

Fast Generation of High-Quality Pseudorandom Numbers and Permutations Using MPI and OpenMP on the Cray XD1

Stephen Bique

Computer Scientist

Center for Computational Sciences

Naval Research Laboratory Washington, D.C.

Outline

- □ Introduce MCG
- □ Choose constants for an MCG "in parallel"
- Choosing the modulus
- Performance benefit
- Choosing multiplicative constant
 - How to find candidates
 - How to test them
- Examples
- \Box Calculate π in parallel
- □ Summary

Multiplicative Congruential Generator (MCG)

$x_{n+1} = \alpha \cdot x_n \mod m$

Choose constants:

Generate pseudorandom numbers in parallel

- Use different seeds, or
- Use different multipliers
- □ Fast implementation
- Satisfactory statistical results
- Long period

Choose Modulus

- Prime
 - Theoretical basis for choosing multiplicative constant $\boldsymbol{\alpha}$
 - Our preliminary results show some moduli are better choices than others
- □ Sufficiently close to a power of two
 - Faster implementation than library call
 - Slightly faster for Mersenne primes

Algorithm 1 MCG Computation for Mersenne Primes

1.
$$X \leftarrow \alpha \cdot X$$

2. $X \leftarrow \gamma + \lambda$
where $x = [\gamma|\lambda]$ and $|\lambda| = q$
3. If $x > m$ then $x \leftarrow x - m$

Algorithm 2 **MCG Computation for Primes** Close to 2^q 1. $\mathbf{X} \leftarrow \mathbf{\alpha} \cdot \mathbf{X}$ 2. $X \leftarrow k \cdot \gamma + \lambda$, where $x = \lceil \gamma \mid \lambda \rceil$ and $|\lambda| = q$ 3. If $x > 2^{q} - 1$ then $x \leftarrow k \cdot \gamma' + \lambda'$ where $x = [\gamma' | \lambda']$ and $|\lambda'| = q$

4. If x > m then $x \leftarrow x - m$

Simulate Rolling Die 2²⁹·3

Algorithm 1	11.0 s
Algorithm 2	13.2 s
Irand48()	32.4 s
drand48()	50.9 s
Modulus operation	58.9 s

Choose a Set of Multiplicative Contants

Find "primitive roots" of modulus m:

What is a primitive root?

 $\{\alpha^2, \alpha^3, ..., \alpha^{m-1}\} = \{2, 3, ..., m-1\}$

- How long does it take to find one?
 Fast to find a small one
- How to find others?

{ α^n gcd(m-1,n) = 1 }

Which ones to select?

The ones that

"give maximal period sequences of acceptable quality"

Finding Candidate Multipliers

□ Apply LLL reduction

- Approximation to Spectral Results
- NTL Library
 - Fast implementation
- Run Empirical Tests
 - Four permutation tests
 - One uniformity test
 - Six independence tests
- Check Period

MCG: 26891986 $x_n \mod 2^{33}$ -9 LLL-spectral result: 0.756007

MCG: 26891986 $x_n \mod 2^{33}$ -9 LLL-spectral result: 0.756007

MCG: 26891986 $x_n \mod 2^{33}$ -9 LLL-spectral result: 0.756007

Example

Checking Period

□ Time-consuming task for large 2^q

- □ Which algorithm is fastest?
 - Unsettled in the literature
 - Discovered modification to Brent's algorithm
 - Finds exact period when it is small
 - Halts in a reasonable amount of time in worst case
 - If period is short, there is negligible effect on runtime

Using Brent's Modified Algorithm

MCG	Period
26891986 x _n mod 2 ³³ -9 LLL-spectral result: 0.756007 Passes Empirical Tests	8589934582
8137022074 x _n mod 2 ³³ -9 LLL-spectral result: 0.753160 Rejected	19739

Calculating Π in Parallel

Use MCG to pick $2^{32} = 1024^3$ points from a cube and compute how many fall in the largest sphere inside the cube using 128 processors on 32 nodes with both MPI and hybrid MPI + OpenMP

Test	Approximation to π MPI/Hybrid
Same multiplier Different seed	3.1415769774466753
Different multiplier Same seed	3.1415196494199336

Calculating II in Parallel

Each process of 128 MPI processes uses an MCG with the same seed and different multipliers to pick 128 points from a cube. The points coincident with the largest sphere contained in the cube are collected from all processes to generate the following 3D plot.

Summary

Demonstrated the performance benefit

- □ Fast Implementation of LLL reduction
- Shown that high LLL-spectral results are not enough
 - Proposed a new empirical testing procedure
 - Discovered a way to check the period
- Emphasized importance of running tests for each application

Acknowledgements

Thanks to Dr. Jeanie Osburn for her support.

This work was performed entirely on the Cray XD1 system at NRL-DC under the auspices of the U. S. Department of Defense (DoD) High Performance Computer Modernization Program (HPCMP).