrix

quadrants become smaller than a certain threshold. The

notable feature of this algorithm is that it is a divide and

conquer algorithm in which the work is done in the divide

stage, and it is not trivial to pre-generate the set of tasks

required for expressing this in the task-decomposition

style.

Chapel implementation

The most notable (relevant) factors in the Chapel

implementation are the use of both scalar-promotion

whole-array operations and the use of domains, which are

a new Chapel concept. Domains are first-class values in

Chapel which define sets and subsets of array indices for

arbitrary numbers of dimensions. By generating domains

for each quadrant of each array being worked with it

becomes possible to use whole-array operations on

specific quadrants of these arrays. The first half of the

Strassen algorithm generates the quadrants of the two

source matrices, which are then are used to index into the

arrays for whole-array operations that pre-compute the

factors of the multiplications that form the second part of

the algorithm. In theory, these pre-computations should

not be necessary because it should be possible to use

whole-array operations as arguments to the later matrix

multiplications. The actual pre-computations are done

within a cobegin statement, but this is largely

opportunistic parallelism because these submatrix

operations complete very quickly.

Strassen’s algorithm is a recursive algorithm,

designed to operate on successively smaller submatrices.

In the ideal case, this recursion would continue until the

submatrix computations required are just unit operations

CUG 2009 Proceedings 5 of 11

(i.e. 1×1 matrix operations), but in practical

implementations it is generally most efficient to switch to

using naive multiplication once the size of the

submatrices reaches a certain threshold. Regardless of

which algorithm is used to perform the submatrix

computations, in the Chapel implementation all these

computations are performed in parallel using a cobegin

statement, and it is here that the bulk of the parallel

computation is performed. Finally, once these operations

are complete, another set of whole-array operations are

used to assemble the quadrants of the result matrix, C,

which is returned as the result.

 Mandelbrot

The Mandelbrot benchmark represents a benchmark

with a fairly substantial memory and floating point

requirement, but without the complicated hybrid nested-

task-farm decomposition illustrated in the Strassen

benchmark.

Chapel implementation

The kernel of the Mandelbrot benchmark is obviously

very well known, and the Chapel implementation is

shown in Figure 3. This function takes a 2D array

representing the image, and performs the standard

Mandelbrot algorithm with the external variables

maxIters and escapeLimit taking their usual roles. It’s

most notable feature is at the start of the main loop, where

it uses a Chapel tuple combined with iteration over a

domain.

def mandelbrot(image : [?D] real) where D.rank==2

{
 for (px,py) in D {

 //Map from pixel-space into real-space
 var (x,y) = map(px,py);
 var (xt,yt) = (x,y);
 var iter = 0;

 while (xt*xt + yt*yt <= escapeLimit

 && iter < maxIters)
 {
 var xtemp = xt*xt - yt*yt + x;
 yt = 2*xt*yt + y;
 xt = xtemp;

 iter += 1;
 }
 if (iter == maxIters) then image(px,py)=0;
 else image(px,py)=iter;
 }
}

Figure 3: The (abridged) kernel of the Mandelbrot

benchmark, in Chapel.

Because the kernel is defined to operate on an array,

parallelising the Mandelbrot benchmark was trivial. An

iterator function decomposeDomain() was developed,

which takes a Chapel domain and two dimensions as

arguments, and then it returns a stream of subdomains

which divide the source domain as requested. The

parallelisation loop is shown in Figure 4, in which a

coforall loop is used to iterate over this stream of

subdomains in parallel.

coforall d in decomposeDomain(imageD,xdecomp,ydecomp)

 do mandelbrot(image[d]);

Figure 4: Parallelising the Mandelbrot benchmark.

Pi

The number π can be approximated using a simple

formula:

�
4 � � ��

1 � ��
�

�
� 1
��

1
1 � �� � 0.5� ��

�

	
�

The larger the value of N, the more accurate the

approximation will be. All N iterations of the sum are

independent of each other, making the problem trivial to

parallelise.

