
Effects of Floating-Point non-
Associativity on Numerical
Computations on Massively 
Multithreaded Systems

Daniel Chavarría, Oreste Villa, Andrés Márquez, 
VidhyaGurumoorthi

•Pacific Northwest National Laboratory



Non-determinism in floating point reduction

Relevant Background

Effect of floating point reductions on Applications

Power State Estimation

Floating-point Reductions (used in dot products)

Performance evaluation

Accuracy and Precision (non-determinism)

Evaluated Strategies

Quad-precision

Deterministic Tree

Conclusions



Relevant Background

Non-associativity of IEEE floating point operation:   

( a + b) + c ≠ a + (b + c)

Example: S =  0.001 +1032 – 1032

Considering an architecture with 32 “digits” of precisions, 
depending on the relative order of the additions the result could 
be S= 0 or it could S = 0.001 (Truncation and Rounding errors)

This behavior in general introduces accuracy errors (they are indeed 
present in each serial code, or message passing based code)

However this behavior introduces non-determinism in shared 
memory machines where for example many threads may interleave in 
different ways updating a shared variables. 

Accuracy Error Non-determinism



Relevant Background (cont.)

Issues with precision of floating point reduction

Reductions of floating-point vectors can produce non-deterministic 

results with the same inputs and same processor count

Intermediate results can vary significantly depending on thread 

scheduling and accumulation implementations strategies

Problem is more evident for larger accumulation, where 

accumulated values differs of many orders of magnitude.

Iterative algorithms carrying precision errors over multiple iterations 

could generate “unpredictable” convergence problems.

double sum = 0.0;  
for (i = 0; i < n; i++)
sum += A[i];



Power System State Estimation
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August 13, 2003

Normal

August 14, 2003

Blackout

Situational Awareness?

Source: NOAA/DMSP

Do we know what really happened?

Could it be prevented?

Compute a reliable estimate of the system state (voltages)



Power System State Estimation (cont.)

Power system State Estimation (PSE)

Given: power grid topological information, telemetry on line flows, 
bus injections or bus voltages

Compute: a reliable estimate of the system state (bus voltages), 
validate model structure and parameter values

Calculated using Weighted Least-Squares (WLS) method

WLS: minimize

Where r = z - h(x)  (r is the residual vector) x is the system state, z 
is a vector of measured quantities, h is a vector function, wi is the 
weight for residual ri and W is as diagonal matrix.

This is a non-linear problem, which is solved using the Newton-
Raphson iterative procedure
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Power System State Estimation (cont.)

PSE

Every iteration requires solving a 
large set of sparse linear equations

Sparse matrices are derived from 
the topology of the power grid being 
analyzed

The set of linear equations is solved 
with Conjugate Gradient (CG)

PSE is a critical element of the 
software used by power grid control 
centers

Has to operate under real-time 
constraints

Has to produce reliable results
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Compute Norm_WLS
While (Norm_WLS < ξ1)

Linearization

Compute Norm_CG
While ( Norm_CG < ξ2 )

SparseMatVecProd

…

Compute Norm_CG
End Loop CG

Compute Norm_WLS
End Loop WLS



PSE XMT Implementation

Ported Fortran-based sequential WLS PSE

Uses a CG solver at its core (which scales better than direct 
solvers based on LU or Cholesky factorization)

95% of the computation time is spent in the Newton-
Raphson WLS iterative solver

Most of it inside the CG solver for the linearized formulation 
computing a sparse matrix-vector product

Rest of the CG steps are vector-vector operations 
(addition/subtraction and dot products)

The XMT compiler was able to automatically parallelize 
the vector-vector operations (based on their dependence 
patterns)

We added some directives to guide the parallelization of 
the sparse matrix-vector product
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Floating-point Reductions

Initial tests of our XMT implementation of PSE on the 

14,000 nodes WECC* model produced non-deterministic 

results between runs on the same number of processors (!!)

J index and several node estimation fluctuating on the last digits!!

