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ABSTRACT:
Random number generators are needed for many HPC applications such as real-time simulations.
Users often prefer to write their own pseudorandom number generators. We describe useful
techniques to find and implement fast, high-quality customized parallel pseudorandom
number/permutation generators. We prove and demonstrate a computational advantage. We
discuss how to choose moduli. We introduce an algorithm to find many multipliers based on LLL
reduction and present a fast implementation. We propose an empirical method to select multipliers
from a set of multipliers found using LLL reduction. We also introduce an algorithm to assign
numbers to a permutation for statistical analysis. We present results of runs on the Cray XD1.
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Introduction
A linear congruential generator (LCG) of the form

xn+1 = (αxn + c) mod m,    n ≥ 0, (1)
is an amazingly simple device introduced by Lehmer in 1949 to generate a pseudorandom sequence x0,

x1, x2, …,  with xn ∈ {0,1,2,…, m-1}, which exhibits many of the statistical properties that characterize a

random sequence, provided the integer constants α, c and m are chosen carefully with m > 0, 0 ≤ α < m,
0 ≤ c < m, and 0 ≤ x0 < m [1]. While there exist plenty of good choices for these constants, there is no

such notion as a perfect LCG and every LCG will fail some test. A compelling advantage of LCGs is the
fact that experiments (simulations) can be repeated by using the same “seed” x0 (a true random number

generator presumably based on some physical phenomenon is not reproducible). LCGs have been so
successful on sequential computers, it should not be surprising they are also successfully applied on
parallel computers despite the inherently sequential nature of the computations.

A special case of the LCG is a multiplicative congruential generator (MCG) with “increment” c =0:

xn+1 = α·xn mod m (2)
Both the “multiplier” α  and the seed x0  for the MCG must be nonzero since otherwise xn = 0  for all  n.

Eventually the LCG must produce an element that has occurred earlier in the sequence and then the
sequence repeats, which determines the period of the LCG. Evidently a disadvantage of using an MCG is
the period can never be equal to the “modulus” m, which is possible for an LCG but insignificant when m
is large (one less element). The MCG offers a computational advantage compared to an LCG because
there is one less operation (addition). Moreover, we shall see in the next section there is a way to exploit
the modulo operation of a MCG.

Avoid choosing a small modulus m whenever a large number of random numbers are needed (because
the period is always bounded by m). The largest period possible for an MCG can be achieved provided
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the multiplier is a “primitive root” whenever the modulus is a prime number because Euler's φ(m), the
number of integers between 1 and m and relatively prime to m, is exactly the m − 1 integers less than m.
This fact from elementary number theory is next briefly explained. Given an integer m , the “order” of any
integer α is the smallest integer n such that

αn mod m = 1. (3)

A primitive root of a prime modulus m has order n = m − 1, i.e., all of the integers α, α2, α3, …, αm−1 are
distinct (α generates all of the elements under multiplication). To see these elements must all be distinct,
suppose by way of contradiction αi mod m = αj mod m with 0 ≤ i < j < m − 1. Since gcd(α,m)=1, there must
exist a modular multiplicative inverse α–i such that (αi⋅α–i) mod m = 1. But then 1 ≡ αi⋅α–i ≡ αj⋅α–i ≡ αj-i

(mod m), which contradicts the fact that α is a primitive root. Luckily, it is not necessary to exhaustively
test every power n = 2,3, …, m-2, when m is large to determine if a given integer is a primitive root of a
prime modulus. It suffices to test

α(m−1) ⁄ f mod m ≠ 1 (4)
for all primes f dividing m − 1. To verify this claim, we need the following identity, which holds when the
binary operation ⊗ is addition, subtraction or multiplication (this is what makes modular arithmetic "nice"):

(α ⊗ β) mod m = ( ( α mod m) ⊗ (β mod m) ) mod m (5)
Assume the order on an integer α (mod m) is the integer n. Suppose αp mod m = 1. Write

p = q⋅n + r,    0  ≤  r  < n. (6)
Then

1 = αp mod m                  by supposition
    = α q ⋅ n + r mod m         by (6)               

= ( α q ⋅ n⋅ αr ) mod m                         
= αr mod m                   by (5)            (7)

By assumption, n is the order of α and so equation (7) in view of the inequality (6) forces r = 0. Hence, the
order of α necessarily divides m−1 by Fermat's little theorem (1640), which states that the prime integer m
divides  αm−1−1  for all positive integers α that are relatively prime to m, i.e., αm−1 mod m = 1. For each
factor f of m−1, let ψ(f) denote the number of integers with order f (mod m). Gauss (1801), who was a
wizard of summations already as a pupil in school based on a popular anecdote [2], showed that

Σψ(f) = m−1 = Σφ(f). (8)
and concluded that ψ(f) = φ(f) [3, p. 182], which completes the justification of the claim. Indeed, if α
satisfies equation (3), then we have shown that the order of α divides n. Conversely, if α has order r and r
divides n, then necessarily α satisfies equation (3). Thus, the number of solutions to equation (3) must be
Σf|nψ(f), which Lagrange (1777) proved must be equal to n [4, p. 181]. Also Σf|nφ(f) = n since there is a

total of n terms
  1  ,     2  ,     3  ,   …,   n−1 ,     n  ,     n   n   n   n   n 

of which exactly  φ(f)  will have  f  in their denominator, after dividing out all common factors. Interestingly,
Gauss' proof recovers ψ(f) = φ(f) from (8), which seems to require the Möbius inversion formula which was
invented over half a century later in 1858 by the mathematician who invented the möbius strip [4][5].
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A Möbius Strip

Usually it is easy to find small primitive roots regardless of the magnitude of the prime modulus. So it is
practical to search for a primitive root starting from small primes. For example, using both the GNU
Multiple Precision (MP) “Bignum” arithmetic (GMP) and the NTL libraries (with GMP) [6][7], we found that
11 is a primitive root of the prime 48047305725 ⋅ 2172404 − 1 = 286445162615702949817…(16 pages
worth of digits omitted)… 30342041599, which has exactly 51, 910 decimal digits (we counted using the
UNIX command wc). This number is prime because 48047305725 ⋅ 2172403−1 (which we confirm has the
same number of digits base 10) is currently the largest known Sophie Germain prime (with high
probability), which is any prime number p for which 2p+1 is also prime [8]. Such primes simplify the task of
finding primitive roots. To show that a small number α is a primitive root of a large prime 2p+1 where p is
prime, it is only necessary to verify αp ≠ 1. The reason is there are only two exponents that need to be
checked by equation (4), namely 2p ⁄ p = 2 and 2p ⁄ 2 = p. Plainly α2 mod (2p+1) ≠ 1 since for small primes
α, α2 <<  2p+1.

Is there a sound approach to find constants for an MCG in a parallel setting using Sophie Germain
primes? Search for a primitive root r of a prime modulus m = 2p+1, where p is a Sophie Germain prime,
and then employ rt as the multiplier for some suitable power t of the primitive root r [9]. Technically it is
incorrect to say “Sophie-Germain primes as the prime modulus” [9] because p is the Sophie Germain
prime, not m = 2p+1. For example, in [9] it is erroneously stated that m = 264 − 21017 is a Sophie Germain
prime (2m + 1 = 265 − 42033 = 36893488147419061199 = 23 ⋅ 383 ⋅ 42013 ⋅ 253637 ⋅ 393031 is evidently
not prime), although p = 9223372036854765299 is a Sophie Germain prime with 2p + 1 = 264 − 21017.
Mersenne primes provide slightly better performance compared to using Sophie Germain primes but there
are far fewer of them [9][10]. While there is a sound basis for using primes near a power of two as the
modulus, the case for using Sophie Germain primes in not compelling.

A primitive root is discovered fairly quickly. Yet a small primitive root is unlikely a good multiplier for an
MCG using a large modulus m. Is r n mod m a primitive root whenever r is a primitive root of a prime
number? The powers of r (mod m) generate all of the integers 1, 2, …, m − 1, and they cannot all be
primitive roots because some exponents must divide m−1, which is even. All of the primitive roots belong
to the set

{ r n |  gcd(m−1,n) = 1 }. (9)

Thus the number of primitive roots is the number of positive integers less than the prime modulus m that
are not multiples of factors of m−1, which was discovered in the 19th century by Keferstein [3]. Regardless
of the choice of the prime modulus and corresponding primitive root as a multiplier, terms of an MCG
sequence with shift half of the period are highly correlated [11]. This fact favors employing large moduli m
so that half the period (m−1) ⁄ 2 is sufficiently large.

Factoring large integers using trial and error is practical only about 90% of the time. The reason is that
given any sequence of 100 integers, most of them are divisible by 2 (50%), 3 (33%), 5 (20%), and other
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small primes. Hence, not all integers are equally easy to factor. The SQUare FOrms Factorization
algorithm can factor almost any integer with up to 18 digits [12][13]. Yet the algorithm may be useful when
the word size is 128-bit or larger. Unlike the vast majority of factoring algorithms, the SQUFOF algorithm
works best using mainly integer arithmetic.

We developed a fast variation of the SQUFOF algorithm. Our implementation in C is successful around
97% of the time for large integers up to 264 (higher success rate is possible with reduced performance).
While finding a factor may not be a trivial task for large integers, determining if any given integer has a
non-trivial factor (i.e., is composite) can be decided quickly with high probability using the Rabin-Miller
Probabilistic Algorithm, which was invented in the mid-1970's [14]. When the algorithm is correctly
implemented, a program that asserts an integer is composite cannot be wrong. Perhaps a single
composite among about 1020 integers will be indistinguishable from a prime number using the Rabin-
Miller Probabilistic Algorithm.

Even when the number of factors is small and can be discovered reasonably fast, raising an integer to a
large power via modular arithmetic is accomplished quickly and precisely but cannot be done using typical
library functions. Identity (5) is useful to perform such computations. This identity is not typically covered
extensively in computer science curricula. We developed a fast implementation in C to do such
computations on unsigned integers. An implementation in C to perform modular multiplication on signed
integers is published [15].