This benchmark was chosen primarily to look at the

performance of a small, embarrassingly parallel problem

on distributed memory architectures. No large arrays or

data structures are being used and the algorithm only uses

a small amount of floating point calculation.

Chapel implementation

The parallel implementation of this benchmark in

Chapel was straightforward. In order for the code to run

on a distributed memory system, to work load needs to be

distributed evenly between locales. This is done using a

coforall statement. A second coforall statement is then

used to further break up the work based on the number of

threads that are available on each locale. Each task

calculates its portion of the overall sum, which then needs

to be added to the global total – this is done by using a

sync variable on Locales(0), which ensures that only

one tasks at a time can write to the variable. Figure 5

shows the implementation of the π approximation

algorithm.

var total$: sync real = 0.0;

var pi : real = 0.0;
var totalTasks : int = numLocales * maxThreads;

coforall loc in Locales{
 on loc {

 coforall tid in 0..maxThreads-1 do{

 var sum : real = 0.0;
 var overallTaskID : int = here.id * maxThreads + tid;

 var lower, upper : int = 0;

 lower = overallTaskID * (N / totalTasks);
 upper = lower + (N / totalTasks - 1);

 for n in lower..upper{

CUG 2009 Proceedings 6 of 11

 sum += (1 / (1 + ((n - 0.5)/N)**2));

 }

 on Locales(0) do {
 total$ += sum;
 }

 }
 }
}
pi = total / N * 4;

Figure 5: Chapel implementation of π approximation

algorithm.

Black-Scholes

The Black-Scholes algorithm is a well known model

from the world of finance theory. It was chosen as a

benchmark because it represents a real-life application

which can easily be parallelised using a Monte Carlo

technique and which dies not rely on distributed data

structures. The Black-Scholes model simulates the

variation of stock prices over a certain period of time,

based on current stock price, risk and volatility rates, as

well as random fluctuations of prices. The simulations are

independent of each other and can be executed

concurrently.

The parallelisation is similar to the π approximation

benchmark, yet the Black-Scholes algorithm is much

more compute intensive and will thus give a more

accurate reflection of the real performance of the Chapel

compiler.

Chapel implementation

The simulations are distributed among locales and

threads using two coforall statements. Each thread then

uses nested for loops to represent the number of

simutations and the duration of each simulation. Factors

such as the volatility or the risk are global and live on

Locales(0) – however every remote thread needs to

access them continuously during every simulation. These

factors are therefore defined as params – the compiler

will replicate the constants on every locale, thus

optimising access. Figure 6 shows the abridged Chapel

implementation of the Black-Scholes algorithm.

coforall loc in Locales{

 on loc{

 coforall tid in 0..maxThreads-1{

 /* instantiate variables etc. */
 …

 cobegin {

 a = 1.0 + (rc * dt);
 b = volatility * sqrt(dt);
 invnsteps = 1.0 / (ntimesteps:real);
 }

 /* loop over iterations */
 for i in lower..upper{

 /* initialise stock price and sum */
 …
 /* loop over time steps */
 for n in 0..ntimesteps-1 {

 /* use second random number on odd iterations */

 if(n & 1) then gr(1) = gr(2);

 /* new random numbers on even iterations */
 else fillRandom(gr, seed);

 /* next stock price */
 s = s * (a + (gr(1) * b));

 ssum += s; /* add it to sum */
 }

 /* avg stock price for simulation */
 sav = ssum * invnsteps;

 locsavsum += sav; /* add it to sum */

 if (sav > k) then loccsum += (sav-k);
 else locpsum += (k-sav);
 }

 on Locales(0) do {
 savsum$ += locsavsum;

 csum$ += loccsum;
 psum$ += locpsum;
 }
 }
 }

}

/* calculate average stock price, call and put */
sbar = savsum$ * invnruns;
cfinal = csum$ * invnruns;
pfinal = psum$ * invnruns;

Figure 6: Abridged Black-Scholes implementation in

Chapel.

4. Description of Hardware

One of the major aims of Chapel is portability and

performance on different types of hardware architectures.