Immediately, we suspected a race condition in our code

The culprits were dot products in the CG solver which 

were producing non-deterministic results

The fine-grained parallel execution on the ThreadStorm processors 

combined with the compiler based reduction code was causing the 

non-associative nature of double-precision IEEE floating-point 

addition to produce different results (depending on the particular thread 

interleaving)

*WECC = Western Electricity Coordinating Council
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n is around 28,000 for our 

PSE example



Floating-point Reductions in PSE

We tightened our PSE code to use statically scheduled 
parallel loops: #pragma mta block schedule

This guarantees deterministic assignment of iterations to threads

for (i = 0; i< 100; i++)…, in this example if the loop is 
executed on 10 threads each thread should get 10 contiguous 
iterations: thread 0 gets iterations 0 to 9, thread 1 gets 
iterations 10 to 19, etc.

We performed this modification on each accumulation or 
reduction loop in the form:

for (i = 0; i< 100; i++) 
S += …

In particular, we focused on the computation of the Euclidean 
norm, used for testing for convergence on the CG loop:

Single scalar value “highly observable”

Recorded before and after every iteration of the external WLS 
loop



Floating-point Reductions in PSE (cont.)

Variability for the norm is significant

For 64-bit double precision

Example (norm on entry to CG routine) PSE/WECC:

Multiple runs with same input and same number of 
processors produce different norms.

WLS

Iteration

Run #1 Run #2 Diff. vs. 

Run #1

Run #3 Diff. vs. 

Run #1

1 1.64E+09 1.64E+09 0.00% 1.64E+09 0.00%

2 1.88E+09 1.88E+09 0.00% 1.88E+09 0.00%

3 3.29E+07 3.29E+07 0.00% 3.29E+07 0.00%

4 4.01E+05 4.01E+05 0.02% 4.01E+05 0.01%

5 1.50E+02 1.29E+02 14.25% 1.24E+02 17.63%

6 5.92E+00 5.13E+00 13.30% 7.37E+00 24.64%

7 5.22E-01 4.46E-01 14.52% 4.59E-01 12.06%



Floating-point Reductions in the Compiler

Given the code:

The programmer expects:

Σ Σ Σ Σ

Thread 0

reduces sequentially

Thread 1

reduces sequentially

Thread 2

reduces sequentially

Thread 3

reduces sequentially

…

Deterministic Final 

accumulation

What really happens behind the scenes:

Final accumulation is performed likely using concurrent atomic 
updates to single scalar

Dump of the code shows readff and reduce_f8_add

#pragma mta block schedule
for (i = 0; i<n; i++)
snm += r[i]



Floating-point Reductions in the Compiler

Why does the variability occur?

Compiler is in charge of generating code for the computation of 
the reduction

Even with the static block scheduling, there is some degree of 
dynamic reordering occurring due to implementation decisions

For performance reasons

For many applications, variability will be OK (within tolerance)

For other applications, variability could be problematic

We remind that In PSE, variability:

Leads to different overall results in “observable” significant digits

Could increase the number of iterations used in the CG or WLS 
loops depending on the norm (timing constraint)



Accuracy of Floating-point Reductions

What about accuracy? Which of the three PSE runs is 
more “correct”?

The literature indicates that a full sequential reduction of a long 
vector can be very bad for accuracy

Except if the data is fully sorted in ascending order (this is the 
most accurate case)

For vectors of random, uniformly distributed numbers using some 
form of partial sums (i.e. through threading) increases accuracy

Partial sums tend to accumulate 
towards comparable values, 
reducing the number of 
cancellation errors

Larger numbers of threads should 
increase accuracy, but not 
necessarily determinismE
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Explored approaches

Quad-precision accumulators

Problem in PSE is the cancellation of the contribution of relatively small 
values to the accumulation

Increase dynamic range by using long double accumulators (128-bit 
floating-point)

The small values should still contribute to the total sum due to more 
significant digits in the accumulator

Quad-precision is expensive: software emulation via combination of two 
double-precision variables

However, it’s more precise and also more accurate for reductions

Deterministic tree-based algorithm

Uses the concept of partial sums by thread

But, combines the partial sums in a deterministic manner using a 
reduction tree

Similar to existing reduction algorithms for distributed memory (MPI)

Not as costly as quad-precision

Completely precise, but potentially less accurate than quad-precision



Quad-precision Accumulators

Quad-precision accumulators

Problem in PSE is the cancellation of the contribution of relatively small 
values to the accumulation

Multiple runs produce always the same result reorders of the arrays do 
not change results either

Accuracy in norm: 
up to 22% difference between Quad and Double-precision

Error propagates as the number of iterations increases

WLS

Iteration

Quad 

Run

Double 

Run #1

Diff. vs. 

