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1. Introduction 

Over the past few years the United States Department 

of Defence research agency, DARPA, has been funding 

several diverse HPC projects under the heading of its 

High Productivity Computer Systems (HPCS) [1] 

research and development program. The HPCS program 

aims to increase supercomputer productivity by 2010 by 

fostering progress across the whole HPC domain, from 

computer hardware and architecture development, to 

software tools and programming environments. The stated 

aims of this program is to develop systems with 

“Performance, Programmability, Portability and 

Robustness” as key properties. One of the component 

projects of the HPCS program is the development of new 

programming languages for HPC which focused on these 

properties. Three new programming languages, from three 

supercomputing companies, were sponsored by this 

project: Sun Microsystems developed Fortress, a 

language aiming to map mathematical and algorithmic 

concepts into a programming language, IBM developed 

X10, a high-performance subset of Java, and Cray Inc., 

under its Cascade project, developed Chapel, the Cascade 

High Productivity Language.  

Chapel 

Chapel [2] is a new high-level parallel programming 

language primarily aimed at the programmability aspect 

required by the HPCS program. It aims to provide a more 

expressive interface to parallel programming, in which 

algorithmic details can be abstracted from underlying 

optimisation details, and it takes inspiration from both 

existing HPC languages such as HPF and parallel dialects 

of C, as well as implementing high level language 

concepts typical of more modern languages, such as Java 

and Python. In terms of parallelism, Chapel implements a 

global-view interface (i.e. data is not tied to any particular 

parallel entity), and it provides high-level abstractions for 

both the data and task parallel programming paradigms. 

 

The Chapel programming language is still in its 

development stage - the primary focus in Chapel has been 

on creating a functionally complete and correct language 

implementation, rather than on specific optimisations. The 

version of the compiler used for the present work, v0.9, 

was released on the 16
th
 April 2009. 

 

The aims of our work are to characterise the 

performance of the task-parallel constructs in the Chapel 

language by means of developing a suite of benchmarks 

suitable for the task parallel model. The aim was to 

objectively analyse compare the performance of these 

benchmarks across a range of platforms, with a view to 

identifying aspects of the language implementation that 

were performing sub-optimally and to isolate targets for 

optimisation. 

Implementation status 

Chapel is very much still work in progress. While the 

language now supports distributed memory architectures, 

certain features are not yet (fully) implemented. These 

include distributed arrays and domains, as well as some 

data parallel statements, which are currently made serial 
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by default by the compiler. The task parallel statements 

are much more mature, which is why this work has 

concentrate on that aspect of the language. 

2. Chapel’s Task Parallel Features 

While Chapel supports implicit (through whole-array 

operations) and explicit (through the forall loop) data 

parallelism, the main focus on this study is on the task 

parallel aspects of the Chapel language. The underlying 

task-parallel entity is the concept of a “task”, an 

independent thread of potentially parallel computation. 

Chapel manages these in task lists, and uses a specified 

number of physical threads (as specified by the --

maxThreads parameter) to process these tasks. When 

these threads become idle or are blocked by Chapel’s 

synchronisation constructs1, then they use these task lists 

in order to find new unprocessed tasks in order to 

progress the computation. 

“begin” and “sync” statements 

The begin structure is the most basic of Chapel’s 

task parallel constructs. It spawns a new parallel task to 

handle the statement block and immediately continues 

execution beyond it. It is classed as an unstructured 

parallel construct because it only acts to introduce 

parallelism, and requires external synchronisation in order 

to cooperate with other threads. 

 

The sync statement acts as a means of 

synchronisation for begin statements, essentially acting as 

a join that waits for completion of all the dynamically 

encountered begin statements dispatched within the sync 

block. 

“cobegin” statement 

The cobegin statement essentially acts as a 

compound begin/sync statement block. Each statement 

or block within the cobegin block is dispatched as a 

separate task, and at the end of the block the dispatching 

thread will wait until all the tasks dispatched within until 

returned. 

“coforall” statememt 

The coforall statement is the task-parallel variant 

of the data-parallel forall statement, which is in turn a 

parallel variant of the plain for loop. Whereas in the 

forall statement implies that independent loop 

operations may be dispatched in parallel, the coforall 

statement guarantees this, which may be necessary to 

enforce correct behaviour in concurrent programs. 

“serial” statement 

In the task parallel programming model, and 

especially in the case of nested parallelism, it is fairly 

easy to expose too much potential parallelism in 

algorithm implementations. This can result in suboptimal 

performance due to threading overheads. Chapel provides 

the serial statement as a convenient means of 

suppressing parallelism — its effect is to disable the 

spawning of parallel tasks within its scope. 

 

The statement takes a conditional as an argument, 

and if that conditional resolves to true, then any dynamic 

parallelism (i.e. any of the above parallel statements) 

reached inside its scope will instead be dispatched 

serially. Notably, the scope of the serial statement 

extends beyond the local scope to that of any statements 

called from within it, and it is in turn possible to have an 

inner serial statement inside the scope of some outer 

serial statement which could re-enable dynamic 

parallelism. 

Synchronisation variables 

Chapel supplies the type modifier keywords sync 

and single to enable concurrent tasks to synchronise 

and communicate over specialised variables. Their 

interface as presented to the programmer is interesting in 

that they are manipulated in the exact same manner as 

regular variables, except that they have special read and 

write semantics. Synchronised variables carry extra state 

information that classes them as either full of empty, 

depending on whether they contain a value or not. 