We therefore chose to run our benchmarks on three

distinct systems, which are introduced below.

4.1 Ness

EPCC’s compute service Ness, which is mainly used

for teaching purposes, is a small Linux system consisting

of two 16-way SUN X4600 compute servers. It uses 8

dual-core AMD Operton (AMD64e) processors per node

which have a clock speed of 2.6GHz and 2GB memory

per chip.

The OS on Ness is Scientific Linux and the SUN

Grid Engine is used as a batch scheduler. The GNU

compiler (version 4.1.1) was used to build the Chapel

compiler itself (which runs on the front-end of the

system), whereas the Portland Croup Compiler Suite (PGI

CUG 2009 Proceedings 7 of 11

version 7.0.7) was used for the compilation of the Chapel-

generated C code, which runs on the backend.

The largest queue on Ness is 16 cores, therefore the

only shared-memory performance of Chapel could be test

on this system.

4.2 HPCx

HPCx [3] was the UK’s national supercomputing

service until the end of 2007 and remains in service until

2010. HPCx consists of 160 IBM eSERVER 575 compute

nodes, which are set up as a shared-memory cluster with

dedicated interconnect, in this case IBM’s own

“Federation” High Performance Switch. HPCx has a

total of 2560 processing cores. HPCx uses Power5 chips

at 1.5GHz clock speed. There are 8 dual-core chips per

shared-memory node, with a total of 32GB memory per

node.

The Power5 architecture allows for simultaneous

multi-threading (SMT): each processor can execute two

instruction streams simultaneously and thus run two

threads concurrently. Each physical processor is split into

two logical processors. Therefore, with SMT enabled, the

the 16 processor nodes can in fact execute 32 threads.

The OS on HPCx is AIX version 5.3. The Parallel

Operating Environment (POE) and LoadLeveler are used

for batch scheduling. The XL compiler suite (version 8.0)

was used to compile both the front-end and the back-end

code. Chapel code can be run across nodes on HPCx by

using GASNet’s LAPI conduit.

4.3 HECToR

HECToR (High-End Computing Terascale Resource)

[4] is the UK’s current national supercomputing service.

HECToR is a Cray XT4 based MPP, with an X2 vector

unit. HECToR consists of 1416 compute blades, each

housing four dual-core AMD Opteron chips (2.8GHz,

with 6GB main memory per chip) – this amounts to a

total of 11,328 processing cores. The interconnect used on

HECToR is Cray’s SeaStar2 – each compute chip controls

a router chip – and is set up as a 3D torus.

The Chapel benchmarks were run both on the

HECToR TDS (test and development system), which runs

the Cray Linux Environment (CLE) version2.1.50HD,

and the main HECToR service, which runs CLE version

2.0.62. The GNU compiler (version 4.1.2) and the PGI

compiler (version 8.0.3) were used for the login and

compute nodes respectively.

5. Shared Memory Performance

This section will look at the performance of our

Chapel benchmarks on shared memory nodes, comparing

them to equivalent implementation in C & Pthreads. The

implementation of the parallel features on single locales is

much more mature than on distributed memory, which is

why the more challenging benchmarks that include large

domains and datatstructures were only run on single

nodes. In addition, the microbenchmarks were run to

assess the performance of the task parallel features and

the new version of the Chapel compiler

Microbenchmarks

The first notable thing about the results here is that

there are no results from HPCx as the benchmarks just

would not run on this platform (they would fail silently).

It is suspected that this is related to stack size limits in the

default setup of the AIX operating system and the XL

compilers, but this could not be accurately diagnosed.

On Ness, the benchmarks were run on 1, 2, 4 and 8

threads in order to ensure the available threads divide

equally into the 8 tasks that were being dispatched. By

comparing the results in this fashion, there is a clear

disparity in performance between two distinct groups of

the microbenchmarks. The ones which used explicit

begin statements (begin_sync, begin_single,

begin_param) universally performed quite poorly, and

the co-dispatch (cobegin, coforall) versions retained

constant runtime. The underlying reasons for this are that

the co-dispatch style implementations first setup the tasks,

and then dispatch them all at once (thus incurring only

one dispatch overhead), whereas the begin-style

implementations will perform a dispatch every time begin

statement is passed in the iteration. It should be noted that

the performance character would change if there was any

significant work within the synchronised block, since the

begin-style benchmarks would get started earlier, rather

than waiting for the end of the block to dispatch all the

tasks at once.