The popularity of MCGs has spawned an abundance of research in both sequential and parallel settings.
Recently, a new approach to find optimal multipliers was proposed based on the “figures of merit”, a
measure that was introduced in 1976 [16][17]. Generally it is impractical to conduct an exhaustive search
to find optimal parameters suitable for sequential computations. In a parallel setting, there is no evidence
to suggest that there exists any method of pseudorandom number generation that would be ideal for all
applications. Regardless, packages for scalable pseudorandom number generation do exist [18].

Although a large body of knowledge exists on choosing parameters for an MCG, the theory is incomplete.
For example, a statement such as “The multiplier is chosen to be certain powers of 13 … that give
maximal period sequences of acceptable quality” [9] is sound, yet does not prescribe an algorithm. A
programmer developing an application would find a table of parameters for an MCG useful. Yet, it is not
easy to find a single multiplier for an MCG in many published works (see for example [9] or [10]).
Moreover, practical issues are often inadequately addressed. For example, the period may be
considerably smaller than theoretically possible due to computer arithmetic so that the effective period is
 p½, where p denotes the theoretical period [19].

Our primary interest is to compute pseudorandom numbers in parallel while avoiding the computation of
any subsequence produced by another process. Whenever two processes produce the same
subsequence, we say that “overlap” has occurred. A natural idea is to use a different seed but to be
certain that overlap is avoided, it is advisable to implement some “leapfrog” technique to partition the
sequence among the processes, which may be appropriate if scalability is not a concern [20]. Although
the leapfrog method is sound, we prefer a simpler approach that does not require additional computations
whenever the number of processes is changed.

We seek a simple, fast implementation of an MCG which not only produces good results in a parallel
setting for many applications, but also is easily adapted to run on different sets of processors, i.e.,
scalable in the sense that performance and quality remain high while the effort required to modify the code
is minimal. In the next section, we focus on performance. Subsequently we prescribe ways to find prime
moduli and good multipliers for an MCG. We present data based on our algorithms and then conduct
some experiments to assess the quality of the results.

Fast Computation
If the computations are performed exactly, then it is possible to achieve the optimal period for the right
choice of parameters. However, if overflow occurs during the computations, then the period will likely be
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considerably smaller than predicted. We focus on relatively fast implementations, which limits the
investigation as we shall see shortly.

When the modulus is a power of two, there is a computational advantage in performing the modulus
operation for an MCG (using a fast bit-wise and operation). There is also a performance benefit when the
modulus is a Mersenne or Sophie Germain prime [9][10]. Actually this advantage holds more generally for
any prime sufficiently close to a power of two, which we demonstrate next.

For an MCG (2), fix m = 2q − k for arbitrary positive integers q > 1, k  ≥ 1. Write

α⋅xn  =  γ 2q + λ, (10)
so that λ and γ hold the q least significant bits and the most significant bits, respectively, of the product
α⋅xn−1, which is the multiplier times the “previous” pseudorandom number in the sequence (2). Note 0  ≤  λ

 ≤ 2q − 1. Using the mathematician's usual addition and subtraction trick, we see that
γ 2q + λ = γ 2q + (kγ − kγ) + λ = γ (2q − k) + kγ + λ. (11)

Applying the nice identity (5) to the above equation (11), we immediately recognize that
xn+1 = α⋅xn mod m = (kγ + λ) mod m. (12)

Plainly replacing a single operation (α⋅xn ) by two operations (kγ + λ) is not what improves performance!

The mod m operation is faster using the right-hand side of equation (12) because (eventually) this
operation can be accomplished using subtraction instead of an expensive division operation. We may
have that  kγ + λ > 2m , which means additional operations may be required to perform the mod m
operation.

Example
Choose the prime modulus m = 13 with q = 4 and k = 3. Take α = 11 which is a primitive root of 13. Set x0

= 12, which is a valid seed for an MCG. Then αx0 = 11⋅12 = 132 = 8 ⋅ 24 + 4, which yields γ = 8 and λ = 4.

Hence, k γ + λ = 3 ⋅ 8 + 4 = 28 > 26 = 2m.

How large can γ be? For sufficiently small k, we claim

γ  <  2q − 2(k+1)  . (13)
Whenever α is a primitive root, we must have that  α < m −1  because m −1 is even whenever m is prime.
We always have that xn ≤ m−1. Hence, α⋅xn < (m−1)2  for all integers xn generated by an MCG (2).

Therefore,
α⋅xn  <  (m − 1)2  =  (2q − k − 1)2  =  22q − 2q+1(k+1) + (k+1)2. (14)

We know every nonnegative integer can be expressed as 2q − k for some integers q and k. In particular,
for every prime integer m with 2 < m < 2q, if m is sufficiently close to 2q, then there exists a small integer k
such that  m = 2q − k. We shall only consider integers k satisfying

1  ≤  k  <  2(q−1)/2. (15)

For such small integers k, we see that

(k+1)2  ≤  (  2(q−1)/2 )2  ≤  2q−1 < 2q. (16)

In view of this inequality (16), upon dividing both sides of the inequality (14) by 2q, we see that the claim
(13) holds:
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γ  =  
α⋅xn

  <  
22q − 2q+1(k+1) + (k+1)2

  =  2q − 2(k+1)  .
  

  2q                  2q 

In the case of a Mersenne prime m = 2q − 1, we need perform at most a single subtraction operation to
perform the mod m operation in equation (12). Indeed, k = 1 and in view of the claim (13), we must have
that

kγ + λ − m  = γ + λ  − m  <  2q − 4 + 2q − 1  − m  =  2q+1 − 5  − m  =  2q+1 − 5  − (2q − 1)  =  2q − 4  < 
m.

(17)

Example
Consider the miniscule Mersenne prime modulus m  = 7 for illustration purposes. Choose the primitive
root  α  =  5. Set the seed  x0  =  5. Then  γ  =  5⋅5 ⁄ 8  =  3 < 2q- 2(1+1) = 4. This shows the upper bound

predicted by (13) is tight. The sequence generated by the MCG (2) is 5,4,6,2,3,1, …, is calculated using  γ
+ λ [ − m if needed] as follows: 3 + 1 = 4, 2 + 4 = 6, 3 + 6 − 7 = 2, 1 + 2 = 3, 1 + 7 − 7 = 1. Observe one
third of the time subtraction is needed and the largest  γ+λ−m value is 2 (compute x3 given x2 = 6) and

this maximum value is smaller than 23 − 4 = 4 as the inequality (17) asserts.

Algorithm 1:  MCG Computation for Mersenne Primes

Input:     An integer x with 1 ≤ x ≤ m − 1, a multiplier α with 1 ≤ α < m, a positive integer q with 2q − 1 = m
Output:  α ⋅ x mod m.

x ←  α ⋅ x1.
x ← γ + λ where x has the binary representation [γ | λ] with λ holding the q LSB of x2.
If x > m then x ← x − m3.

Recall, we may have that  kγ + λ > 2m. How large can  kγ + λ be if m is not a Mersenne prime? Consider a
recursive application of equation (12) replacing  α⋅xn  by  kγ + λ  to obtain new upper  γ’  and lower  λ’ 

“q-bits.”  We compute

kγ’  +  λ’  =  k ⋅ 
kγ  + λ

    +   λ’  ≤  k ⋅ 
k(2q − 2(k+1) −1)  +  (2q−1)

  +  λ’ 
 2q  2q

         =   k ⋅
2q(k+1) −2k(k+1) − (k+1)

 + λ’  ≤  k(k+1) +λ’   ≤   2q−1 + 2q − 1 = 3⋅2q−1 − 1,  
 

 2q

where the last inequalities hold by dropping the negative terms and noting that  k(k+1) ≤ 2(q − 1)/2(2(q − 1)/2)
≤ 2q − 1 by inequality (15). Thus,

kγ’ + λ’ − m  <  3⋅2q−1 − 1 − (2q − k)  = 2q − 1 + k − 1  < m, (19)
where the last inequality must hold because k is small. To see this statement is true, note there are
2q − 2q − 1  =  2q − 1 integers between 2q − 1 and 2q and the distance from m to 2q is |2q −m| = k, which is
no more than half the distance by inequality (15). These calculations prove that at most two recursive
applications of equation (12) are sufficient to compute the next pseudorandom number in (2).

Example
Consider the prime modulus m  = 1021 which is neither a Mersenne prime (because the distance to the
nearest power of two exceeds one) nor a Sophie Germain prime (because 2m+1 = 2043 is not prime).
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Write m = 210 − 3, i.e., q = 10 and k = 3. Notice inequality (15) is satisfied because (10 − 1) ⁄ 2 = 4 > k > 1.
Choose the multiplier α = 991, which is the largest primitive root of 1021. Employ the seed x0 = 987. Using

these choices, the MCG (2) has period 1021. To calculate x1 we find kγ + λ = 3⋅955 + 197 = 3062 and in

the recursive step we find the next pseudorandom number is 6 + 1014 = 1020. The largest γ computed in
the first step is 987 < 210 − 8 as predicted by (13). Subtraction is needed only twice when the previous
pseudorandom number is 68 and 34. In this case, subtraction is never needed when the recursive step is
performed. The recursive step is needed nearly 83% of the time.

Example
Consider the prime modulus m  = 1048573. Note m = 220 − 3, i.e., q = 20 and k = 3. Choose the multiplier
α = 2, which is a primitive root of 1048573. Take the seed x0 = 1048572. Using these choices, the MCG
(2) has full period 1048572. Subtraction is needed only once and the recursive step is never performed!
Unfortunately the sequence does not appear random since every number is twice the previous number
mod m. This example demonstrates that merely having an optimal period does not provide any assurance
on the quality of the sequence.