Attempts to read from an empty variable will cause the 

reading thread to block until another thread fills (i.e. 

writes to) the variable, and similarly, an attempt to write 

to a full variable will block until another thread empties it. 

These variables essentially act as classes, and thus have a 

selection of instance methods available which allow the 

semantics of read and write, in terms of whether they 

block or not, and whether they leave the variable full or 

empty, to be chosen fairly arbitrarily. The single is 

just a specialised case of the sync variable which is only 

allowed to be filled once, and it causes a runtime 

exception to attempt otherwise. While the functionality 

(aside from the single-write semantics) of the single 

variable type can be easily emulated with a sync 

variable, it is imagined that the single variable type 

leaves room for future compiler optimisation (for 

instance, not checking the full/empty status of a single 

variable twice within the same block). 

 

It’s also notable that the form of blocking employed by 

these synchronisation variables can cause a Chapel 

program to deadlock if the allowable number of threads 

running synchronously has already been reached—this is 

especially likely if the –maxThreads option has been 

set to 1. This is in contrast to the form of blocking 

employed by the explicit and implicit synchronisation 

statements, in which a blocked thread will check if there 

are an unprocessed tasks present on the task list that could 
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be executed, and thus progress the computation 

(However, enabling this kind of continuous progression 

computation on the context-less synchronisation variables 

would be very complicated indeed, so this is 

understandable). 

3. Benchmarks 

This work has aimed to cover a range of task parallel 

benchmarks, starting with some very small and trivial 

benchmarks designed to stress or demonstrate particular 

language features, while the remaining benchmarks are 

more based around computational kernels, ending with 

something resembling a very small application-level 

benchmark. 

 

Some of the benchmarks were used on shared-

memory nodes only (N-Queens, Strassen, Mandelbrot), 

others were aimed at distributed memory architectures (Pi 

and Black-Scholes). The latter benchmarks were chosen 

to avoid the use of distributed datastructures, which, 

although supported, are in very early stages of 

optimisation. 

Microbenchmarks 

Chapel’s parallel constructs there are different ways 

to achieve the same thing, but essentially only a few 

forms of underlying mechanisms. In a bid to quantify the 

difference in performance that might arise from the choice 

of parallel construct employed, a few short 

microbenchmarks were written. The benchmarks show 

five different implementations to call an arbitrary function 

eight times. The functions are repeated 5000 times in 

order to gather more reasonable timing statistics. The five 

implementations use: cobegin; begin with single 

variables; begin with a sync block; begin with a sync 

block and a parameterised for loop; coforall loop. 

N-Queens 

The eight queens puzzle is the problem of 

enumerating the number of configurations in which eight 

queens can be placed on a standard 8×8 chess board in a 

non-conflicting fashion, i.e. no two queens are on the 

same row, column or diagonal on the board. There are 

over 4 billion possible ways of placing eight queens on a 

chess board, and yet there are only 92 possible solutions.  

 

The n-queens problem is a generalised formulation of 

the eight queens puzzle in which n queens have to be 

placed on an n×n chessboard. While serving little 

practical purpose, it is a fairly well developed problem in 

the field of computer science as it serves as an example of 

many forms of algorithms and concepts, such as the cost 

of brute-force search and the use of heuristics. As such, 

there exist many standard implementations of the problem 

in a large number of computer programming models. 

 

As a benchmark, the problem is interesting because 

of the explosive size of the search space. Viewed naïvely, 

there are ∏ ��� � ���	
�  possible solutions for an n×n 

chessboard, providing a very high computational 

complexity but the configurations of the problem can be 

expressed in an n-tuple of integers between 1 and n, 

meaning the problem has a very low memory complexity 

and additionally the problem requires no floating point 

calculations. In this project we are aiming to benchmark 

the parallel capabilities of the language, not the memory 

or floating point properties of any particular machine 

(which are generally the targeted factors of HPC 

benchmarks), so this benchmark presents an ideal testing 

ground, with a large range of different problem sizes to 

work with, and a variety of possible programming 

approaches to solving the problem. 

 

The most relevant algorithmic approach here is the 

recursive backtracking search, due to its natural mapping 

onto task parallel constructs. Restricting the 

implementation to be based on this particular algorithm is 

not particularly limiting as here the focus is on the means 

of parallelisation, in which there are several options, and 

not the details of the algorithm itself. 

Implementation in Chapel 

The serial algorithm, which also forms the core of the 

parallel algorithm, is represented as a recursive function 

which takes as arguments the current row number and the 

current configuration of queens, and returns the number 

of solutions found as an integer.  

 
def nqueens_solv(row : int, queens : [] int) : int { 
 var solutions = 0; 
 

 // iterate over columns 
 for col in 1..n 
 { 
  // test current config 
  if (isSafe( col, row, queens) ) 
  { 

    //place queen in row 
    queens[row] = col; 
 
    // not complete -> recurse & accumulate 
    if (row < n) then  

     solutions += nqueens_solver(row + 1, queens); 
    // complete -> increment count 
    else solutions+=1;  
  } 
 } 
 return solutions; 

} 

Figure 1: Recursive serial n-queens solver in Chapel 

The naive form of task parallel decomposition of this 

algorithm is to simply assign each first row queen 
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position to a parallel task (of which there will be n in 

total) and sum the results. This however presents severe 

load balance issues because the algorithm only searches 

through safe configurations and the various starting 

columns each give rise to different numbers of safe 

configurations, thus differing quantities of computational 

work. In order to supply a non trivial amount of 

computational work for benchmarking, n is chosen to be 

in the 12-14 range, and this approach will only scale 

while n (and thus the number of potential parallel tasks) is 

much larger than the number of processors. 

