

CUG 2009 Proceedings 1 of 4

System Administration Data under CLE 2.2 and SMW 4.0

Jason W. Schildt, Cray Inc.

ABSTRACT: With SMW 4.0 and CLE 2.2, Cray is making significant improvements in
how system administrators can access information about jobs, nodes, errors, and
health/troubleshooting data. This talk and paper will explain the changes and how
administrators can use them to make their lives easier.

KEYWORDS: Software, CNL, CMS (Cray Management Services), SMW (Software
Management Workstation)

1. Introduction

Cray Management Services (CMS) is the administration
framework that integrates hardware state information and
software environment to provide monitoring and
administrative functionality for Cray XT system. CMS
provides software tools for tasks such as collecting log
information, providing APIs for collecting node/job
information, managing system assets, and coordinating
information from all parts of the system.

CMS software tools helps you to more easily manage and
monitor the thousands of processors found in a Cray CLE
system as one or more logical computers.

2. Log Management

The current problem on XT systems is that logs are stored
in multiple locations and in varying formats. Site
administrators must write tools to retrieve and correlate
information from Login nodes, the System Database
(SDB) node, the SMW, and from the events logs.

For example, when debugging problems, site
administrators and engineers commonly pull data from
ALPS logs and syslog, search through the events in an
attempt to determine what happened on the system, then
line them up on the same time line. Finally, the
administrator is forced to go through each file to merge
the data, and piece together the sequence of events.

This search process involves greping through various
files, looking for indications of what may have happened.
Some log data uses hex names for nodes, others the

cname/component and still others the NID number or the
hostname (nid00###). In the event logs, the console
messages are single lines, versus a message with the full
data. So when using grep, the result is a single line of a
console message versus the whole console message.

The Log Manager helps to resolve this problem by storing
syslogs and events in one place as they arrive in the Log
Manager database. The Log Manager stores a variety of
syslogs and events:

• ALPS Reservations/Claims (from SDB node/login)

• SDB/syslog node syslogs (from SDB/syslog nodes)

• Boot node syslogs

• Login node syslogs

• Event logs

• RAID errors

To make searches more consistent, The Log Manager
stores the hostname and cname/physloc as well.

Log Manager enables sites to perform query based log
searches, get summaries of searches, watch events/logs as
they occur, and set up definitions to ignore, archive, file,
or run a script when a specific event or log occurs.
Several performance improvements have been
incorporated in SMW 4.0 since SMW 3.1 that allow for
logging on extremely large and active systems. To allow
for logging on extremely large and active systems, SMW
4.0 includes several performance improvements not
available in previous versions:

CUG 2009 Proceedings 2 of 4

1. More granular table structure.
a. Allows for faster inserts and searches.
b. Smaller indexes.
c. Allows dropping daily tables versus search and

delete individual messages.
2. Replicated messages in a 1 second window:

d. Reduces index size.
e. Speeds up searches/inserts due to data size.

3. Buffered 1 second window.
f. Allows for faster insert speed.

4. Ability to send data to a remote MySQL server.

2.1 Use Case Examples

Example 1: To get a daily summary of which nodes have
received the most "Machine Check Exceptions" over the
last five days:

smw # mzlslog -tnow-5d -FC \

-Pec_console_log \

-q"*Machine*check*exception*" \

-summary

Example 2: To see a daily summary of “Machine Check
Exceptions” on a specific node:

smw# mzlslog -tnow-5d \

-C c0-3c0s3n2 –Pec_console_log \

 –q”*Machine*check*exception*” \

 –count -v

 Total count: 27

Log manager allows the site administrator to setup
definitions to archive messages to a file, ignore
uninteresting messages, or to run a script (by default
notification).

Example 3: To be notified of an “Emergency Power Off
Fault” event, you can do the following:

smw# mzlogdef –create –set notify \

-notifymail pager@nationallab.gov \

-P”ec_l1_*” –q“*Emergency Power Off \

Fault*”

Example 4: The notification script can also be specified
per definition to do more specific actions. Like watch for
“Machine Check Exceptions” and send a summary after 5
minutes with the nodes affected and the full message:

Create the script:

smw# vi/opt/mazama/scripts/memory.sh

 [Example script in appendix A]

Setup the definition:

smw# mzlogdef --create -s notify \

–notifymail crayadm@localhost \

--notifyscript machine_exception.sh \

-Pec_console_log \

-q"*Machine Check Exception*"

Example 5: To ignore an event that is not of interest on a
system, you can run the script below. In this example, all
response events that have no error responses will not be
entered in the CMS Log Manager database:

smw# mzlogdef -c -s ignore -Mnotice \

-Pec_*_rsp

The Log Manager has been expanded to aggregate more
logs to a single location, increase performance, and
reduced data size.