Example

Consider changing only the multiplier in the previous example, setting α = 828119 which is a primitive root
of 1048573. Using these choices, the MCG (2) has full period 1048572. Subtraction is needed a total of
four out of 1,048,572 times, including twice after performing the recursive step (after generating the
numbers 854996 and 641247). The recursive step is needed nearly 79% of the time.

Algorithm 2:  MCG Computation for Primes Close to a Power of Two

Input:     An integer x with 1 ≤ x ≤ m − 1, a multiplier α with 1 ≤ α < m, positive integers q and k with 2q − k
= m
Output:  α ⋅ x mod m.

x ←  α ⋅ x1.
x ← kγ + λ where x has the binary representation [γ | λ] with λ holding the q LSB of x2.
If x > 2q − 1 then x ← kγ’ + λ’ where x has the binary representation [γ’ | λ’] with λ’  holding the q LSB
of x

3.

If x > m then x ← x − m4.

Efficient Implementation
When performing multiplications, overflow may result. If the computations are not performed exactly, there
is no guarantee the full period predicted in theory will be achieved. Indeed, the usable sample size is
typically about the square root of the possible period (or the modulus) when the modulus is large based on
observations. On the CRAY XD1, the largest possible modulus is m ≈ 264 without using more
sophisticated techniques, which we reject for the sake of speed. The largest period we would normally
expect is on the order of ( 2q )½ where the modulus m ≈ 2q >> 231. Realizing the full period when the
modulus is large is not important. Indeed, computing 264 pseudorandom numbers is not going to be done
fast anytime soon! On the other hand, if the period is much smaller than  m½, then the sequence is much
less likely to be useful regardless of the quality. Longer periods than might reasonably be expected can be
realized.

Example
The CRAY RANF is a MCG given by xn = 44485709377909⋅xn − 1 mod 281474976710656, which has

period 246 [21]. This period seems to be valid (more on this later) using direct calculation with the usual
operators (* and %) in C, i.e., perform the modulo operation in (2).
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Example
Consider the prime modulus m = 281474976597361 = 248 − 113295. Choose the multiplier α =
582167988922 and the seed x0 = 281474976597360. Then implementing the previous algorithm in C

yields the period 18936324 ≈ (248)½. Performing the computations exactly (and more slowly), the period
should be 281474976597360 = 248 − 113296. Using an efficient implementation based on the GMP library
on the CRAY XD1, merely computing (without saving or printing) the full sequence would take about 268
days (ignoring crashes!).

Rolling A Die Fast
To meet our requirements, we declare that the computation of the next pseudorandom number is “fast” if it
takes at most the same amount of time (preferably less) to call a library function such as lrand48(). We
next quantitatively assess performance to demonstrate that our approach is practical. We simulate rolling
a usual six-sided die  229⋅3 times. We summarize the results in the following table.

LCG  Implementation in C  χ2  Time (s) 
1327760490⋅xn mod 231−1 Algorithm 1 1.19 11.0

97693434⋅xn mod 237−25 Algorithm 2 0.926 14.1

27355192⋅xn mod 238−45 Algorithm 2 6.36 14.0

247016489220937⋅xn mod 248−59 Algorithm 2 78.0 13.2

14022294538115072⋅xn mod 255−55 Algorithm 2 6.74 13.2

10337092905140992⋅xn mod 256−5 Algorithm 2 5.69 13.2

98530843867429240⋅xn mod 257−13 Algorithm 2 4.95 13.2

72103240369675328⋅xn mod 258−27 Algorithm 2 4.53 13.2

2209592322954132280⋅xn mod 261−1 Algorithm 1 3.91 11.0

 5048131329874245129⋅xn mod 263−25 Algorithm 2 2.05 13.2

RANF:  44485709377909⋅xn mod 248  44485709377909*xn % m  1610612748 58.9

25214903917⋅xn + 11 mod 248 lrand48() 4.35 32.4

25214903917⋅xn + 11 mod 248 drand48() 2.70 50.9

The die is determined using modular arithmetic, e.g., lrand48() % 6 + 1, except in the implementation that
uses drand48() for which the side is 6*drand48() + 1. The chi-square χ2 statistic is computed assuming a
uniform distribution (we expect to roll each side of the die approximately 228 times.) The CRAY RANF
function only rolls three of the six possible outcomes (which three sides depends on the seed)! Note we
are using usual C operators (not calling the FORTRAN routine) so that we can compare the cost savings
by not performing the modulo operation. Both Algorithms 1 and 2 are implemented in a straightforward
manner. Except for the RAND48 library calls, we seed the generator using m − 1, where m is the modulus.
We initialize drand48() and lrand48() by calling seed48(A), where A denotes the array of shorts [0x1234,
0xabcd, 0x330e].

A fast implementation of Algorithm 1 or 2 is easily coded. The number γ is obtained by shifting q bits to the
right. The integer λ is calculated by performing a bit-wise and operation with 2q − 1. When q = 64, do not
apply the algorithm since γ is zero and instead use direct calculation (2). As the modulo operation is
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relatively slow as we have shown, we recommend using moduli < 263.

Example
Consider the prime modulus m = 18446744073709549363 = 264 − 2253. Choose the multiplier α =
1262014585074097263 and the seed x0 = m − 1. Then implementing Algorithm 2 in C produces xn = 0 for

all n ≥ 63. If we abandon Algorithm 2 and perform the computations in C directly (as xn = α * xn − 1 % m),

the period is long.

We see that performing the modulo operation is relatively slow. Our algorithms are fast compared to
calling library functions. Using Mersenne primes (Algorithm 1), we see the speedup is about 1.2× 
compared to an implementation of Algorithm 2. We have settled important implementation issues to
achieve a fast implementation of an MCG. We next address how to find constants to use in an MCG so
that the generated sequence is high-quality.

Choosing Prime Moduli
Before we are able to select multipliers, we need to decide the value of the modulus m. We impose the
requirement that m − 1 is easy to factor so that finding primitive roots is fast using (4). In doing so, we
eliminate few, if any, moduli. It does not seem prudent to invest a great deal of effort on one modulus
without any evidence it is a particularly good choice especially when it is not practical to explore all
possibilities. Indeed, performing an exhaustive search in which we find the best multipliers for every valid
modulus is practical only for small q. We suspect that it is harder to find especially good multipliers for
some large moduli, just as not all integers are equally easy to factor.

Question: Is it easier to find more multipliers that yield high-quality sequences by choosing the
prime modulus m on the basis of the number of factors of m − 1?

The main requirement is that the modulus m = 2q − k, is a prime close to a power of two satisfying
inequality (15). Consider a few different strategies to select such prime modulus:

The prime closest (but less than) a power of two.1.
A special prime such as a Mersenne or Sophie Germain prime closest (but less than) a power of
two.

2.

The prime furthest and close enough to a power of two.3.
A prime m for which m − 1 has the least factors.4.
A prime m for which m − 1 has the most factors.5.

The first few choices are rather arbitrary choices which are quickly discovered. Although some authors
advocate choosing a prime closest to a power of two because the period is longer in theory, this notion is
flawed because in practice the period is usually much smaller for large q and may even be longer in
practice for smaller moduli. We hope an MCG is capable of producing more pseudorandom numbers than
will be used by an application. So it should not matter if the period is negligibly smaller. We stress that
merely increasing the size of the moduli does not provide any assurance the period will be longer in
practice.

Recall, it has been argued that using Sophie Germain primes as prime moduli makes it easy to find
primitive roots [9]. However, it is not the prime modulus m which should be a Sophie Germain prime, but
rather  (m − 1) ⁄ 2  which should be a Sophie Germain prime. Regardless, it is equally easy to find primitive
roots for a far greater number of primes, e.g., there are many more primes than Sophie Germain primes of
the form  2apb + 1,  where p is prime, and all such primes offer the same advantages. Moreover, finding
small primitive roots is fast for any choice of modulus unless it is difficult to factor  m − 1  (which we have
already addressed). Furthermore, there is little need for optimization for such task which is performed only
once for any choice of modulus. Since special primes are included in the other strategies (1,4), we shall
focus on them.
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The antithesis of using Sophie Germain primes is listed last (item 5). Our reasoning for using such moduli
is based on the large set (9). For large q, there are a large number of exponents to check. Is it possible to
more quickly find good multipliers by eliminating more of the exponents?

To define an algorithm that finds moduli, it is necessary to specify how to break ties when more than one
moduli might meet the stated criteria. When using the number of factors as a criteria (items 4-5) and more
than one modulus has the optimal number of factors, we arbitrarily choose either the smallest moduli
whose largest factor is minimal, or the largest moduli (which is well-defined because extrema always
exists on a finite set). We say an integer “factors quickly” if we can can completely factor in some
predetermined fixed number of steps using some particular program. The following algorithm is easily
adapted for all of the described strategies (and others as well):

Algorithm 3:  Find Prime Modulus m Based on Factors of m − 1

Input:    A positive integer q
Output: The smallest modulus m having the most factors with the smallest largest factor, |2q − m| <
2(q − 1) ⁄ 2

k ←  2(q − 1) ⁄ 2 − 11.
n ← 2q − 1 − k2.
n ← next prime greater than n3.
maxfactors ← 04.

While n < 2q carry out steps a-b:5.
if n − 1 factors quickly thena.

if the number of factors exceeds  maxfactors  then

m ← n
maxfactors ← number of factors

largestfactor ← largest value among the factors

else if the number of factors equals  maxfactors  then

if the largest factor is less than  largestfactor  then

m ← n
largestfactor ← largest value among the factors

n ← next prime greater than nb.