 

A slightly more advanced solution involves spawning 

a parallel task for each of the possible configurations for 

the first two rows, thus providing O(n
2
) possible parallel 

tasks, which is much greater than the potential number of 

processors. This will involve a substantial overhead due 

to dispatching significantly more parallel tasks, but 

providing a much finer granularity of decomposition 

means the load balance issue is alleviated and the 

algorithm will scale to a greater number of processors. 

 
def parallel_nqueens(n: int) { 
  

 var partialSolutions : [1..n, 1..n] int; 

  

 sync { 
   
  // for each possible configuration 
  // for row 1  and 2 (r1,r2) 
  for (r1,r2) in [1..n, 1..n] { 

    
   // if the configuration is safe  
   // (ie queens do not conflict) 
   if( r1!=r2 && r1!=r2+1 && r1!=r2-1) { 
     

    begin { 
      
     // form row 1 and 2 as a  
     // configuration array 
     var qconfig : [1..n] int; 
     qconfig[1..2] = (r1,r2); 

      
     partialSolutions[r1,r2]=nqueens_solver(3,qconfig); 
     
    } 
   } 

  } 
 } 
 
 var totalSolutions = + reduce partialSolutions; 
 return totalSolutions; 
} 

Figure 2: Dispatching the n-queens solver in parallel 

Strassen 

Matrix multiplication forms the dominant aspect of 

the runtime for many computer applications because of 

it’s relatively high complexity — ���
� in the naive case. 
Strassen’s algorithm is a reformulation of matrix 

multiplication which reduces its complexity for certain 

specialised cases, specifically square matrices of size 

2
n
×2

n
. While this is a not insignificant improvement in 

runtime, it should be noted that Strassen’s algorithm does 

suffer from certain numerical stability problems — 

however, it serves as an excellent benchmarking example 

because it naturally exhibits both recursive parallelism 

and task decomposition, while introducing a fairly 

significant amount of floating point calculation. 

 

Strassen’s algorithm is based around decomposing 

each of the matrices, say A and B, to be multiplied into 

four equally-sized block matrices, each representing a 

quadrant of the original. Seven new matrices M1−7, each 

the size of a quadrant, are calculated based on these 

decompositions and are used to define a new matrix C, 

the result of the multiplication. 

 

In the ideal case this algorithm is applied recursively 

in order to perform the matrix multiplications necessary to 

calculate M1−7 until the size of the matrix quadrants have 

degenerated into scalars. In practical terms it is more 

optimal to use naive matrix multiplication once the matrix 

quadrants become smaller than a certain threshold. The 

notable feature of this algorithm is that it is a divide and 

conquer algorithm in which the work is done in the divide 

stage, and it is not trivial to pre-generate the set of tasks 

required for expressing this in the task-decomposition 

style. 

Chapel implementation 

The most notable (relevant) factors in the Chapel 

implementation are the use of both scalar-promotion 

whole-array operations and the use of domains, which are 

a new Chapel concept. Domains are first-class values in 

Chapel which define sets and subsets of array indices for 

arbitrary numbers of dimensions. By generating domains 

for each quadrant of each array being worked with it 

becomes possible to use whole-array operations on 

specific quadrants of these arrays. The first half of the 

Strassen algorithm generates the quadrants of the two 

source matrices, which are then are used to index into the 

arrays for whole-array operations that pre-compute the 

factors of the multiplications that form the second part of 

the algorithm. In theory, these pre-computations should 

not be necessary because it should be possible to use 

whole-array operations as arguments to the later matrix 

multiplications. The actual pre-computations are done 

within a cobegin statement, but this is largely 

opportunistic parallelism because these submatrix 

operations complete very quickly. 

 

Strassen’s algorithm is a recursive algorithm, 

designed to operate on successively smaller submatrices. 

In the ideal case, this recursion would continue until the 

submatrix computations required are just unit operations 
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(i.e. 1×1 matrix operations), but in practical 

implementations it is generally most efficient to switch to 

using naive multiplication once the size of the 

submatrices reaches a certain threshold. Regardless of 

which algorithm is used to perform the submatrix 

computations, in the Chapel implementation all these 

computations are performed in parallel using a cobegin 

statement, and it is here that the bulk of the parallel 

computation is performed. Finally, once these operations 

are complete, another set of whole-array operations are 

used to assemble the quadrants of the result matrix, C, 

which is returned as the result. 

 Mandelbrot 

The Mandelbrot benchmark represents a benchmark 

with a fairly substantial memory and floating point 

requirement, but without the complicated hybrid nested-

task-farm decomposition illustrated in the Strassen 

benchmark. 