Table 1 makes a direct comparison of Chapel

versions 0.7 and 0.9 running the microbenchmarks on 1

up to 8 threads on Ness. It is clear from the runtimes that

the performance on the begin statements was improved.

However the co-dispatch statements have suffered a drop

in performance – the runtimes are still mostly constant

from 2 threads up, yet they are poorer than with the earlier

version of the compiler. This could be caused by

correctness fixes in the compiler which result in

additional overheads.

CUG 2009 Proceedings 8 of 11

Ness 1 2 4 8

begin_single v0.7 - 2180.9 5057.9 7034.7

v0.9 - 1966.3 4704.6 6219.7

begin_sync v0.7 364.8 2253.1 4133.8 6830.7

v0.9 351.9 1679.9 2685.3 6244.9

begin_param v0.7 362.60 2243.4 5035.4 6772.8

v0.9 354.72 1693.2 4553.1 5878.1

cobegin v0.7 323.7 867.3 830.8 868.9

v0.9 312.9 995.6 1021.1 1268.3

coforall v0.7 322.56 847.81 806.45 810.82

v0.9 335.86 1024.8 944.02 1298.5

Table 1: Comparsion of microbenchmark performance

(runtimes in ms) on Ness - Chapel v0.7 and v0.9.

N-Queens

In the N-Queens benchmark implementations threads

are assigned a tangible amount of work and the

performance results follow a somewhat predictable

pattern (see Table 2). The C performance is consistently

around 4 times better than Chapel’s. This reflects the fact

that the runtime of the algorithm is dominated by actual

computational work, as opposed to any overheads due to

threading or memory leaks.

Even as the number of threads is increased, the

performance ratio between the C/Pthreads and Chapel

implementations remains very consistent. Between Ness

and HPCx, the performance difference also remains fairly

consistent as the number of threads is scaled up. The ratio

of runtimes between Ness and HPCx is nearly equal to the

clockspeed ratio on the two systems (2.6GHz vs.

1.5GHz). Looking at speedup, it becomes apparent that

while the Chapel implementation scales near linearly on

both Ness and HPCx (with superlinear scaling on Ness up

to 8 threads), the C & Pthreads implementation shows

consistently worse scaling. On Ness, the performance

ratio between Chapel and C drops from 4.6 on 1 thread to

3.2 on 16 threads.

n=13 1 2 4 8 16

Ness,

Chapel

6849ms 3265ms 1624ms 830ms 435ms

1.00 2.10 4.22 8.25 15.73

HPCx,

Chapel

13047ms 7038ms 3406ms 1799ms 920ms

1.00 1.85 3.83 7.25 14.17

Ness,

C

1477ms 779ms 433ms 248ms 133ms

1.00 1.91 3.44 6.00 11.17

Table 2: Runtimes and speedup for N-Queens with n=13 on

Ness and HPCx, up to 16 threads.

Strassen

Strassen’s algorithm forms the most heavyweight of

the benchmarks, exhibiting both task parallelism and

nested parallelism, as well as a significant degree of

floating point calculation. Additionally, it is the

benchmark with the most complicated implementation -

its kernel consists of around 100 lines of recursive array

manipulation.

n=512 1 2 4 8 16

Ness,

Chapel

1890ms 1116ms 531ms 307ms 208ms

1.00 1.69 3.56 6.15 9.09

HPCx,

Chapel

1975ms 1463ms 1246ms 1735ms 1935ms

1.00 1.35 1.59 1.14 1.02

HECToR,

Chapel

1779ms 926ms - - -

1.00 1.92 - - -

Ness,

C

1660ms 1010ms 749ms 672ms 741ms

1.00 1.64 2.22 2.47 2.24

Table 3: Runtimes and speedup for Strassen's algorithm

(512x512 matrix) up to 16 threads.