Note that after step 2, n is even (since both 2q − 1 and k are odd) and so we are certain the next prime is
larger than n and within the required distance. We have implemented Algorithm 3 in C using the GMP
library and our own version of SQUFOF. We list some results in tables below. It is interesting that the
primes seem to occur in a certain “regularity” in the sense for example the distance k generally increases
with q when searching for the smallest prime  m  sufficiently near  2q for which  m − 1  has the least or
most factors.
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Prime Moduli m  =  2q − k

q
 

Small moduli

 Moduli m for
which m − 1
has the most
factors with
small largest

factor

 Large moduli m
for which
m − 1 has

the most factors

k k k
31 32725 25477 21757
32 32759 15095 135
33 65529 15781 15781
34 65513 11733 3753
35 131055 4189 4189
36 131057 20895 1995
37 262143 63883 6133
38 262125 51075 51075
39 524281 7 7
40 524255 292125 34595
41 1048539 771529 31
42 1048571 834771 51933
43 2097121 404167 404167
44 2097137 1242069 30705
45 4194283 2484139 674821
46 4194285 4143213 4143213
47 8388535 2134177 564427
48 8388575 6805845 1128855
49 16777171 15282151 15282151
50 16777133¹ 13683813 13683813
51 33554409 22153957 22153957
52 33554399 28334685 10193835
53 67108861 49350691 28197421
54 67108773 23207793 23207793
55 134217675 66709861 1597957
56 134217723 92831175 92831175
57 268435401 98575351 98575351
58 268435415¹ 197150703 197150703
59 536870907 200307607 102293257
60 536870903 84750435 84750435
61 1073741719 968978011 968978011
62 1073741781 947209497 3723723
63 2147483637 1894418995 10258255
64 2147483609 1083182115 673280805

 1Sophie Germain prime
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Prime Moduli m  =  2q − k

q

 Moduli m for
which

m − 1 has two
factors with
small largest

factor

 Large m for which
m − 1 has
two factors

 
Large moduli

k k k
31 10239¹ 69 1²
32 12287 209 5¹
33 34815 9 9
34 43007 641 41
35 87039 519 31
36 12287 137 5
37 262143 45 25
38 110591 401 45
39 471039 135 7
40 190463 437 87
41 864255 75 21
42 270335 2201¹ 11
43 1318911 291 57
44 552959 1493 17
45 1146879¹ 573 55
46 3244031 857 21
47 5373951 771 115
48 4890623 1823 59
49 4980735 2295 81¹
50 15679487 161 27
51 6553599 465 129
52 24575999 473 47
53 51380223 1269 111
54 19464191 1031¹ 33
55 81657855 579 55
56 105381887 2249 5
57 215351295 423 13
58 242221055 137 27
59 268435455 99 55
60 364904447 107 93
61 570425343 2373 1²
62 987758591 791 57
63 117440511 915 25
64 1676673023 1469 59

 1Sophie Germain prime    2Mersenne prime

“Small” and “large” are used in this context instead of smallest and largest, respectively, because the
SQUFOF algorithm is not always guaranteed to factor completely, even though we have conducted an
exhaustive search. Nevertheless, a quick inspection of the values of k indicates the observed values are
in the range of the expected values. Moreover, the number of factors is always consistent with observed
values. In particular, note that 2 is always a factor of m − 1 for all prime moduli m. In any case, we have
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explicitly provided a list of many moduli (among the large number of valid moduli) suitable for further
investigation.

Primitive Roots
After having chosen a prime modulus, the task is to find a primitive root α. Based on our experiments and
known theoretical results, the smallest primitive root works as well as any other root when using (9) to find
good multipliers, which is the topic of the next section. It is easy to find such roots [22]. Based on
inequality (4), we next present an algorithm which is easily adapted to find various primitive roots.

Algorithm 4:  Find Smallest Primitive Root

Input:    A prime modulus  m  for which  m − 1  factors easily
Output: A small primitive root  α  of m

Compute an array of distinct factors F[1..n] such that  k | (m − 1)  if and only if   k  equals  F[i]  for
some  i  with 1 ≤ i ≤ n.

1.

Set  ei  =  (m − 1) ⁄ F[i] for 1 ≤ i ≤ n.2.

Put  Prime ← 23.
Let  i ← 14.
While i ≤ n carry out steps a-b:5.

r ← Primee
i mod ma.

if  r  equals 1 thenb.
Set  Prime ← the next prime greater than Prime.
i ← 1

α ← Prime6.

Typically the primitive root is quite small so that a small array may be used to hold small primes (or call a
function in a library such as GMP to obtain the next prime). There is a subtle point to notice about this
algorithm. It is not possible to employ usual library functions to raise primes to large powers (modulo m).
At least one of the exponents is large because 2 divides  m − 1  for large primes m. We developed our
own code and found by comparison that the GMP library provides a suitably efficient exponentiation
function. We list the primitive roots for the moduli in the preceding tables below. For theses moduli it is
striking that there are always primitive roots less than or equal to seven when there is only one other
factor besides 2, and that 3 is always a primitive root when the only other factor besides 2 is relatively
small.
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Primitive Roots α of Prime Moduli m

q

 
Small moduli

 Moduli m for which m − 1
has the most factors with

small largest factor

 Large moduli m for which
m − 1 has

the most factors
m α m α m α

31 2147450923 3 2147458171 3 2147461891 3
32 4294934537 3 4294952201 3 4294967161 67
33 8589869063 5 8589918811 19 8589918811 19
34 17179803671 7 17179857451 2 17179865431 11
35 34359607313 3 34359734179 2 34359734179 2
36 68719345679 17 68719455841 23 68719474741 2
37 137438691329 3 137438889589 2 137438947339 2
38 274877644819 2 274877855869 13 274877855869 13
39 549755289607 3 549755813881 11 549755813881 11
40 1099511103521 3 1099511335651 3 1099511593181 2
41 2199022207013 2 2199022484023 3 2199023255521 29
42 4398045462533 2 4398045676333 5 4398046459171 2
43 8796090925087 5 8796092618041 83 8796092618041 83
44 17592183947279 7 17592184802347 3 17592186013711 67
45 35184367894549 17 35184369604693 2 35184371414011 2
46 70368739983379 2 70368740034451 2 70368740034451 2
47 140737479966793 5 140737486221151 7 140737487790901 2
48 281474968322081 11 281474969904811 2 281474975581801 83
49 562949936644141 13 562949938139161 19 562949938139161 19
50 1125899890065491¹ 2 1125899893158811 7 1125899893158811 7
51 2251799780130839 7 2251799791531291 2 2251799791531291 2
52 4503599593816097 3 4503599599035811 7 4503599617176661 23
53 9007199187632131 2 9007199205390301 19 9007199226543571 2
54 18014398442373211 2 18014398486274191 11 18014398486274191 11
55 36028796884746293 2 36028796952254107 3 36028797017366011 11
56 72057593903710213 2 72057593945096761 47 72057593945096761 47
57 144115187807420471 13 144115187977280521 31 144115187977280521 31
58 288230375883276329¹ 3 288230375954561041 23 288230375954561041 23
59 576460751766552581 2 576460752103115881 29 576460752201130231 19
60 1152921504069976073 3 1152921504522096541 13 1152921504522096541 13
61 2305843008139952233 5 2305843008244715941 31 2305843008244715941 31
62 4611686017353646123 2 4611686017480178407 7 4611686018423664181 73
63 9223372034707292171 13 9223372034960356813 2 9223372036844517553 5
64 18446744071562068007 5 18446744072626369501 29 18446744073036270811 19

 1Sophie Germain prime
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Primitive Roots of Prime Moduli m

q

 Moduli m for which
m − 1 has two factors with

small largest factor

 Large m for which
m − 1 has
two factors

 
Large moduli

m α m α m α
31 2147473409¹ 3 2147483579 2 2147483647² 7
32 4294955009 3 4294967087 5 4294967291¹ 2
33 8589899777 3 8589934583 5 8589934583 5
34 17179826177 3 17179868543 5 17179869143 5
35 34359651329 3 34359737849 3 34359738337 5
36 68719464449 3 68719476599 7 68719476731 2
37 137438691329 3 137438953427 2 137438953447 5
38 274877796353 3 274877906543 5 274877906899 2
39 549755342849 3 549755813753 3 549755813881 11
40 1099511437313 3 1099511627339 2 1099511627689 13
41 2199022391297 3 2199023255477 2 2199023255531 2
42 4398046240769 3 4398046508903¹ 5 4398046511093 2
43 8796091703297 3 8796093021917 2 8796093022151 7
44 17592185491457 3 17592186042923 2 17592186044399 7
45 35184370941953¹ 3 35184372088259 2 35184372088777 13
46 70368740933633 3 70368744176807 5 70368744177643 2
47 140737482981377 3 140737488354557 2 140737488355213 5
48 281474971820033 3 281474976708833 3 281474976710597 2
49 562949948440577 3 562949953419017 3 562949953421231¹ 17
50 1125899891163137 3 1125899906842463 5 1125899906842597 41
51 2251799807131649 3 2251799813684783 5 2251799813685119 11
52 4503599602794497 3 4503599627370023 5 4503599627370449 3
53 9007199203360769 3 9007199254739723 2 9007199254740881 3
54 18014398490017793 3 18014398509480953¹ 3 18014398509481951 3
55 36028796937306113 3 36028797018963389 2 36028797018963913 7
56 72057593932546049 3 72057594037925687 5 72057594037927931 11
57 144115187860504577 3 144115188075855449 3 144115188075855859 2
58 288230375909490689 3 288230376151711607 5 288230376151711717 17
59 576460752034988033 3 576460752303423389 2 576460752303423433 5
60 1152921504241942529 3 1152921504606846869 2 1152921504606846883 2
61 2305843009069514753¹ 3 2305843009213691579 2 2305843009213693951² 37
62 4611686018080571393 3 4611686018427387113 3 4611686018427387847 17
63 9223372036737335297 3 9223372036854774893 2 9223372036854775783 3
64 18446744072032878593 3 18446744073709550147 2 18446744073709551557 2

 1Sophie Germain prime    2Mersenne prime.