Chapel implementation 

The kernel of the Mandelbrot benchmark is obviously 

very well known, and the Chapel implementation is 

shown in Figure 3. This function takes a 2D array 

representing the image, and performs the standard 

Mandelbrot algorithm with the external variables 

maxIters and escapeLimit taking their usual roles. It’s 

most notable feature is at the start of the main loop, where 

it uses a Chapel tuple combined with iteration over a 

domain. 

 
def mandelbrot(image : [?D] real) where D.rank==2 

{ 
 for (px,py) in D { 
 

  //Map from pixel-space into real-space 
  var (x,y) = map(px,py); 
  var (xt,yt) = (x,y); 
  var iter = 0; 
 
  while (xt*xt + yt*yt <= escapeLimit  

         && iter < maxIters)  
  { 
   var xtemp = xt*xt - yt*yt + x; 
   yt = 2*xt*yt + y; 
   xt = xtemp; 

   iter += 1; 
  } 
  if ( iter == maxIters ) then image(px,py)=0; 
  else image(px,py)=iter; 
 } 
} 

Figure 3: The (abridged) kernel of the Mandelbrot 

benchmark, in Chapel. 

Because the kernel is defined to operate on an array, 

parallelising the Mandelbrot benchmark was trivial. An 

iterator function decomposeDomain() was developed, 

which takes a Chapel domain and two dimensions as 

arguments, and then it returns a stream of subdomains 

which divide the source domain as requested. The 

parallelisation loop is shown in Figure 4, in which a 

coforall loop is used to iterate over this stream of 

subdomains in parallel. 

 
coforall d in decomposeDomain(imageD,xdecomp,ydecomp) 

   do mandelbrot(image[d]); 

Figure 4: Parallelising the Mandelbrot benchmark. 

Pi 

The number π can be approximated using a simple 

formula: 

�
4 � � ��
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�
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The larger the value of N, the more accurate the 

approximation will be. All N iterations of the sum are 

independent of each other, making the problem trivial to 

parallelise. 

 

This benchmark was chosen primarily to look at the 

performance of a small, embarrassingly parallel problem 

on distributed memory architectures. No large arrays or 

data structures are being used and the algorithm only uses 

a small amount of floating point calculation. 

Chapel implementation 

The parallel implementation of this benchmark in 

Chapel was straightforward. In order for the code to run 

on a distributed memory system, to work load needs to be 

distributed evenly between locales. This is done using a 

coforall statement. A second coforall statement is then 

used to further break up the work based on the number of 

threads that are available on each locale. Each task 

calculates its portion of the overall sum, which then needs 

to be added to the global total – this is done by using a 

sync variable on Locales(0), which ensures that only 

one tasks at a time can write to the variable. Figure 5 

shows the implementation of the π approximation 

algorithm. 

 
var total$ : sync real = 0.0; 

var pi : real = 0.0; 
var totalTasks : int = numLocales * maxThreads; 
 
coforall loc in Locales{ 
 on loc { 

 
  coforall tid in 0..maxThreads-1 do{ 
 
   var sum : real = 0.0; 
   var overallTaskID : int = here.id * maxThreads + tid; 

   var lower, upper : int = 0; 
 
   lower = overallTaskID * (N / totalTasks); 
   upper = lower + (N / totalTasks - 1); 
 
   for n in lower..upper{ 
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    sum += (1 / (1 + ((n - 0.5)/N)**2)); 

   } 
 
   on Locales(0) do { 
    total$ += sum; 
   } 

  } 
 } 
} 
pi = total / N * 4; 

Figure 5: Chapel implementation of π approximation 

algorithm. 

Black-Scholes 

The Black-Scholes algorithm is a well known model 

from the world of finance theory. It was chosen as a 

benchmark because it represents a real-life application 

which can easily be parallelised using a Monte Carlo 

technique and which dies not rely on distributed data 

structures. The Black-Scholes model simulates the 

variation of stock prices over a certain period of time, 

based on current stock price, risk and volatility rates, as 

well as random fluctuations of prices. The simulations are 

independent of each other and can be executed 

concurrently.  

 

The parallelisation is similar to the π approximation 

benchmark, yet the Black-Scholes algorithm is much 

more compute intensive and will thus give a more 

accurate reflection of the real performance of the Chapel 

compiler.  

Chapel implementation 

The simulations are distributed among locales and 

threads using two coforall statements. Each thread then 

uses nested for loops to represent the number of 

simutations and the duration of each simulation.  Factors 

such as the volatility or the risk are global and live on 

Locales(0) – however every remote thread needs to 

access them continuously during every simulation. These 

factors are therefore defined as params – the compiler 

will replicate the constants on every locale, thus 

optimising access. Figure 6 shows the abridged Chapel 

implementation of the Black-Scholes algorithm. 

