Effects of Floating-Point non-Associativity on Numerical Computations on Massively Multithreaded Systems

Daniel Chavarría, Oreste Villa, Andrés Márquez, VidhyaGurumoorthi

Pacific Northwest National Laboratory

Non-determinism in floating point reduction

- Relevant Background
- Effect of floating point reductions on Applications
 - Power State Estimation
- Floating-point Reductions (used in dot products)
 - Performance evaluation
 - Accuracy and Precision (non-determinism)
- Evaluated Strategies
 - Quad-precision
 - Deterministic Tree
- Conclusions

Relevant Background

Non-associativity of IEEE floating point operation:

 $(a + b) + c \neq a + (b + c)$

Example: S = 0.001 +10³² - 10³²

- Considering an architecture with 32 "digits" of precisions, depending on the relative order of the additions the result could be S= 0 or it could S = 0.001 (Truncation and Rounding errors)
- This behavior in general introduces accuracy errors (they are indeed present in each serial code, or message passing based code)
- However this behavior introduces non-determinism in shared memory machines where for example many threads may interleave in different ways updating a shared variables.

Accuracy Error

Non-determinism

Relevant Background (cont.)

```
double sum = 0.0;
for (i = 0; i < n; i++)
sum += A[i];
```

Issues with precision of floating point reduction

- Reductions of floating-point vectors can produce non-deterministic results with the same inputs and same processor count
- Intermediate results can vary significantly depending on thread scheduling and accumulation implementations strategies
- Problem is more evident for larger accumulation, where accumulated values differs of many orders of magnitude.
- Iterative algorithms carrying precision errors over multiple iterations could generate "unpredictable" convergence problems.

Power System State Estimation

Source: NOAA/DMSP

Situational Awareness?

16:13:00 EDT

Do we know what really happened? Could it be prevented?

Compute a **reliable** estimate of the system state (voltages)

Power System State Estimation (cont.)

- Power system State Estimation (PSE)
 - Given: power grid topological information, telemetry on line flows, bus injections or bus voltages
 - Compute: a reliable estimate of the system state (bus voltages), validate model structure and parameter values
 - Calculated using Weighted Least-Squares (WLS) method
 - WLS: minimize

$$J = \sum_{i=1}^{m} w_i r_i^2 = r^T W r$$

- Where r = z h(x) (r is the residual vector) x is the system state, z is a vector of measured quantities, h is a vector function, w_i is the weight for residual r_i and W is as diagonal matrix.
- This is a non-linear problem, which is solved using the Newton-Raphson iterative procedure

Power System State Estimation (cont.)

Compute Norm_WLS while (Norm_WLS < ξ 1)

Linearization

Compute Norm_CG while (Norm_CG < ξ 2)

SparseMatVecProd

Compute Norm_CG End Loop CG

Compute Norm_WLS End Loop WLS

...

PSE

- Every iteration requires solving a large set of sparse linear equations
- Sparse matrices are derived from the topology of the power grid being analyzed
- The set of linear equations is solved with Conjugate Gradient (CG)
- PSE is a critical element of the software used by power grid control centers
 - Has to operate under real-time constraints
 - Has to produce reliable results

PSE XMT Implementation

- Ported Fortran-based sequential WLS PSE
 - Uses a CG solver at its core (which scales better than direct solvers based on LU or Cholesky factorization)
- 95% of the computation time is spent in the Newton-Raphson WLS iterative solver
 - Most of it inside the CG solver for the linearized formulation computing a sparse matrix-vector product
 - Rest of the CG steps are vector-vector operations (addition/subtraction and **dot products**)
- The XMT compiler was able to automatically parallelize the vector-vector operations (based on their dependence patterns)
- We added some directives to guide the parallelization of the sparse matrix-vector product

Floating-point Reductions

- Initial tests of our XMT implementation of PSE on the 14,000 nodes WECC^{*} model produced non-deterministic results between runs on the same number of processors (!!)
 - J index and several node estimation fluctuating on the last digits!!
 - Immediately, we suspected a race condition in our code
- The culprits were dot products in the CG solver which were producing non-deterministic results

$$d = \vec{v} \cdot \vec{w} = \sum_{i=1}^{n} v_i w_i$$
 n is around 28,000 for
PSE example