Finding Multipliers Using LLL Reduction
After having determined a prime modulus and corresponding primitive root, the task is to select a set of
multipliers {α1, α2, …, αn} suitable for pseudorandom number generation and especially for parallel

processing. The trick is to select those powers of the primitive root α (i.e., αk = αr for some integer r) which

yield high quality sequences [9][10]. In the sequel, we investigate this approach.

Precisely what is a high quality sequence depends on the application. A valid approach is to assess the
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quality based on observations of the results of experimental runs (i.e., based on an application basis using
empirical testing). Notwithstanding this caveat, it is widely accepted that good constants for an MCG will
yield good spectral results, which is a measure of the smallest distance between so-called hyperplanes
(determined by overlapping tuples) with smaller distances being better (because the gaps are smaller) [1].
Typically the number of dimensions (length of tuple sequence) is between six and eight. The shortest
distance is usually %ldquo;normalized” between 0 and 1. Spectral results have been used for example to
analyze results for parallel computations using the CRAY RANF pseudorandom number generator on a
CRAY system [23].

It is widely accepted that computing spectral results is time-consuming. It seems costly to check the
quality of a large number of primitive roots based on spectral results for large moduli. To reduce the time
to assess the quality of a multiplier, an approximation is calculated using the NTL library to perform an LLL
reduction (named after the discovers Lenstra, Lenstra and Lovász) [24] [25] [26] [27] [28]. We next briefly
review the calculation of the approximation.

As usual, let m denote a prime modulus and α a candidate multiplier. We consider only eight dimensions
since the approximation is fast compared to computing the exact result, which is typically based on lower
dimensions [27]. Choose a dimension d ∈ {2,3,4,6,7,8}. Form a  d × d  matrix  Ud  by taking the first  d 

rows and columns of the following matrix:

U8  =  

    m  0   0   0   0   0   0   0    
− α  1   0   0   0   0   0   0  
− α2  0   1   0   0   0   0   0  

− α3  0   0   1   0   0   0   0  

− α4  0   0   0   1   0   0   0  

− α5  0   0   0   0   1   0   0  

− α6  0   0   0   0   0   1   0  

− α7  0   0   0   0   0   0   1  
      

Note a suitable exponentiation function is needed to raise a large multiplier to small powers (or perform
multiplication exactly). The NTL library provides such functions plus a routine to perform LLL reduction,
which performs elementary row transformations so that the rows form an LLL reduced basis (see LLL.txt
in the NTL documentation). After performing LLL reduction on the matrix  Ud,  the minimum of the inner

product of each row with itself is multiplied by a precomputed constant, which depends on the modulus
and the chosen dimension  d  to obtain a result for the chosen dimension. The minimum of all such results
over all dimensions yields the final approximation. Larger results closer to one are better. Values over 0.74
are less commonly observed and values around 0.77 or higher are especially rare.

We search for multipliers that have relatively high normalized results. We propose to limit the search by
setting a slightly higher threshold on the minimum for the first few dimensions (2 through 6). In other
words, a lower bound on the minimum for the last couple dimensions (7 and 8) is not set quite as high as
for the lower dimensions. In this way, we hope to find a larger number of multipliers by eliminating fewer
multipliers for which the approximations are relatively high based only on the lower dimensions. We next
present our algorithm to find many multipliers, which is similar to an implementation that is designed to
find a single multiplier by raising the primitive root to suitable powers until good LLL-spectral results are
realized (see lll_search.c) [28].

Algorithm 5:  Select Primitive Roots

Input:    A prime modulus  m  and a primitive root  α  of m
Output: A set of multipliers and corresponding normalized LLL-spectral results

Calculate “normalization factors:”1.
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    N2  =   0.75½ ⁄ m,  N3  =  (0.5½ ⁄ m)2 ⁄ 3,  N4  =  (0.5 ⁄ m)1 ⁄ 2,  N5  =  (0.125½ ⁄ m)2 ⁄ 5,

    N6  =  (0.046875½ ⁄ m)1 ⁄ 3,  N7  =  (0.125 ⁄ m)2 ⁄ 7,  N8  =  (0.0625 ⁄ m)1 ⁄ 4  ;

Choose limits:
   Maxapproximations ← 536870912,

   Maxroots ← 4096,

   Min2−6 ← 0.5476,

   Min7−8 ← 0.4489;

Set counters:
    e = 0,
    i ← 0,
    c ← 0.
While  c < Maxapproximations  carry out steps a-f:2.

c ← c + 1a.
repeat
    e ← e + 1
    if  e  equals  m − 1, proceed to next step (3)
until gcd(m − 1, e) is not equal to one

b.

root ← αec.
Set   Min  ← 2,
        Minimum  ←  Min2−6,

        d  ←  2.

d.

while  Min ≥ Minimum  and  d ≤ 8
V ← Ud transformed into an LLL-reduced basis

δd ← min { v0⋅v0, v1⋅v1, …, vd−1⋅vd−1 }, where vr is the rth row of V

η ← Nd ⋅  δd
if  η < Min  then Min ← η
if  d  equals 7 then  Minimum  ←  Min7−8
d ← d + 1

e.

if  Min ≥ Minimum  then
Rooti  =  root

Resulti  =  Min½

i ← i + 1
if  i  equals Maxroots, proceed to next step (3)

f.

If  i > 0, merge sort Root using Result to order elements3.

We employ a lazy evaluation technique by aborting (step e) as soon as a small value is discovered
instead of waiting until the minimum is computed. We also compute the entries of the matrix U8 only once

and reuse the entries. The normalization factors may be calculated using standard library functions (using
powf() in C instead of using higher precision as in type RR in NTL library). Since these factors are
computed only once, performance is not relevant. We have squared the constants to avoid computing
square roots, which improves performance slightly, e.g., 0.5476  = (0.74)2 and 0.4489  = (0.67)2. We
compute square roots mainly for convenience (step f). We use the LLL_FP routine instead of LLL routine,
which significantly improves performance. We also used the GMP library to perform initial computations
(instead of using NTL library functions). We found 4096 multipliers for the Mersenne modulus  261 − 1  in
about 6.67 hours instead of 11.8 hours by implementing these optimizations.
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Increasing the given limits on  Min2−6  or  Min7−8  will significantly reduce the number of multipliers found.

Increase  Maxroots  (for large moduli) to find more multipliers with higher LLL-spectral results and ignore

those multipliers with smaller LLL-spectral results, which is the reason for sorting. There are only finitely
many such results and for this reason we include other counters. Reduce Maxapproximations to run the

algorithm faster, which yields fewer results. We provide a code fragment in C below.

Code Fragment in C Implementing Algorithm 5 to Find Many Multipliers
unsigned long int r = 0;
mpz_t gmp_root, gmp_base, gmp_mod, gmp_n1, gmp_r[9] ; mpz_init( gmp_root );
mpz_init( gmp_base ); mpz_set_ui( gmp_base, PrimitiveRoot );
mpz_init( gmp_mod ); mpz_set_ui( gmp_mod, modulus );
mpz_init( gmp_n1 ); mpz_set_ui( gmp_n1, N1 ); // N1 = modulus - 1
for (int j = 1; j < 9; i++ ) mpz_init( gmp_r[j] );
unsigned long int Root;
ZZ multiplier, m;
conv(m,modulus );
float N[9];
dm = (float)modulus;
N[2] = powf( 0.75, 0.5) / dm;
N[3] = powf( pow(0.5,0.5) / dm , 0.6666667 );
N[4] = powf( 0.5 / dm , 0.5 );
N[5] = powf( powf(0.125,0.5) / dm , 0.4 );
N[6] = powf( powf(0.046875,0.5) / dm , 0.3333333 );
N[7] = powf( 0.125 / dm , 0.28571429 );
N[8] = powf( 0.0625 / dm , 0.25 );
ZZ products[9];
const float Min26 = 0.5476, // square of lower acceptable limit for dim 2-6

Min78 = 0.4489; // square of acceptable limit for dim 7-8
const float Minimum[10] = {0,0,Min26,Min26,Min26,Min26,Min26,Min26,Min78,Min78};
int i = 0, CounterLLL;
for ( CounterLLL = 0; CounterLLL < Max_approximations ; CounterLLL++ ) {

for( r++; mpz_gcd_ui( NULL, gmp_n1, r ) != 1UL; r++ ); // gcd
if ( r >= N1 ) break;
Root = mpz_get_ui ( gmp_root );
multiplier = to_ZZ( Root );
float norm, min = 2;
unsigned long int dprev = 1, d = 2;
for ( ; ( min >= Minimum[d] ) && (d <= dim); dprev = d, d++) {

products[dprev] = products[dprev-1] * multiplier;
mat_ZZ x;
x.SetDims(d,d);
x[0][0] = m;
for (int j = 1; j < d; j++) {

x[j][j] = 1;
x[j][0] = products[j];

}
LLL_FP( x, 0.75, 0, NULL, 0);
float min_d = to_float( x[0] * x[0] );
for (int j = 1; j < d; j++) {

float ip = to_float( x[j] * x[j] );
if (min_d > ip) min_d = ip;

}
norm = N[d] * min_d;
if (norm < min) min = norm;
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}
if( min >= Minimum[d] ) {

Root[ i ] = Root;
Result[ i ] = sqrt(min);
i++; if (i == Max_roots) break;

}
}
if( i ) { // sort and print }

Using the preceding algorithm, we found at least 4096 multipliers for all moduli near m ≈ 2q  with  31 ≤ q ≤
64. In particular, we found all except one of the multipliers for moduli near m ≈ 2q  with 31 ≤ q ≤ 36  listed
in [27], which indicates our implementation is correct. Moreover, we found multipliers with higher
LLL-spectral results for all q. Based on the LLL-spectral results alone, we cannot distinguish one class of
moduli as particularly a good choice. For example, if we count the number of multipliers with an
LLL-spectral result above a certain value, then the class that produces the largest number of multipliers
exceeding the prescribed value varies depending on both the given value and the power of two for which
the moduli are near. Hence, it seems LLL reduction is not useful to choose prime moduli  m  on the basis
of the number of factors of  m − 1, which is consistent with Leonard Euler's statement that [29]

"Mathematicians have tried in vain to this day to discover some order in the sequence of prime
numbers, and we have reason to believe that it is a mystery into which the human mind will never
penetrate."