 

 
coforall loc in Locales{ 

 on loc{ 
   
  coforall tid in 0..maxThreads-1{ 

 
   /* instantiate variables etc. */ 
   … 
 
   cobegin { 

    a = 1.0 + (rc * dt); 
    b = volatility * sqrt(dt); 
    invnsteps = 1.0 / (ntimesteps:real); 
   } 
 

   /* loop over iterations */ 
   for i in lower..upper{ 
 

    /* initialise stock price and sum */    
    … 
    /* loop over time steps */ 
    for n in 0..ntimesteps-1 { 
 
     /* use second random number on odd iterations */ 

     if(n & 1) then gr(1) = gr(2); 
 
     /* new random numbers on even iterations */ 
     else fillRandom(gr, seed); 
 

     /* next stock price */ 
     s = s * (a + (gr(1) * b)); 
 
     ssum += s; /* add it to sum */ 
    } 
 

    /* avg stock price for simulation */ 
    sav = ssum * invnsteps; 
 
    locsavsum += sav; /* add it to sum */ 
 

    if (sav > k) then loccsum += (sav-k); 
    else  locpsum += (k-sav); 
   } 
    
   on Locales(0) do { 
    savsum$ += locsavsum; 

    csum$ += loccsum; 
    psum$ += locpsum; 
   } 
  } 
 } 

} 
 
/* calculate average stock price, call and put */ 
sbar = savsum$ * invnruns; 
cfinal = csum$ * invnruns; 
pfinal = psum$ * invnruns; 

Figure 6: Abridged Black-Scholes implementation in 

Chapel. 

4. Description of Hardware 

One of the major aims of Chapel is portability and 

performance on different types of hardware architectures. 

We therefore chose to run our benchmarks on three 

distinct systems, which are introduced below. 

4.1 Ness 

EPCC’s compute service Ness, which is mainly used 

for teaching purposes, is a small Linux system consisting 

of two 16-way SUN X4600 compute servers. It uses 8 

dual-core AMD Operton (AMD64e) processors per node 

which have a clock speed of 2.6GHz and 2GB memory 

per chip. 

 

The OS on Ness is Scientific Linux and the SUN 

Grid Engine is used as a batch scheduler. The GNU 

compiler (version 4.1.1) was used to build the Chapel 

compiler itself (which runs on the front-end of the 

system), whereas the Portland Croup Compiler Suite (PGI 
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version 7.0.7) was used for the compilation of the Chapel-

generated C code, which runs on the backend. 

 

The largest queue on Ness is 16 cores, therefore the 

only shared-memory performance of Chapel could be test 

on this system. 

 

4.2 HPCx 

HPCx [3] was the UK’s national supercomputing 

service until the end of 2007 and remains in service until 

2010. HPCx consists of 160 IBM eSERVER 575 compute 

nodes, which are set up as a shared-memory cluster with 

dedicated interconnect, in this case IBM’s own 

“Federation” High Performance Switch. HPCx has a 

total of 2560 processing cores. HPCx uses Power5 chips 

at 1.5GHz clock speed. There are 8 dual-core chips per 

shared-memory node, with a total of 32GB memory per 

node.  

 

The Power5 architecture allows for simultaneous 

multi-threading (SMT): each processor can execute two 

instruction streams simultaneously and thus run two 

threads concurrently. Each physical processor is split into 

two logical processors. Therefore, with SMT enabled, the 

the 16 processor nodes can in fact execute 32 threads. 

 

The OS on HPCx is AIX version 5.3. The Parallel 

Operating Environment (POE) and LoadLeveler are used 

for batch scheduling. The XL compiler suite (version 8.0) 

was used to compile both the front-end and the back-end 

code. Chapel code can be run across nodes on HPCx by 

using GASNet’s LAPI conduit.  

4.3 HECToR 

HECToR (High-End Computing Terascale Resource) 

[4] is the UK’s current national supercomputing service. 

HECToR is a Cray XT4 based MPP, with an X2 vector 

unit. HECToR consists of 1416 compute blades, each 

housing four dual-core AMD Opteron chips (2.8GHz, 

with 6GB main memory per chip) – this amounts to a 

total of 11,328 processing cores. The interconnect used on 

HECToR is Cray’s SeaStar2 – each compute chip controls 

a router chip – and is set up as a 3D torus. 

 

The Chapel benchmarks were run both on the 

HECToR TDS (test and development system), which runs 

the Cray Linux Environment (CLE) version2.1.50HD, 

and the main HECToR service, which runs CLE version 

2.0.62. The GNU compiler (version 4.1.2) and the PGI 

compiler (version 8.0.3) were used for the login and 

compute nodes respectively. 

5. Shared Memory Performance  

This section will look at the performance of our 

Chapel benchmarks on shared memory nodes, comparing 

them to equivalent implementation in C & Pthreads. The 

implementation of the parallel features on single locales is 

much more mature than on distributed memory, which is 

why the more challenging benchmarks that include large 

domains and datatstructures were only run on single 

nodes. In addition, the microbenchmarks were run to 

assess the performance of the task parallel features and 

the new version of the Chapel compiler   

Microbenchmarks 

The first notable thing about the results here is that 

there are no results from HPCx as the benchmarks just 

would not run on this platform (they would fail silently). 

It is suspected that this is related to stack size limits in the 

default setup of the AIX operating system and the XL 

compilers, but this could not be accurately diagnosed.  

 

On Ness, the benchmarks were run on 1, 2, 4 and 8 

threads in order to ensure the available threads divide 

equally into the 8 tasks that were being dispatched. By 

comparing the results in this fashion, there is a clear 

disparity in performance between two distinct groups of 

the microbenchmarks. The ones which used explicit 

begin statements (begin_sync, begin_single, 

begin_param) universally performed quite poorly, and 

the co-dispatch (cobegin, coforall) versions retained 

constant runtime. The underlying reasons for this are that 

the co-dispatch style implementations first setup the tasks, 

and then dispatch them all at once (thus incurring only 

one dispatch overhead), whereas the begin-style 

implementations will perform a dispatch every time begin 

statement is passed in the iteration. It should be noted that 

the performance character would change if there was any 

significant work within the synchronised block, since the 

begin-style benchmarks would get started earlier, rather 

than waiting for the end of the block to dispatch all the 

tasks at once. 