Comparing the single threaded results in Chapel and

C on different platforms (see Table 3), the performance is

roughly equal. The C implementation achieves the fastest

runtimes, yet the timings on HECToR, Ness and HPCx

are not far off the mark.

Looking at the runtimes and the scaling up to 16

threads, it becomes clear that the behaviour of the Chapel

implementation on HPCx and Ness is drastically different.

The scaling is very good on Ness up to 4 threads, then

dropping to a poorer, but still acceptable level. On HPCx

however the code does not even scale up to 4 threads –

the runtime on 16 threads is similar to that on a single

thread. Additionally of note is the total failure of the C

implementation to scale past 2 threads. This was a fairly

complicated algorithm to implement in C, especially

while trying to map its implementation to that of Chapel’s

using the pseudo-domain arrays and dynamic memory

allocation, so it’s quite feasible that this is due to

programmer error. This very fact may support the Chapel

argument for programmability in parallel languages.

Pthreads is a very difficult environment to work with - in

this particular case Chapel has provided an appropriate

programming environment that made it possible to write

code that ran faster than C.

Mandelbrot

The Mandelbrot benchmark is implemented in the

task-decomposition style and introduces a significant

floating point requirement. In terms of single threaded

performance, the runtime ratio between the two systems is

consistent and largely accountable to the difference in

processors clock speeds (see Table 4).

In terms of time, the Mandelbrot benchmark shows

certainly Chapel’s best performance—on Ness, the

Chapel implementation marginally beats the performance

of the C implementation in both runtime and scaling up to

4 threads. The performance up to 16 threads is slightly

poorer, but it is still a match for the C implementation.

CUG 2009 Proceedings 9 of 11

The reason for the good performance of the Chapel code

is that the kernel of the algorithm is based around a triply

nested loop (technically, a 2D loop and a 1D loop), and

doesn’t contain Chapel features other than arithmetic —

essentially, there’s not much room for the compiler to go

wrong in converting this into C. The HPCx result and the

Ness results also remain a consistent factor apart, further

suggesting this benchmark is entirely bound by floating

point speed rather than of any operating system feature.

d=8 1 2 4 8 16

Ness,

Chapel

1547ms 777ms 389ms 204ms 111ms

1.00 1.99 3.97 7.60 13.91

HPCx,

Chapel

2427ms 1216ms 612ms 323ms 170ms

1.00 1.99 3.97 7.52 14.26

Ness,

C

1552ms 778ms 395ms 196ms 104ms

1.00 2.00 3.93 7.93 15.02

HPCx,

C

2148ms 1074ms 539ms 282ms 146ms

1.00 2.00 3.99 7.62 14.74

Table 4: Runtimes and speedup for the Mandelbrot

benchmark up to 16 threads (image size 2048x2048,

decomposition 8x8).

5. Distributed Memory Performance

Support for multi locale execution of parallel features

has recently been added to the Chapel compiler. Two

simple, embarrassingly parallel, benchmarks were written

to assess Chapel ability to generate code that can run on

distributed memory system. Chapel uses GASNet as its

low-level communication network. GASNet offers

different conduits for a wide range of architectures – in

this case, the Portals conduit and the LAPI (Low-level

Application Programming Interface) conduit were used on

the Cray XT4 and the IBM Power5 respectively.

Unfortunately, there were problems with the LAPI

conduit and the use of RDMA (Remote Direct Memory

Access) – an “unknown error” occurred at runtime,

disabling RDMA. Unfortunately we have thus far not

been able to fix this problem.

Pi

The Pi approximation algorithm is embarrassingly

parallel, with a small number of floating point operations

per iteration, and was thus expected to perform well with

Chapel. The Chapel code was compared to a C & MPI

implementation of the algorithm – see Table 5 for

runtimes and scaling on both shared memory (1 locale)

and distributed memory (2 locales on HPCx and 2 to 16

locales on HECToR TDS).

