

Optimizing High-Resolution Climate Variability Experiments on Cray XT4 and Cray XT5 Systems at NICS and NERSC

Richard Loft and John Dennis National Center for Atmospheric Research Boulder, Colorado

Outline

- Science Motivation
- Computing Systems Used
- CCSM Coupled System Optimization
- Scaling and Efficiency Results

Why High Resolution? Resolving Ocean Mesoscale Eddies

Eddy-resolving POP (Maltrud & McClean, 2005)

5/5/09

CUG 2009 Compute the Future

Understanding Weather-Climate Interactions

- One-way air-sea interactions (stochastic atmosphere, aka weather noise, forces ocean)
 - Ocean as thermodynamic "red filter"
 - -- Hasselmann (1976)
 - Ocean-dynamics: preferred low frequency time scale(s)
- One-way air-sea interactions (stochastic ocean forces atmosphere)
 - Tropical instability waves
 - Kuroshio current extension
- Two-way air-sea interactions
 - (Stable) coupled feedbacks + weather noise (MJO, WWB)
 - (Stable) coupled feedbacks + weather noise + dynamics
 - Unstable coupled feedbacks + weather noise + dynamics

Ocean-Atmosphere Interactions: North Atlantic Winter Storm Track

Cray XT4 & XT5 Architectures

Courtesy of Cray, Inc.

CUG 2009 Compute the Future

Franklin Cray XT4 at NERSC

CUG 2009 Compute the Future

Courtesy NERSC

COMPUTE Franklin Cray XT4 at NERSC FUTURE • Node:

- One socket/node
- AMD Opteron Quad Core 2.3 GHz
- 8 GB/node (2 GB/core)
- Network:
 - Cray SeaStar2 Router
 - 3D Torus dimensions:(17x24x24)
- Aggregate:
 - Core count: 38,640 (9660 nodes)
 - 356 TFLOPS peak
 - Main Memory: 78 TB

CUG 2009 Compute the Future Courtesy of Pat Kovatch, NICS

COMPUTE Kraken Cray XT4 at NICS • Node:

- One socket/node
- AMD Opteron Quad Core 2.3 GHz
- 4 GB/node (1 GB/core)
- Network:
 - Cray SeaStar2 Router
 - 3D Torus dimensions: (12x16x24)
- Aggregate:
 - Core count: 18,048 (4,512 nodes)
 - 166 TFLOPS peak
 - Main Memory: 18 TB

Kraken Cray XT5 at NICS

• Node:

- Two sockets/node
- AMD Opteron Quad Core 2.3 GHz

– Memory:

- 3,840 nodes with 8 GB (1 GB/core)
- 4,416 nodes with 16 GB (2 GB/core)
- Network:
 - 3D Torus dimensions: (22x16x24)
- Aggregate:
 - Core count: 66,048 (8,256 nodes)
 - 608 TFLOPS peak
 - Main Memory: 100 TB

COMPUTE Efuture

Community Climate System Model (CCSM)

- Multiple component models on different grids
- Flux and state between components [CPL]
- Large code base: >1M lines
 - Developed over 20+ years
 - 200-300K lines are critically important --> no comp kernels, need good compilers
- Demanding on networks:
 - need good message latency + bandwidth

CCSM4 architecture (CPL7)

CUG 2009 Compute the Future

CCSM4_alpha on 4952 Cores

CCSM4_alpha on 5844 Cores

CUG 2009 Compute the Future

COMPUTE CCSM4_alpha Benchmark CONFigurations

- 0.50° ATM [576 x 384 x 26]
- 0.50° LND [576 x 384 x 17]
- 0.1° OCN [3600 x 2400 x 42]
- 0.1° ICE [3600 x 2400 x 20]
- 5 days/ no writing to disk
- 5 processor configurations:
 - XS: 480 cores
 - S: 1024 cores
 - M: 1712-1865 cores
 - L: 3488-3658 cores
 - XL: 4952-6380 cores

CCSM4_alpha Cray XT Scalability (no I/O)

High resolution CCSM 0.5 degree simulation rate

5/5/09

COMPUTE
FUTUREWhy the XT4/XT5 Scaling
Differences ?

- XT4 Differences
 - Franklin scales better than Kraken
 - Nearly identical systems
 - different OS's (CNL 2.0.62 vs CLE 2.1.56HD)
 - POP highly sensitive to OS jitter (Ferriera and Brightwell)
 - Different levels of kernel level noise between CNL 2.0 and CLE 2.1?

COMPUTE
FUTUREWhy the XT4/XT5 Scaling
Differences ?

- XT4 XT5 Differences
 - CCSM scales better on Franklin XT4 than Kraken XT5
 - Apparently identical OS's.
 - Dual socket bandwidth issues?
 - Standalone POP benchmarks seem to rule out node bandwidth issues on XT5.
 - Hardware latency issues?

5/5/09

What About IO?

- CCSM I/O is currently serialized from each component.
- Total monthly output data = 57.9 GB
- File size ranges from 95 MB to 24 GB.
- "I/O" times aggregate per component MPI-based gather operations and write costs.
- Write sizes range from 864 KB to 1.4 GB.

Variability of CCSM File Write Times on Kraken

CCSM Sustained Output Bandwidth on Kraken

Write Bandwidth for CCSM I/O day

Simulation Costs with Serial I/O Included

Cost to simulate 7.25 years	CPU hours	% of cost
Computational Cost	605K	76.6%
Serial Output Overhead [@92 MB/sec]	89K	11.2%
Output Variability Overhead	96K	12.2%
Total Output Overhead	185K	23.4%
Actual Total Cost	790K	100%

COMPUTE
FUTUREPlans to Understanding
and Address I/O Issues

- Investigate possible issues with component gathers
- Profile the writes to identify any possible write latency issues
- Understand the sources of any Lustre file system variability
- Replace serial parallel I/O in CCSM with parallel I/O (in progress).

- NCAR:
 - D. Bailey
 - F. Bryan
 - B. Eaton
 - N. Hearn
 - K. Lindsay
 - N. Norton
 - M. Vertenstein
- COLA:
 - J. Kinter
 - C. Stan
- U. Miami
 - B. Kirtman
- U.C. Berkeley
 - W. Collins
 - K. Yelick (NERSC)
- U. Washington
 - C. Bitz 5/5/09

- NICS:
 - M. Fahey
 - P. Kovatch
 - ANL:
 - R. Jacob
 - R. Loy
 - LANL:
 - E. Hunke
 - P. Jones
 - M. Maltrud
 - LLNL

•

- D. Bader
- D. Ivanova
- J. McClean (Scripps)
- A. Mirin
- ORNL:
 - P. Worley
 - and many more...

CUG 2009 Compute the Future

- Grant Support:
 - DOE

Acknowledgements and

Questions?

- DE-FC03-97ER62402 [SciDAC]
- DE-PS02-07ER07-06 [SciDAC]
- NSF
 - Cooperative Grant NSF01
 - OCI-0749206 [PetaApps]
 - OCE-0825754
 - CNS-0421498
 - CNS-0420873
 - CNS-0420985
- Computer Allocations:
 - TeraGrid TRAC @ NICS
 - DOE INCITE @ NERSC
 - LLNL Grand Challenge
- Thanks for Assistance:
 - Cray, NICS, and NERSC