 

Table 1 makes a direct comparison of Chapel 

versions 0.7 and 0.9 running the microbenchmarks on 1 

up to 8 threads on Ness. It is clear from the runtimes that 

the performance on the begin statements was improved. 

However the co-dispatch statements have suffered a drop 

in performance – the runtimes are still mostly constant 

from 2 threads up, yet they are poorer than with the earlier 

version of the compiler. This could be caused by 

correctness fixes in the compiler which result in 

additional overheads. 
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Ness 1 2 4 8 

begin_single v0.7 - 2180.9 5057.9 7034.7 

v0.9 - 1966.3 4704.6 6219.7 

begin_sync v0.7 364.8 2253.1 4133.8 6830.7 

v0.9 351.9 1679.9 2685.3 6244.9 

begin_param v0.7 362.60 2243.4 5035.4 6772.8 

v0.9 354.72 1693.2 4553.1 5878.1 

cobegin v0.7 323.7 867.3 830.8 868.9 

v0.9 312.9 995.6 1021.1 1268.3 

coforall v0.7 322.56 847.81 806.45 810.82 

v0.9 335.86 1024.8 944.02 1298.5 

Table 1: Comparsion of microbenchmark performance 

(runtimes in ms) on Ness - Chapel v0.7 and v0.9. 

N-Queens 

In the N-Queens benchmark implementations threads 

are assigned a tangible amount of work and the 

performance results follow a somewhat predictable 

pattern (see Table 2). The C performance is consistently 

around 4 times better than Chapel’s. This reflects the fact 

that the runtime of the algorithm is dominated by actual 

computational work, as opposed to any overheads due to 

threading or memory leaks. 

 

Even as the number of threads is increased, the 

performance ratio between the C/Pthreads and Chapel 

implementations remains very consistent. Between Ness 

and HPCx, the performance difference also remains fairly 

consistent as the number of threads is scaled up. The ratio 

of runtimes between Ness and HPCx is nearly equal to the 

clockspeed ratio on the two systems (2.6GHz vs. 

1.5GHz). Looking at speedup, it becomes apparent that 

while the Chapel implementation scales near linearly on 

both Ness and HPCx (with superlinear scaling on Ness up 

to 8 threads), the C & Pthreads implementation shows 

consistently worse scaling. On Ness, the performance 

ratio between Chapel and C drops from 4.6 on 1 thread to 

3.2 on 16 threads.  

 
n=13 1 2 4 8 16 

Ness, 

Chapel 

6849ms 3265ms 1624ms 830ms 435ms 

1.00 2.10 4.22 8.25 15.73 

HPCx, 

Chapel 

13047ms 7038ms 3406ms 1799ms 920ms 

1.00 1.85 3.83 7.25 14.17 

Ness, 

C 

1477ms 779ms 433ms 248ms 133ms 

1.00 1.91 3.44 6.00 11.17 

Table 2: Runtimes and speedup for N-Queens with n=13 on 

Ness and HPCx, up to 16 threads. 

Strassen 

Strassen’s algorithm forms the most heavyweight of 

the benchmarks, exhibiting both task parallelism and 

nested parallelism, as well as a significant degree of 

floating point calculation. Additionally, it is the 

benchmark with the most complicated implementation - 

its kernel consists of around 100 lines of recursive array 

manipulation. 

 
n=512 1 2 4 8 16 

Ness, 

Chapel 

1890ms 1116ms 531ms 307ms 208ms 

1.00 1.69 3.56 6.15 9.09 

HPCx, 

Chapel 

1975ms 1463ms 1246ms 1735ms 1935ms 

1.00 1.35 1.59 1.14 1.02 

HECToR, 

Chapel 

1779ms 926ms - - - 

1.00 1.92 - - - 

Ness, 

C 

1660ms 1010ms 749ms 672ms 741ms 

1.00 1.64 2.22 2.47 2.24 

Table 3: Runtimes and speedup for Strassen's algorithm 

(512x512 matrix) up to 16 threads. 

Comparing the single threaded results in Chapel and 

C on different platforms (see Table 3), the performance is 

roughly equal. The C implementation achieves the fastest 

runtimes, yet the timings on HECToR, Ness and HPCx 

are not far off the mark. 

 

Looking at the runtimes and the scaling up to 16 

threads, it becomes clear that the behaviour of the Chapel 

implementation on HPCx and Ness is drastically different. 

The scaling is very good on Ness up to 4 threads, then 

dropping to a poorer, but still acceptable level. On HPCx 

however the code does not even scale up to 4 threads – 

the runtime on 16 threads is similar to that on a single 

thread. Additionally of note is the total failure of the C 

implementation to scale past 2 threads. This was a fairly 

complicated algorithm to implement in C, especially 

while trying to map its implementation to that of Chapel’s 

using the pseudo-domain arrays and dynamic memory 

allocation, so it’s quite feasible that this is due to 

programmer error. This very fact may support the Chapel 

argument for programmability in parallel languages. 