Nevertheless, some other means such as empirical testing may be useful to select prime moduli and for
any choice of prime moduli, LLL reduction is useful to find candidate multipliers.

Selecting Multipliers Using Empirical Tests

Given a list of multipliers, we cannot simply select those multipliers with high LLL-spectral results. There
are two potential problems. One problem is the period may be unacceptably short, which may be a
consequence of the method of computation. Another problem is the sequence may not appear sufficiently
random.

Checking the period of a large list of multipliers is not a trivial task. Which cycle finding algorithm is
fastest? This question does not seem to be settled in the literature. It is claimed that the “multi-stack”
algorithm is about 20% faster on average than Brent's algorithm [30] [31]. We confirm that if the period is
short, it can be discovered fairly quickly using the multi-stack algorithm. However, we also found many
cases for which it is considerably faster to calculate the period using Brent's algorithm [32].

Example

Modulus Multiplier Period
Time (s)

multi-stack Brent

 233 − 9  26891986  8589934582  260  104 

 233 − 9  8137022074  19739  0.00230  0.00125 

 231 − 1  1977654935  2147483646  61.9  32.6 

Another advantage of Brent's algorithm is that it has minimal memory requirements. Intuitively it is plain
the time required to detect a cycle is directly proportional to the period (since it seems it is necessary to
calculate enough elements before encountering a repeated value). Hence, it is not practical to calculate
the period whenever it is close to 2q for q >> 33. For example, a multi-stack program may not halt for over
a week to find the period for a single multiplier; whence, it would take impossibly long to calculate the
period for thousands of multipliers even when many of them provide a short period. We discovered a
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simple modification of Brent's algorithm that not only finds the correct period when it is not too long based
on extensive testing, but also terminates in a reasonable amount of time even when the period is too long
to be calculated exactly. Furthermore, this modification has negligible effect on the running time. We
present Brent's modified algorithm next.

Algorithm 6:  Find Short Period of an LCG

Input:    The function f() that computes the next pseudorandom number and the seed x
Output: k, which is either the period or a larger integer indicating a shorter period was not found

Put r  ← 11.
Set k  ← 12.
Put y  ← f()3.
While x ≠ y carry out steps a-c:4.

if  r  equals k thena.
Set  x ← y
Set  r ← 2r
if r equals 234 then proceed to next step (5)
k ← 0

y ← f()b.
k = k + 1c.

If r equals 234 then k  ← the largest integer possible5.

Example
We used Algorithm 6 to verify that we could not find a short period  << 246 for the CRAY RANF MCG in
approximately 10 minutes 20 seconds [21].

Note the period is often dependent of the seed. Since a long period does not ensure the generated
sequence meets the requirements of an application, we propose running empirical tests to check the
quality of the sequences. The proposed strategy is to conduct multiple tests based on reasonably large
subsequences. If the period is extremely short, then the tests are more likely to detect poor characteristics
of the generated sequences.

There exist well-known tests such as the “diehard” tests which yield statistical data based on sound theory
[33]. While it is practical to carry-out such tests for a small number of multipliers, it is time-consuming to
inspect a large amount of data for a large number of multipliers. We seek a faster method to empirically
test multipliers found using LLL reduction.

We next describe our method to filter out good multipliers. We conducted the following common tests by
successively generating subsequences of length 6881280 ten times without reseeding for each multiplier
found:

Type of Test

 

Number of Tests
Permutation Four using k-tuples, k = 5,6,7,8  
Uniformity One
Independence Six using k-dimensional hypercubes, k = 2,3,4,5,6,7

The permutation test records the order (which should be uniformly distributed) among the possible k!
orderings of k-tuples. The uniformity test counts how many observations fall into a fixed number of
equal-sized bins. The k-dimensional independence test records the number of hits in k-dimensional
equal-sized hypercubes. We reuse the generated data for all tests (i.e., we use the same data for the
5-tuple permutation test as for the uniformity test, etc.) without overlapping (independent samples), e.g.,
the first two k-tuples involve the first  2⋅k numbers generated.
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For each of the 110 tests, we assign a statistic σ using a χ2 goodness-of-fit test assuming the sample
comes from a uniform distribution as follows:

 σ  Region of χ2 statistic
 0  10% ≤ χ2 ≤ 90%
 1    5% ≤ χ2  < 10%  or  90% < χ   2 ≤ 95%
 2    1% ≤ χ2 < 5%  or  95% < χ2 ≤ 99%
 3  χ2 < 1%   or  χ2 > 99%

We devised this statistic based on Knuth's discussion of “general test procedures” [1]. We compute the χ2

statistic based on the percentage points of the χ2 distribution using MQLS software [34]. The final statistic
is the sum ς = Σ σ where the summation is taken over the 110 tests. The statistic will depend on the seed
employed. In our tests, we set the seed to m − 1, where m is the prime modulus. We accept those
multipliers which have relatively low sums. We propose to reject whenever we find “outliers” more than
20% of the time, where the statistic  σ > 0  for any outlier. The average statistic  σ  for an outlier is 2 and
so the sum of the statistic  σ  for any particular test over the ten trials should not exceed  (.20)10⋅2 = 4. In
our case, we run eleven tests and so we propose to reject whenever the final statistic  ς > 4⋅11 = 44.

What is the justification for this testing procedure? We normally expect to see the χ2 statistic to appear
uniformly randomly distributed when the generated data appears uniformly randomly distributed. This
means we also expect to see outliers occasionally. Ideally we would graph the results instead of
computing the sum.

Example
Several multipliers were found using LLL reduction for the prime moduli 231 − 1  and 233 − 9 [27]. We list
our results for all of these multipliers and a couple other multipliers which we found below for comparison
purposes.

 Modulus Multiplier Period  LLL-spectral Result ς

 231 − 1  598753959[27]  2147483646  0.734350  43 

 231 − 1  117879879[27]  2147483646  0.743094  36 

 231 − 1  629824009[27]  2147483646  0.748798  47 

 231 − 1  1355089539[27]  2147483646  0.749724  34 

 231 − 1  1101592370  2147483646  0.761410  17 

 233 − 9  8137022074[27]  19739  0.753160  330 

 233 − 9  26891986  8589934582  0.756007  40 

The multiplier 26891986 for the modulus  233 − 9  yields not only a full period but also a relatively small
sum ς (40 << 330). We provide a few graphs below to visually show that the individual statistics are
typically scattered when the multiplier is a good choice.

CUG 2009 Proceedings



Chi-square statistics for prime modulus  233−9  and multiplier 26891986 in uniformity test

Chi-square statistics for prime modulus  233−9  and multiplier 26891986 in 5-tuple permutation test

Chi-square statistics for prime modulus  233−9  and multiplier 26891986 in 2D independence test

In stark contrast, the multiplier 8137022074 for the modulus  233 − 9  not only yields not only an
unacceptably short period but also a relatively large sum ς (330 >> 40). We see that the results are not
scattered in the proper regions.
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All statistics for prime modulus  233−9  and multiplier 8137022074 are outliers in uniformity test

All statistics for prime modulus  233−9  and multiplier 8137022074 are outliers in 5-tuple permutation test

All statistics for prime modulus  233−9  and multiplier 8137022074 are outliers in 2D independence test

We find that the MCG having the multiplier 26891986 and the modulus  233 − 9  clearly passes nearly all
of the diehard tests. Using the multiplier 8137022074, the MCG clearly fails most of the diehard tests.
Based on these results, the multiplier 8137022074 is a poor choice for the modulus  233 − 9 even though
the LLL-spectral result is relatively high.

It is generally observed that poorly chosen constants for an LCG can be detected by a visual inspection of
2D or 3D graphs. Although the multiplier 8137022074 yields a 2D plot that does exhibit subtle patterns
that might perhaps lead us to reject the multiplier, the 2D and 3D plots in this instance do not exhibit large
gaps, which normally would be anticipated whenever the constants for the MCG are poorly chosen, i.e.,
the plots are unexpectedly good (because the empirical results are unsatisfactory), although such graphs
are consistent with high LLL-spectral results. Below we plot 19739 points using the sequence

s = { 
 1 (x0, x1, x2, …, x19738) },

m − 1

where m is the modulus, x0 = m − 1  is the seed, and xi is the ith pseudorandom number generated by the

MCG.
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2D plot of {(sn,sn+1) | 0 ≤ n ≤ 19738} for the rejected multiplier 8137022074

3D plot of {(sn,sn+1,sn+2) | 0 ≤ n ≤ 19737} for the rejected multiplier 8137022074

Surprisingly, for the vast majority of the multipliers found using LLL reduction for the modulus  233 − 9 , the
statistic  ς  is relatively large. In other words, there are far fewer multipliers with a relatively small statistic
in this case. We observe this phenomenon only for intermediate moduli (our tests are limited). For
instance, for the prime modulus  238 − 45, only two of the 4096 multipliers found using LLL reduction may
be considered satisfactory using our testing procedure! When the modulus is smaller, as in the case  m =
231 − 1 , or larger than 249, we find far fewer large values of the statistic  ς.