Looking at the shared memory performance on Ness,

it becomes apparent that the Chapel implementation

outperforms the C & MPI code – though neither

implementation scales well on this platform. On HPCx,

the performance of the multi-locale runs is interesting: all

runs were set up to span across two nodes, thus a run with

4 threads puts 2 threads on each node. The scaling for

these runs is super linear, because with increasing

numbers of threads inside each node, the overheads

created by the multi-locale executions become ever

smaller. As a result, the ratio between the single and multi

locale runtimes on 4 and 32 threads respectively is

reduced from 4.8 to 1.3.

 1 2 4 8 16 32

Ness

comm=none

112ms 56ms 37ms 18ms 17ms -

1.00 1.99 2.98 5.93 6.62 -

Ness,

C & MPI

110ms 55ms 43ms 19ms 25ms -

1.00 1.98 2.52 5.60 4.39 -

HPCx,

comm=none

181ms 91ms 46ms 24ms 23ms -

1.00 1.99 3.95 7.69 7.69 -

HPCx SMT,

comm=none

- - - - 23ms 17ms

- - - - 16.00 21.57

HPCx,

comm=gasnet

- - 222ms 75ms 38ms 22ms

- - 4.00 11.77 23.06 40.46

HECToR TDS,

comm=none

112ms 56ms - - - -

1.00 1.99 - - - -

HECToR TDS,

comm=gasnet

- 112ms 85ms 43ms 22ms 13ms

- 2.00 2.64 5.17 14.16 17.68

HECToR TDS,

C & MPI

111ms 56ms 28ms 14ms 8.7ms 7ms

1.00 1.98 3.91 7.98 12.71 15.65

Table 5: Runtimes and speedup for the Pi approximation

benchmark, run with 8.4 million iterations.

On HECToR TDS, the performance of the C & MPI code

and the single node performance of Chapel are near

identical. Compared to the multi locale performance

however, the MPI code is twice as fast for all runs up to

32 threads. We suspect this is because of overheads

introduced by the use of GASNet.

Black-Scholes

For the Black-Scholes algorithm, we are not only

comparing the performance on different architectures, but

also the difference in performance of Chapel code written

for serial, single and multi locale execution. The serial

code contains no parallel statements at all and is basically

a direct translation of a serial C code into Chapel. The

single locale code does contain parallel statements, but

the code that distributes work among locales was

removed. Some of the variable instantiations that need to

be done on locale and thread level (i.e. inside the

coforall statements) in the distributed code were moved

out of these blocks.

Table 6 shows the runtimes and speedup of the three

different versions of the algorithm on Ness, using only

one locale. It is noticeable that on one thread both the

single and the multi locale implementations are quicker

than the serial version. This is possibly due to compiler

optimisation that are applied for blocks of independent

CUG 2009 Proceedings 10 of 11

computation, which are highlighted in the parallel

versions of the code (with a cobegin statement for

instance). While neither parallel implementation scales

well, the single locale code performs considerably better

than the multi locale version. This could be explained by

overheads that are introduced unnecessarily by the

distributed code. The results on Ness are as would be

expected.

 1 2 4 8 16

Ness, serial

comm=none

35ms - - - -

- - - - -

Ness, single

comm=none

29ms 16ms 12ms 7ms 4ms

1.00 1.81 2.35 3.80 6.74

Ness, multi

comm=none

29ms 14ms 10ms 11ms 8ms

1.00 1.97 2.96 2.46 3.54

Table 6: Runtimes and speedup on Ness for serial, single

loacle and multi locale implementation of the Black-Scholes

algorithm (32,000 runs over 91 days).

Performance on HPCx (see Table 7) however is

surprising. The serial performance is in line with that of

Ness, yet on a single node the single locale code runs

slower by a factor of nearly 2.5 compared to the multi

locale code. It is unclear why this might be the case. On

16 threads the multi locale implementation on HPCx is

faster than the single locale code on Ness, which is

completely unexpected. Further investigation is required

to fully understand the reasons behind this.