Pthreads is a very difficult environment to work with - in 

this particular case Chapel has provided an appropriate 

programming environment that made it possible to write 

code that ran faster than C. 

Mandelbrot 

The Mandelbrot benchmark is implemented in the 

task-decomposition style and introduces a significant 

floating point requirement. In terms of single threaded 

performance, the runtime ratio between the two systems is 

consistent and largely accountable to the difference in 

processors clock speeds (see Table 4). 

 

In terms of time, the Mandelbrot benchmark shows 

certainly Chapel’s best performance—on Ness, the 

Chapel implementation marginally beats the performance 

of the C implementation in both runtime and scaling up to 

4 threads. The performance up to 16 threads is slightly 

poorer, but it is still a match for the C implementation. 
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The reason for the good performance of the Chapel code 

is that the kernel of the algorithm is based around a triply 

nested loop (technically, a 2D loop and a 1D loop), and 

doesn’t contain Chapel features other than arithmetic — 

essentially, there’s not much room for the compiler to go 

wrong in converting this into C. The HPCx result and the 

Ness results also remain a consistent factor apart, further 

suggesting this benchmark is entirely bound by floating 

point speed rather than of any operating system feature.  

 
d=8 1 2 4 8 16 

Ness, 

Chapel 

1547ms 777ms 389ms 204ms 111ms 

1.00 1.99 3.97 7.60 13.91 

HPCx, 

Chapel 

2427ms 1216ms 612ms 323ms 170ms 

1.00 1.99 3.97 7.52 14.26 

Ness,  

C 

1552ms 778ms 395ms 196ms 104ms 

1.00 2.00 3.93 7.93 15.02 

HPCx, 

C 

2148ms 1074ms 539ms 282ms 146ms 

1.00 2.00 3.99 7.62 14.74 

Table 4: Runtimes and speedup for the Mandelbrot 

benchmark up to 16 threads (image size 2048x2048, 

decomposition 8x8). 

5. Distributed Memory Performance  

Support for multi locale execution of parallel features 

has recently been added to the Chapel compiler. Two 

simple, embarrassingly parallel, benchmarks were written 

to assess Chapel ability to generate code that can run on 

distributed memory system. Chapel uses GASNet as its 

low-level communication network. GASNet offers 

different conduits for a wide range of architectures – in 

this case, the Portals conduit and the LAPI (Low-level 

Application Programming Interface) conduit were used on 

the Cray XT4 and the IBM Power5 respectively. 

Unfortunately, there were problems with the LAPI 

conduit and the use of RDMA (Remote Direct Memory 

Access) – an “unknown error” occurred at runtime, 

disabling RDMA. Unfortunately we have thus far not 

been able to fix this problem. 

Pi 

The Pi approximation algorithm is embarrassingly 

parallel, with a small number of floating point operations 

per iteration, and was thus expected to perform well with 

Chapel. The Chapel code was compared to a C & MPI 

implementation of the algorithm – see Table 5 for 

runtimes and scaling on both shared memory (1 locale) 

and distributed memory (2 locales on HPCx and 2 to 16 

locales on HECToR TDS). 

 

Looking at the shared memory performance on Ness, 

it becomes apparent that the Chapel implementation 

outperforms the C & MPI code – though neither 

implementation scales well on this platform. On HPCx, 

the performance of the multi-locale runs is interesting: all 

runs were set up to span across two nodes, thus a run with 

4 threads puts 2 threads on each node. The scaling for 

these runs is super linear, because with increasing 

numbers of threads inside each node, the overheads 

created by the multi-locale executions become ever 

smaller. As a result, the ratio between the single and multi 

locale runtimes on 4 and 32 threads respectively is 

reduced from 4.8 to 1.3. 

 
 1 2 4 8 16 32 

Ness 

comm=none 

112ms 56ms 37ms 18ms 17ms - 

1.00 1.99 2.98 5.93 6.62 - 

Ness, 

C & MPI 

110ms 55ms 43ms 19ms 25ms - 

1.00 1.98 2.52 5.60 4.39 - 

HPCx, 

comm=none 

181ms 91ms 46ms 24ms 23ms - 

1.00 1.99 3.95 7.69 7.69 - 

HPCx SMT, 

comm=none 

- - - - 23ms 17ms 

- - - - 16.00 21.57 

HPCx, 

comm=gasnet 

- - 222ms 75ms 38ms 22ms 

- - 4.00 11.77 23.06 40.46 

HECToR TDS, 

comm=none 

112ms 56ms - - - - 

1.00 1.99 - - - - 

HECToR TDS, 

comm=gasnet 

- 112ms 85ms 43ms 22ms 13ms 

- 2.00 2.64 5.17 14.16 17.68 

HECToR TDS, 

C & MPI 

111ms 56ms 28ms 14ms 8.7ms 7ms 

1.00 1.98 3.91 7.98 12.71 15.65 

Table 5: Runtimes and speedup for the Pi approximation 

benchmark, run with 8.4 million iterations. 

On HECToR TDS, the performance of the C & MPI code 

and the single node performance of Chapel are near 

identical. Compared to the multi locale performance 

however, the MPI code is twice as fast for all runs up to 

32 threads. We suspect this is because of overheads 

introduced by the use of GASNet.  