Interestingly, we found relatively more satisfactory multipliers (about 900 in each case) for moduli close to
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 m = 233 for which m − 1  either has many factors or a relatively small factor besides two. Although we
found over 8000 multipliers for both moduli  m = 239 − 7  and  m = 239 − 524281  with high LLL-spectral
results, few passed our empirical tests and those that did pass our tests failed to provide a full period. For
example, m = 239 − 7, the multiplier 407569451297 has an LLL-spectral result of 0.736035 and a low ς =
4, which are satisfactory but the period is only 7151242. For the modulus m = 239 − 524281, the multiplier
107627735285 has an LLL-spectral result of 0.676041 and a ς = 35 and the period is 13158220, which is
relatively long (not a full period) compared to other multipliers that pass out tests. Thus the problem is not
limited by the small quantity of satisfactory empirical results. Often the period is too short even when the
LLL-spectral and empirical results are satisfactory. In the case of m = 249 − 81, we find many multipliers
for which the LLL-spectral and empirical results are acceptable but for which the period is short (around
50+ million or less, which may be acceptable for some applications).

In review, we search for multipliers using our algorithm based on a fast implementation of LLL reduction.
We then filter the multipliers by eliminating the ones that have either unacceptable empirical results based
on a series of tests or too short period based on our modified version of Brent's algorithm. We provide a
partial list of multipliers that pass our testing procedure for a few moduli in the table below. While these
multipliers are good choices, our tests are not exhaustive and we could find better choices.

Multipliers for Prime Modulus m  = 231 − 1

1327760490 2066353702 64673635 13496534 2115602258
1130487585 366987602 449666487 1179466207 1610952690
1144912594 750812715 237482926 589590877 63009789
1646375777 1982352019 276600333 1340326634 1172820338
849788117 1342204164 109002162 658081785 1332582004
214853381 89482149 602116046 593960624 1454735214
1306528138 62589812 1670073895 2126602119 396544957
359664239 1695987831 508747874 649683560 1355999881

1610666646 1438289155 2079645965 1136719287 611668365
1828435645 1878495191 1847615830 1237328482 1468948367
972970514 1010471390 126020853 706427382 1709121003
1101592370 1506604121 1512514978 824215950 1321742111
1888709996 995582175 1561995614 1304420267 1856996488
890285426 978341136 1151089329 2023442129 1385616379
1154363107 1700408166 942499575 1735119235 1443415006
968186004 857083457 1487296614 846315352 2084576224
389713771 614976766 1988625655 498035997 2091302020
884030647 563043968 1852865445 1605194785 1648446679

1259082738 1835824673 260994711 240447011 1147108816
15504300 1413287209 650491165 680854257 628062990

1435306322 927243288 1305700395 1434972591 593585162
1042208133 1894106185 1036034475 1673116415 241964875
434833139 843936096 1026031797 83283724 962428207

1766260325 522422173 153294169 544987095 885855294
1712991949 1186874058 1665120202 1481001151 1178284384
1300846825 100141984 1878222740 1194074653 1796829509
913776635 2047895118 584717610 1861041125 665538753
345309885 570635603 889304313 1370517560 1128124577
938844034 2062303428 1436861582 1786206933 1053597311
1580605747 1901854344 720358714 1236164771 2040072439
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Multipliers for Prime Modulus m  = 262 − 57

2227666520522988 2335245043818421572 2958048408930287532 2821497825880930668
6125433456171879 229869021091622116 541962160899652940 3645820036832622356
242991343497935 2986508760285856708 364313872487046284 2117980445355000731
385325382108333 1230401549344097348 4437343137438423668 1077327186057395324

0445622603323716 3404718480622991346 3632484698526789692 3040394404002739493
4716400480585236 4425050684624664868 601696678466323924 3360988063228378564
3245363233199204 305480126024544988 1140520979900998343 2904568835753732236
910487642975572 3573939289300556044 1437104732804195596 1111204688074489044

5423650086846141 3176158344253306828 3665506303834541868 529750891505220676
0272513680219020 757998535101219594 982506319620817612 510301227247225548
7476194856468218 1476746311225538452 2339344678753297700 2406547870037429612
308330264249580 2028107709143540196 460465672511139916 2169322410029413884
6234903618635836 2836325001576828756 3304850999237510764 1302692003016593727
9507500607942393 1127184225209561420 2442328367503098604 3525967833252807900
3517735631097212 254533705499448356 3216739265730783020 2734845951024098108
9762161018925836 3143250031667232428 4312569826513122964 2858990330270135956
818812215302820 3505111250052047420 142682684051643767 2924706175868748540
9091477482083836 3005708043498447004 1122404151658602356 2384376175079003364
2101648724486855 3049914937445631084 2485606123337880225 3737901350162908743
3087629853475092 2820800426820749716 1803501089697376940 1322520419430537292
6375748891921916 771883998081009342 1514926988797966303 2213119349169260508
031080726473732 2243945721847679725 2930516100542645740 4494970451474388404

7462914720430958 3843182323716420380 2876990204610411756 1007531718334738490
8538904338130612 2606475706061829691 960695606911668116 2782767896275353612
7053581384735532 1643282104386383980 670108774451549844 1001393204888569492
8585308547598203 2418232767452531692 1621277272908803724 4008104371906474908
7809888395679756 1049643446522008484 432127321738792164 1789457316119133228
312008784666244 1849084705355803389 4261613820926935399 857519200068935628

0472151709439338 4067814427609890436 1273491878580529124 2083357865738529211
8098840758717236 3898454276482771700 2383006420636971996 447971768444903140
8097943894898732 2442060819726853316 1533254051312395243 468986501493944828
249454169311180 1188318551523486772 2593239100320542884 1683383931902134724
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Multipliers for Prime Modulus m  = 263 − 25

5048131329874245129129 6970857753449530850 6420278701347409430 5124525484560574678
3599012081437622174 9033130285246985478 3135883546616849630 5450100294142127183
5230828488753169785 5277564623835390478 1243915603764351534 3067675794346700338
1164142900299891771 1690244713649970294 8504294721320585030 1982429857622105466
5863122408574880490 7488297927170703726 1192417868866640021 4674946439731140607
2161553242107985838 3693270853121744274 2723638313981663842 2583372058471374662
5583226340227159521 7440483159998091718 6865597922945174018 6710640246843790433
8130017674206960802 1355888514815117818 66935293183612951 7310597557252160706
2193035004633415366 698553738790551194 5359281404268310005 8724299514156051935
126418711700522650 3558263172428606031 6343443902471568174 4485294600469307766

7041410690023337563 7578608487980007799 253175814488353254 2347700846709651015
2138588662245218566 8408227919743527230 5206346059077753018 1955988046358844486
8189359621998424622 3616566817062986114 6424355341835960642 2500937059175260802
8080320067683804887 8033051016217168982 7321992163586838902 6411023698701546182
1769007136379980686 7783932335745702394 5558975998246609070 2143403440715322422
3179570434846579489 4945674464234686695 4695325265498138958 5288198982489587626
7762145188453129894 6245073051208444365 1478438406335434706 2309620102346487126
2287775950289931630 2457532858703768094 6610727231368630747 905762158313624865
870491490180669699 9197167186577252565 3870451705883074774 439605922369016570
4359681192108683725 643024978184937358 8162972527107683162 4667597220755320922
1937140893319420210 5487491960955870086 6672346787909502191 719372909398164950
3760870210522814318 1827366899773106907 8652243963382490303 5176898528264328250
1773166088840501934 2479698328010538454 9087242916220307793 2289446703802487557
400065671079016742 1035122893537674026 6561247231059429639 9169751783082340538

6564255993928279035 3997015511275500730 549512076501724846 1925625704083580246
844694661116743062 1456029575323840666 7410714248380123986 8688101763314670602

5595565586107992950 5611696577798111118 3927998942213401347 1561798619548458430
598858993587313666 8205566993320371494 7154943775958131514 5670532371588444962

9054079806224684046 7044308632905183510 7855708569000872254 4546508663771071157
2048336232069601622 192296947391005798 6940449059354001403 4595997938451814114
4832871382696361267 123352434606157734 676201409278475890 4217132583335612998
9077402637247533766 9035191738883420082 2228114199495086142 7909033251671519

Parallel Pseudorandom Number Generation
Recall, our primary interest is to compute pseudorandom numbers in parallel while avoiding the
computation of any subsequence produced by another process. If every process used the same multiplier
but a different randomly chosen seed, then it is possible multiple processes might produce the same
subsequence. If each process uses a distinct carefully chosen (as described) multiplier , then we would
not expect the same subsequence to be generated by two different processes, even though every pair of
processes (eventually) generates the same set of numbers (in a different order). We shall discuss a
couple different experiments.

For each experiment, we develop both MPI and hybrid MPI + OpenMP code. For the MPI version, we use
128 MPI processes on 32 nodes. For the hybrid version, we use 32 MPI processes on 32 nodes with 4
threads per node, which yields a total of 128 threads.

For all tests, we employ the same prime modulus m = 8589934583 = 233 − 9, and the same initial seed x0
= 7927, which is a primitive root of m. We chose this modulus because we were able to find ample
multipliers with full period. Although our choice of a seed is arbitrary and some authors suggest picking a
seed randomly, we would recommend choosing one randomly from a set of tested seeds because the
period can be affected by the choice of seed for large moduli. Using an assigned seed and multiplier, each
process or thread generates pseudorandom numbers in parallel as needed using Algorithm 2.
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Each experiment consists of two parts. In the first part, each process or thread uses the same multiplier,
namely 1178748639 (listed first in table below), and a different seed. We assign a seed to each process or
thread uniquely according to its MPI rank and OpenMP thread number using a single MCG for all
processes/threads

xn+1 = 66827594 ⋅ xn mod 233 − 9,

which yields a full period and passes our empirical tests. In the MPI version, the process with rank r has
seed xr , whereas in the hybrid version the process with rank r and thread number t has seed x4r + t. In the

second part, each process or thread is assigned the same initial seed x0 = 7927 and a unique multiplier

from among 128 multipliers that pass our empirical tests and yield a full period, which we list below (the
multiplier for the MCG above is not included).