The performance on the algorithm across nodes (2

locales were used here) is quite poor, yet the code shows

good scaling up to 32 threads. The slow runtimes are

likely due to the lack of RDMA and the underpopulation

of the nodes – the overheads of setting up the work

distribution exceeds the benefits of doing so. This

becomes by looking at the runtime ratios: on 4 threads,

the ratio between the single locale and the distributed

timings is a factor of 9, yet on 32 threads this is reduced

to 3.

 1 2 4 8 16 32

HPCx, serial

comm=none

37ms - - - - -

- - - - - -

HPCx, single

comm=none

63ms 32ms 17ms 9.4ms 8.8ms 9.2ms

SMT

1.00 1.97 3.68 6.71 7.16 6.88

HPCx, multi

comm=none

26ms 13ms 7ms 4.5ms 5.3ms 6.5ms

SMT

1.00 1.94 3.70 5.86 5.01 3.96

HPCx, multi

comm=gasnet

- - 155ms 54ms 28ms 27ms

- - 4.00 11.51 22.04 22.61

Table 7: Runtimes and speedup on HPCx for serial, single

loacle and multi locale implementation of the Black-Scholes

algorithm (32,000 runs over 91 days).

On HECToR, both the serial and the single locale

codes perform as expected and in line with what was seen

on Ness. The multi locale however shows a rather

disappointing performance – the scaling stops at 16

threads and the runtimes are only slightly better than

those seen on HPCx. The problem size that was run

(32,000 iterations over 91 timesteps each) is a realistic

size and the computation should be sufficient to mask any

communication overheads. Again, further investigation is

needed to be able to explain the behaviour of the multi

locale implementation.

 1 2 4 8 16 32

HECToR, serial

comm=none

31ms - - - - -

- - - - - -

HECToR, single

comm=none

28ms 21ms - - - -

1.00 1.31 - - - -

HECToR, multi

comm=gasnet

- 132ms 100ms 51ms 27ms 17ms

- 2.00 2.63 5.15 9.74 15.43

Table 8: Runtimes and speedup on HECToR for serial,

single loacle and multi locale implementation of the Black-

Scholes algorithm (32,000 runs over 91 days).

6. Conclusions

Running both the single locale and the multi locale

benchmarks has provided us with an interesting picture of

what the current implementation of Chapel is capable of.

Overall, the most difficulties were encountered on HPCx,

which does not come as a surprise – this is a type of

system that the Chapel development team has only

recently been given access to and thus they have only

been able to put very limited effort into its support.

While the Chapel implementations of the different

benchmarks are often outperformed by the C

implementations of the same algorithm (whether

parallelised with Pthreads or MPI), the general

performance patterns of this new language are very

encouraging, especially inside shared memory nodes.

As was said at the beginning of this paper, Chapel is

still very much work in progress. Performance

optimisation has so far not been a priority of the

development team and the current implementation still

suffers from problems such as memory leaks. However

such issues are minor (and fixable). The important thing is

that Chapel offers a novel way of approaching parallel

programming and the performance that the language

shows at this early stage is very positive indeed.

CUG 2009 Proceedings 11 of 11

Acknowledgments

The authors would like to thank the Chapel

development team for their continued help and invaluable

input.

References

[1] HPCS: http://www.highproductivity.org/

[2] Chapel: http://chapel.cs.washington.edu/

[3] HPCx: http://www.hpcx.ac.uk

[4] HECToR: http://www.hector.ac.uk

About the Authors

Michèle Weiland works as an Applications

Consultant at EPCC, the supercomputing centre at The

University of Edinburgh. She can be reached at EPCC,

The University of Edinburgh, James Clerk Maxwell

Building, Mayfield Road, Edinburgh EH9 3JZ, UK;

email: m.weiland@epcc.ed.ac.uk or at.

Thom Haddow is currently working on his PhD in the

Distributed Software Engineering group at Imperial

College in London. Thom can be reached at Department

of Computing, 346 Huxley Building, Imperial College,

SW7 2AZ; email: thaddow@doc.ic.ac.uk.