Black-Scholes 

For the Black-Scholes algorithm, we are not only 

comparing the performance on different architectures, but 

also the difference in performance of Chapel code written 

for serial, single and multi locale execution. The serial 

code contains no parallel statements at all and is basically 

a direct translation of a serial C code into Chapel. The 

single locale code does contain parallel statements, but 

the code that distributes work among locales was 

removed. Some of the variable instantiations that need to 

be done on locale and thread level (i.e. inside the 

coforall statements) in the distributed code were moved 

out of these blocks. 

 

Table 6 shows the runtimes and speedup of the three 

different versions of the algorithm on Ness, using only 

one locale. It is noticeable that on one thread  both the 

single and the multi locale implementations are quicker 

than the serial version. This is possibly due to compiler 

optimisation that are applied for blocks of independent 
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computation, which are highlighted in the parallel 

versions of the code (with a cobegin statement for 

instance). While neither parallel implementation scales 

well, the single locale code performs considerably better 

than the multi locale version. This could be explained by 

overheads that are introduced unnecessarily by the 

distributed code. The results on Ness are as would be 

expected. 

 
 1 2 4 8 16 

Ness, serial 

comm=none 

35ms - - - - 

- - - - - 

Ness, single 

comm=none 

29ms 16ms 12ms 7ms 4ms 

1.00 1.81 2.35 3.80 6.74 

Ness, multi 

comm=none 

29ms 14ms 10ms 11ms 8ms 

1.00 1.97 2.96 2.46 3.54 

Table 6: Runtimes and speedup on Ness for serial, single 

loacle and multi locale implementation of the Black-Scholes 

algorithm (32,000 runs over 91 days). 

Performance on HPCx (see Table 7) however is 

surprising. The serial performance is in line with that of 

Ness, yet on a single node the single locale code runs 

slower by a factor of nearly 2.5 compared to the multi 

locale code. It is unclear why this might be the case. On 

16 threads the multi locale implementation on HPCx is 

faster than the single locale code on Ness, which is 

completely unexpected. Further investigation is required 

to fully understand the reasons behind this. 

 

The performance on the algorithm across nodes (2 

locales were used here) is quite poor, yet the code shows 

good scaling up to 32 threads. The slow runtimes are 

likely due to the lack of RDMA and the underpopulation 

of the nodes – the overheads of setting up the work 

distribution exceeds the benefits of doing so. This 

becomes by looking at the runtime ratios: on 4 threads, 

the ratio between the single locale and the distributed 

timings is a factor of 9, yet on 32 threads this is reduced 

to 3.  

 
 1 2 4 8 16 32 

HPCx, serial 

comm=none 

37ms - - - - - 

- - - - - - 

HPCx, single 

comm=none 

63ms 32ms 17ms 9.4ms 8.8ms 9.2ms 

SMT   

1.00 1.97 3.68 6.71 7.16 6.88 

HPCx, multi 

comm=none 

26ms 13ms 7ms 4.5ms 5.3ms 6.5ms 

SMT 

1.00 1.94 3.70 5.86 5.01 3.96 

HPCx, multi 

comm=gasnet 

- - 155ms 54ms 28ms 27ms 

- - 4.00 11.51 22.04 22.61 

Table 7: Runtimes and speedup on HPCx for serial, single 

loacle and multi locale implementation of the Black-Scholes 

algorithm (32,000 runs over 91 days). 

On HECToR, both the serial and the single locale 

codes perform as expected and in line with what was seen 

on Ness. The multi locale however shows a rather 

disappointing performance – the scaling stops at 16 

threads and the runtimes are only slightly better than 

those seen on HPCx. The problem size that was run 

(32,000 iterations over 91 timesteps each) is a realistic 

size and the computation should be sufficient to mask any 

communication overheads. Again, further investigation is 

needed to be able to explain the behaviour of the multi 

locale implementation. 

 
 1 2 4 8 16 32 

HECToR, serial 

comm=none 

31ms - - - - - 

- - - - - - 

HECToR, single 

comm=none 

28ms 21ms - - - - 

1.00 1.31 - - - - 

HECToR, multi 

comm=gasnet 

- 132ms 100ms 51ms 27ms 17ms 

- 2.00 2.63 5.15 9.74 15.43 

Table 8: Runtimes and speedup on HECToR for serial, 

single loacle and multi locale implementation of the Black-

Scholes algorithm (32,000 runs over 91 days). 

6. Conclusions 

Running both the single locale and the multi locale 

benchmarks has provided us with an interesting picture of 

what the current implementation of Chapel is capable of. 

Overall, the most difficulties were encountered on HPCx, 

which does not come as a surprise – this is a type of 

system that the Chapel development team has only 

recently been given access to and thus they have only 

been able to put very limited effort into its support.  

 

While the Chapel implementations of the different 

benchmarks are often outperformed by the C 

implementations of the same algorithm (whether 

parallelised with Pthreads or MPI), the general 

performance patterns of this new language are very 

encouraging, especially inside shared memory nodes.  

 

As was said at the beginning of this paper, Chapel is 

still very much work in progress. Performance 

optimisation has so far not been a priority of the 

development team and the current implementation still 

suffers from problems such as memory leaks. However 

such issues are minor (and fixable). The important thing is 

that Chapel offers a novel way of approaching parallel 

programming and the performance that the language 

shows at this early stage is very positive indeed. 
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