Multipliers for m = 8589934583 = 233 − 9

1178748639 1504451367 1438843832 1508982646
2039663820 1498584416 1753099100 1264049400
420951726 944773179 1894605422 1972037996

2145391955 1290515899 821331287 233089823
815719265 1037449050 391368831 1619611282
174343685 36512342 83440728 469601921
1887658788 409426010 710163604 720184858
642944870 165253310 2030930240 1015182040

1399937605 964731408 1370458820 928764526
835644228 964138849 771690904 2100758807

2058614442 1736063227 388665714 783217427
1981572859 297867486 1441424772 1649895453
1959842942 1855047552 1105029878 207427210
967163134 2073682087 159098215 1721887127
504646265 1483353159 1485525714 1538189469

1716278914 2033983412 2078532603 1926327885
1959643358 154598950 406575269 36921595
839205172 1494766337 1210100711 1837727164
1789532978 274166327 685199652 1183031368
2109888739 347221270 436678419 380986609
1171151118 1389829650 1912037874 324737772
1636694774 1508450362 1755102432 1619085308
617918706 1989869210 984783477 259413370
1316480107 1837397190 1240911029 197185544
830682663 1977680361 1403997604 291188364

1428272847 160535591 1093106588 1971097235
1899338587 574974465 707574314 743571448
787295652 2055016389 1786492583 447846030
614468563 198700516 627010989 1587207860
249082425 1132873853 717740897 901967693
1167409652 1363068688 1627762155 581967324
705969097 709166350 1570040924 429303093

Calculating Π in Parallel
In the first experiment, we calculate π as described next. Pick 232 = 10243 points uniformly randomly from
the cube whose edge has length 600 and count the number of points, say C, that coincide with the largest
sphere that fits in the cube. The largest sphere has a diameter with the same length as an edge of the
cube. Assuming a uniform distribution, then the number of points coincident with the sphere divided by the
total number of points is approximately the quotient of the respective volumes, i.e.,
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 C   ≈  (4 ⁄ 3) π (300)3  =   π .
  232  6003  6 

So π ≈ 6C⋅2-32. We simulate picking points uniformly randomly by independently generating
pseudorandom numbers for each coordinate. We summarize the results of our experiment below.

Test
Approximation to π

MPI/Hybrid

  same multiplier, different seed   3.1415769774466753 

  different multiplier, same seed   3.1415196494199336 

Although we do not expect to see a difference between MPI and hybrid (except in terms of timing since
even though the sum is computed differently, it is an integral sum), we would have expected greater
accuracy when using different multipliers, which is not observed in this experiment. On the other hand, we
do not lose a single digit of accuracy by using the same seed with different multipliers. To further check
the quality of the distributions produced, we ran another test using MPI with different multipliers in which
each MPI process generates a much smaller number of points, specifically 128 points per process, and
collected all of the points that coincide with the sphere from all processes. The resulting graph displayed
below indicates a satisfactory distribution.

3D Plot Using 128 MPI Processes with 128 Points per Process

Parallel Generation of Permutations
In the second experiment, we generate permutations in parallel. Given a sequence, p1, p2, … pn, a

permutation is merely any reordering pi
1
, pi

2
, … pi

n
. Permutations are useful for example when testing

sorting implementations that depend on the input because it is impractical to exhaustively test every
possible input. Yet even restricting the input to a single sequence (for instance, instead of testing all real
numbers, an uncountable set, pick only 128 integers), it is impractical to test every permutation unless
there are only around a dozen elements or less. For instance, a list with 128 elements can be rearranged
in

128! = 385620482362580421735677065923463640617493109590223590278828403276373402
575165543560686168588507361534030051833058916347592172932262498857766114
955245039357760034644709279247692495585280000000000000000000000000000000

(216 decimal digits - unfortunately this number does not fit on one line) different ways, which astoundingly
exceeds the number of hydrogen atoms in the observable universe [35]! Based on statistical theory, we
know we need to generate only a relatively small number of permutations, provided the sample is chosen
well.

There is a simple and fast way to generate a “pseudorandom permutation.” Choose any arbitrary
permutation initially. Successively generate the next permutation using the previous permutation as
follows. Uniformly randomly pick any position and swap the element in this position with the last element.
After each swap the element in the rightmost position is in its final position. Recursively, uniformly
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randomly pick a position corresponding to the elements excluding those elements in the tail that have
already been placed and swap with the last element excluding the tail. Hence it takes only n − 1 swaps
(and pseudorandom number generations) to generate the next permutation of a list with n elements. This
method is amazing because it is not only fast but also produces permutations as if sampling from a
uniform distribution [36]. In our tests, we found the generation of pseudorandom permutations (as
described) seems to come from a uniform distribution even when the MCG used to swap elements fails
many tests.

Our main interest is to generate permutations in parallel. Obviously two distinct processes should not
generate the same permutation. Yet it is not enough to simply avoid the generation of the same
permutations from among the incredibly vast number of them. Collectively, the permutations should
appear as if they come from a uniform distribution. Ideally, this sampling is done independently without
communication for the sake of speed.

In our experiment, each process (or thread) uses the same algorithm and an MCG as previously
described to swap elements. Each process generates 20484 permutations of a list with 128 elements,
starting with the same initial permutation which is arbitrarily chosen to be

{ 63,64,127,126,125,124,123,122,121,120,119,118,117,116,115,114,113,112,111,110,109,108,107,106,105,
104,103,102,101,100,99,98,97,96,95,94,93,92,91,90,89,88,87,86,85,84,83,82,81,80,79,78,77,76,75,74,73,
72,71,70,69,68,67,66,65,62,61,60,59,58,57,56,55,54,53,52,51,50,49,48,47,46,45,44,43,42,41,40,39,38,37,
36,35,34,33,32,31,30,29,28,27,26,25,24,23,22,21,20,19,18,17,16,15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0 }

We do not store and collect the actual permutations. Instead we store a single number to represent each
permutation. There is a natural number to associate with each permutation. List all permutations in
increasing lexicographical order and associate the position of each permutation in the ordered list with that
permutation, e.g., {0,1,…,127} is assigned the number 0 and {127,126,…,0} the familiar number 128!. The
only flaw with this numbering scheme is the numbers are unwieldy. Although sorting is really out of the
question, figuring out the position is fast (much like looking up a phone number - if the first digit is k then
we know the permutation comes after all permutations whose first digit is j with j < k, etc.). A solution to
deal with the unwieldy numbers is to apply the same nice operation which is used to generate
pseudorandom numbers themselves, i.e., modulo operation. Thus, after we generate a permutation we
calculate its ‘number’ by computing its position using modular arithmetic, which is relatively costly in terms
of operations compared to generating the permutation itself! We choose a reasonably large modulus M
and precompute factorial(k) = k! mod M for k ∈ {1,…,n−1}, where n is the length of the list. We present our
algorithm to compute the numbers assigned to a permutation next.

Algorithm 7:  Map Permutation to an Integer ζ

Input:    A permutation of 0,1,…, n − 1, a modulus M, and factorial(k) = k! mod M, 1 ≤ k ≤ n − 1
Output: ζ, an integer between 0 and M − 1 (inclusive)

Put ζ  ← 01.
Set i  ← 12.
While i ≠ n carry out steps a-e:3.

Set current position k  ← (i+1)st element from the righta.
Put e  ← element at current positionb.
Let C  ← the number of elements preceding current position which are smaller than ec.
Update ζ  ← [ ((e − C)·factorial(i)) mod M + ζ ] mod Md.
i  ← i + 1e.

In our experiment we use the modulus M = 232 in the preceding algorithm because we easily obtain
suitable data for the diehard tests. We collect all numbers computed for every permutation by all
processes (threads) and print the numbers to a file. The resulting files were exactly the same for the MPI
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and hybrid versions. We then ran diehard tests on these files. Nearly all of the diehard tests are clearly
passed whether we use the same multiplier and different seeds or different multipliers and the same seed.
Only a couple of the diehard tests are not clearly passed but the same failures occur regardless of the
experiment (both parts). Although it is sufficient to use different seeds in this case, the results are also
satisfactory using different multipliers.

Conclusion
We have described techniques to find and implement fast, high-quality customized parallel pseudorandom
number/permutation generators. We reviewed the theoretical underpinnings. We gave a rigorous proof
that there is a computational advantage choosing a prime moduli near a power of two. We demonstrated
this advantage by simulation of throwing a die on the Cray XD1.

We have significantly improved the performance of an LLL reduction implementation and presented an
algorithm to find many candidate multipliers for a prime modulus. We have shown that some multipliers
with high LLL-spectral results (including some which are published [27]) are unsatisfactory. We also
discovered an unexpected phenomenon for certain intermediate moduli: the vast majority of the multipliers
with high LLL-spectral results are unsatisfactory based on empirical tests. We introduced a fast empirical
testing procedure to select good multipliers from thousands of multipliers with satisfactory LLL-spectral
results. We also introduced a modification of Brent's algorithm to quickly discover short periods, which we
have shown is useful because the period is frequently short even when the LLL-spectral and empirical
results are acceptable. We also introduced an algorithm to assign numbers to a permutation for statistical
analysis.

It is not convincing to draw conclusions on the basis of a small number of experiments. More experiments
are needed. Regardless, the only way to know whether a method of parallel number generation is
adequate for an application is to conduct tests to assess the quality for each implementation. Scalability is
a concern especially when using different seeds. We advocate using different multipliers chosen as
described herein. Our experiments produced satisfactory results using different multipliers. For different
runs we recommend using a different seed but rather than choosing a seed completely randomly, we
recommend uniformly randomly picking a seed from a set that has been tested in advance.

For some moduli (not all such as 239 − 7) we found plenty of multipliers with both high LLL-spectral results
and low ς statistics. It is unclear how to select multipliers from a large set of multipliers that will work best
in parallel. It is impractical to exhaustively test all possible subsets with k elements (scaling to k
processors) from a set of N multipliers (unless k ≈ N), e.g., the number of subsets having 128 multipliers
from a set of 1024 multipliers has 167 digits.
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