Future plans for the Log Manager include: further scaling
optimizations, an API to enable log insertion via a
lightweight C API or command, and streaming data into
the log. Later, CMS is planning to implement an API to
search the logs from anywhere on the system (with
authorization controlled by the site for appropriate levels
of access).

3. State Daemon

Currently node information is distributed across multiple
sources, making it difficult to obtain complete and current
state. As system size increases, performance of obtaining
system state information will become a problem as well.

CMS State Daemon is designed to be a single source
provider for state aggregation and query functionality,
with scalability for extremely large systems. The State
Daemon fits into the XT CLE 2.2 administrative
environment; it will not replace any of the XT
administrative interfaces. Other Cray subsystems can send

CUG 2009 Proceedings 3 of 4

information to CMS, which now provides a centralized
source of information.

To better manage their computing resources, our
customers have requested that Cray preserve job and
reservation history. With SMW 4.0, CMS provides a set
of APIs that enable ALPS to send reservation and claim
information to CMS. ALPS notifies the state daemon of
application create/start and destroy/stop. Job information
provided by ALPS includes account id, start and end time
of the reservation, execution hostname, batch job
identification, and user information. The information
associated with the reservation is persisted by the State
Daemon to allow site administrators to later search the
persistent store of job reservations.

In SMW 4.0, the CMS mzjob command enables the site
administrator to perform job searches by account id, job
id, and user name for a specified start and end time range.
If no option is specified, mzjob lists all jobs for the last 24
hours.

In addition, the State Daemon reads the system
configuration and node attributes upon start-up. This set
of attributes includes node id, node state, node type,
processor type and speed, and memory size.

The State Daemon subscribes to the compute node any
state change events issued by the HSS State Manager. For
SMW 4.0, a set of APIs are available for retrieving
compute node attributes and node allocation states. In the
future, ALPS and other administrative tools can access
the node attribute data via these attributes APIs:

• get all nodes

• get a specific node

• get all free/unallocated node

• get all allocated node

• get all nodes with a specific label

For SMW 4.0, CMS mz2attr command enables the site
administrator to perform listing of node attributes,
creating/deleting node labels, and assigning nodes to
labels.

The mzjob and mz2attr commands support string
delineated output for easier parsing by the site
administrator. The State Daemon implementation uses
ASN1 for data marshalling.

As XT systems grow, scalability becomes a bigger issue.
CMS State Daemon organizes state information via
cached tables and lists. It allows linear time references to
table entry and lists. The State Daemon is implemented in
a pair of mirroring daemons. The server daemon ‘mzsd’
runs on the SMW, the client daemon ‘mzsd-client’ runs on
the SDB node. ALPS will communicate with the ‘mzsd-

client’, on the SDB node via the APIs. The State Daemon
supports concurrent queries and updates. It is
multithreaded, using the POSIX pthread library.
Synchronization between threads is achieved via pthread
multiple reader/single writer locks.

In summary, for SMW 4.0, CMS State Daemon and its
APIs provide a framework to aggregate and enable easier
access to previously decentralized information. The CMS
infrastructure can be extended to include aggregation of
other batch system information for better data access and
overall ease of management for Cray customers.

4. Acknowledgements

The Author would like to thank software engineers Mark
Dalton and Rita Wu, for their contributions to this
document, and John Navitsky for his time in reviewing
the content for accuracy.

5. About the Author

Jason W. Schildt is the software manager of the Cray
Management Services (CMS) group, developing system
management software for XT and CLE systems. He can
be reached at jschildt@cray.com

CUG 2009 Proceedings 4 of 4

Appendix A: Example Script-Machine Check Exceptions

smw# vi /opt/mazama/scripts/machine_exception.sh

#! /bin/sh

email=$1
logdefid=$2
message=$3

MAILFILE=”/tmp/machine_check/log”

NIDFILE=”/tmp/machine_check_nids”

If [-f ${MAILFILE}] ; then
 echo “log definition id: $logdefid $message” >> $M AILFILE
 echo $message | awk ‘{printf “\t%s\n”, $11}’ >> $N IDFILE
else
 echo “This is the NID file:” > $NIDFILE
 echo $message | awk ‘{printf “\t%s\n”, $11}’ >> $N IDFILE
 echo “log definition id: $logdefid $message” >> $M AILFILE
 sleep 300
cat $MAILFILE $NIDFILE | /usr/bin/mailx –s”machine exceptions” $email
 mv $MAILFILE ${MAILFILE}.prev
 mv $NIDFILE ${NIDFILE}.prev
fi

smw# chmod 755 /opt/mazama/scripts/machine_exceptio n