Quad

Double 

Run #2

Diff. vs. 

Quad

Double 

Run #3

Diff. vs. 

Quad

1 1.64E+09 1.64E+09 0.00% 1.64E+09 0.00% 1.64E+09 0.00%

2 1.88E+09 1.88E+09 0.00% 1.88E+09 0.00% 1.88E+09 0.00%

3 3.29E+07 3.29E+07 0.00% 3.29E+07 0.00% 3.29E+07 0.00%

4 4.01E+05 4.01E+05 0.01% 4.01E+05 0.01% 4.01E+05 0.02%

5 1.43E+02 1.50E+02 5.26% 1.29E+02 9.73% 1.24E+02 13.30%

6 6.14E+00 5.92E+00 3.66% 5.13E+00 16.47% 7.37E+00 20.09%

7 5.73E-01 5.22E-01 8.77% 4.46E-01 22.02% 4.99E-01 12.77%



Deterministic Tree-based Algorithm

Accumulates in levels performing partial sums of size “Degree”

A[0]+A[1]

A[0] A[1]

Degree = 2

A[0]+A[1]+A[2]+A[3]

A[2] A[3] A[4] A[5] A[6] A7]

A[2]+A[3] A[4]+A[5]

A[4]+A[5]+A[6]+A[7]

A[6]+A[7]

S= A[0]+A[1]+A[2]+A[3] +A[4]+A[5]+A[6]+A[7]



Tree-based Algorithm (properties)

“Left-leaning” tree: threads with lower rank do more work

Clearly, the algorithm is not load-balanced but for a given array size 

there is a tradeoff between accuracy and performance (next slides)

It is possible to use small degree for the first levels, large degree after 

the second

Precision is absolute (in the sense of determinism)

Accuracy varies with degree NOT with processor/thread count

It allows “right-leaning” correction tree can be used to increase 

accuracy 

Kapre, N. and DeHon, A. 2007. Optimistic Parallelization of 

Floating-Point Accumulation. In Proceedings of the 18th IEEE 

Symposium on Computer Arithmetic



Varying the Degree

Reductions for 28K double-precision elements uniformly 
randomly distributed using the deterministic tree

Changing the degree changes the accuracy

For an arbitrary degree precision is absolute

Experiment 

performed with 1 

processor 

(same result with 

more 

processors/threds)



Performance Comparison

Single reduction of 28K double-precision elements 
uniformly randomly distributed



Tree accuracy in the overall PSE application

We executed PSE using the deterministic tree-based 
reductions with degree 460

Accuracy is comparable to double precision runs

Precision is absolute also for the final result

WLS

Iteration

Quad 

Run

Tree Run Diff. vs. 

Quad

1 1.64E+09 1.64E+09 0.00%

2 1.88E+09 1.88E+09 0.00%

3 3.29E+07 3.29E+07 0.00%

4 4.01E+05 4.01E+05 0.00%

5 1.43E+02 1.72E+02 20.51%

6 6.14E+00 5.79E+00 5.76%

7 5.73E-01 4.28E-01 25.25%



Comparison of the different approaches

16

processors

Quad Prec. Double Prec. Tree

Performance 1.190ms 0.519ms 0.634ms

Accuracy “perfect” < 52,946 1,688

Precision “Absolute” <151,844 Absolute

Micro-benchmark: Single reduction of 28K taken from 
PSE data on 16 processors (requesting 100 streams per 
processors)

Tree with degree  460 (2 levels)

Double precision run 100 times (taken the maximum errors)

Sum = 2.69E18



Need for Compiler Integration

Integration as a library is not quite feasible:

Having to call a function with internal parallel loops has some 
overhead

In many cases, a reduction will be performed in a parallel loop 
that also has other operations in the loop body

Moving the reduction out of the loop implies a loop distribution 
transformation which could reduce performance and inhibit 
powerful transformations such as software pipelining

It will be significantly better to integrate the precise 
reduction algorithm as a compiler transformation

Potentially, we could use a new pragma 
(i.e.   #pragma mta precise reduction)

The new pragma could indicate where the programmer intends to 
have reductions executed with absolute precision

Run time and/compiler can choose the right degree based on 
some heuristic 