- The fine-grained parallel execution on the ThreadStorm processors combined with the compiler based reduction code was causing the non-associative nature of double-precision IEEE floating-point addition to produce different results (depending on the particular thread interleaving)
- *WECC = Western Electricity Coordinating Council

our

Floating-point Reductions in PSE

- We tightened our PSE code to use statically scheduled parallel loops: #pragma mta block schedule
 - This guarantees deterministic assignment of iterations to threads
 - for (i = 0; i < 100; i++)..., in this example if the loop is executed on 10 threads each thread should get 10 contiguous iterations: thread 0 gets iterations 0 to 9, thread 1 gets iterations 10 to 19, etc.
 - We performed this modification on each accumulation or reduction loop in the form:

```
for (i = 0; i< 100; i++)
S += ...
```

In particular, we focused on the computation of the Euclidean norm, used for testing for convergence on the CG loop:

- Single scalar value "highly observable"
- Recorded before and after every iteration of the external WLS loop

$$\left\|\mathbf{v}\right\| = \sqrt{\sum_{i=1}^{n} (v_i)^2}$$

Floating-point Reductions in PSE (cont.)

- Variability for the norm is significant
 - For 64-bit double precision

Example (norm on entry to CG routine) PSE/WECC:

WLS Iteration	Run #1	Run #2	Diff. vs. Run #1	Run #3	Diff. vs. Run #1
1	1.64E+09	1.64E+09	0.00%	1.64E+09	0.00%
2	1.88E+09	1.88E+09	0.00%	1.88E+09	0.00%
3	3.29E+07	3.29E+07	0.00%	3.29E+07	0.00%
4	4.01E+05	4.01E+05	0.02%	4.01E+05	0.01%
5	1.50E+02	1.29E+02	14.25%	1.24E+02	17.63%
6	5.92E+00	5.13E+00	13.30%	7.37E+00	24.64%
7	5.22E-01	4.46E-01	14.52%	4.59E-01	12.06%

Multiple runs with same input and same number of processors produce different norms.

Floating-point Reductions in the Compiler

Given the code: #pragma mta block schedule
for (i = 0; i<n; i++)
 snm += r[i]</pre>

The programmer expects:

- What really happens behind the scenes:
 - Final accumulation is performed likely using concurrent atomic updates to single scalar
 Pacific Nor
 - Dump of the code shows readff and reduce_f8_add

Floating-point Reductions in the Compiler

- Why does the variability occur?
 - Compiler is in charge of generating code for the computation of the reduction
 - Even with the static block scheduling, there is some degree of dynamic reordering occurring due to implementation decisions
 - For performance reasons
 - For many applications, variability will be OK (within tolerance)
 - For other applications, variability could be problematic
- We remind that In PSE, variability:
 - Leads to different overall results in "observable" significant digits
 - Could increase the number of iterations used in the CG or WLS loops depending on the norm (timing constraint)

Accuracy of Floating-point Reductions

- What about accuracy? Which of the three PSE runs is more "correct"?
 - The literature indicates that a full sequential reduction of a long vector can be very bad for accuracy
 - Except if the data is fully sorted in ascending order (this is the most accurate case)
 - For vectors of random, uniformly distributed numbers using some form of partial sums (i.e. through threading) increases accuracy

- Partial sums tend to accumulate towards comparable values, reducing the number of cancellation errors
- Larger numbers of threads should increase accuracy, but not necessarily determinism

Pacific Northwest NATIONAL LABORATORY

Explored approaches

Quad-precision accumulators

- Problem in PSE is the cancellation of the contribution of relatively small values to the accumulation
- Increase dynamic range by using long double accumulators (128-bit floating-point)
- The small values should still contribute to the total sum due to more significant digits in the accumulator
- Quad-precision is expensive: software emulation via combination of two double-precision variables
- However, it's more precise and also more accurate for reductions

Deterministic tree-based algorithm

- Uses the concept of partial sums by thread
- But, combines the partial sums in a deterministic manner using a reduction tree
- Similar to existing reduction algorithms for distributed memory (MPI)
- Not as costly as quad-precision
- Completely precise, but potentially less accurate than quad-precision

Pacific Nor

Quad-precision Accumulators

Quad-precision accumulators

- Problem in PSE is the cancellation of the contribution of relatively small values to the accumulation
- Multiple runs produce always the same result reorders of the arrays do not change results either

WLS Iteration	Quad Run	Double Run #1	Diff. vs. Quad	Double Run #2	Diff. vs. Quad	Double Run #3	Diff. vs. Quad
1	1.64E+09	1.64E+09	0.00%	1.64E+09	0.00%	1.64E+09	0.00%
2	1.88E+09	1.88E+09	0.00%	1.88E+09	0.00%	1.88E+09	0.00%
3	3.29E+07	3.29E+07	0.00%	3.29E+07	0.00%	3.29E+07	0.00%
4	4.01E+05	4.01E+05	0.01%	4.01E+05	0.01%	4.01E+05	0.02%
5	1.43E+02	1.50E+02	5.26%	1.29E+02	9.73%	1.24E+02	13.30%
6	6.14E+00	5.92E+00	3.66%	5.13E+00	16.47%	7.37E+00	20.09%
7	5.73E-01	5.22E-01	8.77%	4.46E-01	22.02%	4.99E-01	12.77%

 Accuracy in norm: up to 22% difference between Quad and Double-precision
 Error propagates as the number of iterations increases in Northwest

Deterministic Tree-based Algorithm

Accumulates in levels performing partial sums of size "Degree"

Tree-based Algorithm (properties)

- "Left-leaning" tree: threads with lower rank do more work
- Clearly, the algorithm is **not** load-balanced but for a given array size there is a tradeoff between accuracy and performance (next slides)
- It is possible to use small degree for the first levels, large degree after the second
- Precision is absolute (in the sense of determinism)
- Accuracy varies with degree NOT with processor/thread count
- It allows "right-leaning" correction tree can be used to increase accuracy
 - Kapre, N. and DeHon, A. 2007. Optimistic Parallelization of Floating-Point Accumulation. In *Proceedings of the 18th IEEE* Symposium on Computer Arithmetic

Varying the Degree

- Reductions for 28K double-precision elements uniformly randomly distributed using the deterministic tree
 - Changing the degree changes the accuracy
 - For an arbitrary degree precision is absolute

Performance Comparison

Single reduction of 28K double-precision elements uniformly randomly distributed

NATIONAL LABORATORY

Tree accuracy in the overall PSE application

- We executed PSE using the deterministic tree-based reductions with degree 460
 - Accuracy is comparable to double precision runs
 - Precision is absolute also for the final result

WLS Iteration	Quad Run	Tree Run	Diff. vs. Quad
1	1.64E+09	1.64E+09	0.00%
2	1.88E+09	1.88E+09	0.00%
3	3.29E+07	3.29E+07	0.00%
4	4.01E+05	4.01E+05	0.00%
5	1.43E+02	1.72E+02	20.51%
6	6.14E+00	5.79E+00	5.76%
7	5.73E-01	4.28E-01	25.25%

Comparison of the different approaches

- Micro-benchmark: Single reduction of 28K taken from PSE data on 16 processors (requesting 100 streams per processors)
 - Tree with degree 460 (2 levels)
 - Double precision run 100 times (taken the maximum errors)

16 processors	Quad Prec.	Double Prec.	Tree
Performance	1.190ms	0.519ms	0.634ms
Accuracy	"perfect"	< 52,946	1,688
Precision	"Absolute"	<151,844	Absolute

Sum = 2.69E18

Need for Compiler Integration

- Integration as a library is not quite feasible:
 - Having to call a function with internal parallel loops has some overhead
 - In many cases, a reduction will be performed in a parallel loop that also has other operations in the loop body
 - Moving the reduction out of the loop implies a loop distribution transformation which could reduce performance and inhibit powerful transformations such as software pipelining
- It will be significantly better to integrate the precise reduction algorithm as a compiler transformation
 - Potentially, we could use a new pragma (i.e. #pragma mta precise reduction)
 - The new pragma could indicate where the programmer intends to have reductions executed with absolute precision
 - Run time and/compiler can choose the right degree based on some heuristic
 Pacific Northwest
 National Laboratory