
Fast Generation of High-Quality
Pseudorandom Numbers and
Permutations Using MPI and
OpenMP on the Cray XD1

Stephen Bique
Computer Scientist

Center for Computational Sciences

Naval Research Laboratory
Washington, D.C.

Outline

 Introduce MCG
 Choose constants for an MCG “in parallel”
 Choosing the modulus
 Performance benefit
 Choosing multiplicative constant

 How to find candidates
 How to test them

 Examples
 Calculate π in parallel
 Summary

Multiplicative Congruential
Generator (MCG)

xn+1 = α ⋅ xn mod m

Choose constants:

MCG:

 Generate pseudorandom numbers in parallel

 Use different seeds, or

 Use different multipliers

 Fast implementation

 Satisfactory statistical results

 Long period

xn+1 = α ⋅ xn mod m

Choose Modulus

 Prime
 Theoretical basis for choosing multiplicative

constant α
 Our preliminary results show some moduli are

better choices than others
 Sufficiently close to a power of two

 Faster implementation than library call
 Slightly faster for Mersenne primes

Algorithm 1
MCG Computation for

Mersenne Primes

1. x ← α ⋅ x

2. x ← γ + λ

 where x = [γ|λ] and |λ| = q

3. If x > m then x ← x - m

Algorithm 2
MCG Computation for Primes

Close to 2q

1. x ← α ⋅ x

2. x ← k ⋅ γ + λ,

 where x = [γ|λ] and |λ| = q

3. If x > 2
q
-1 then x ← k ⋅ γ′ + λ′

 where x = [γ′|λ′] and |λ′| = q

4. If x > m then x ← x - m

Simulate Rolling Die 229
⋅3

58.9 sModulus operation

50.9 sdrand48()

32.4 slrand48()

13.2 sAlgorithm 2

11.0 sAlgorithm 1

Choose a Set of
Multiplicative Contants

Find “primitive roots” of modulus m:
 What is a primitive root?
 { α2, α3, …, αm -1 } = { 2, 3, …, m-1 }
 How long does it take to find one?
 Fast to find a small one
 How to find others?

 Which ones to select?
 The ones that

 “give maximal period sequences of acceptable quality”

 { | gcd(m-1,n) = 1 } αn

Finding Candidate Multipliers

 Apply LLL reduction
 Approximation to Spectral Results
 NTL Library
• Fast implementation

 Run Empirical Tests
 Four permutation tests
 One uniformity test
 Six independence tests

 Check Period

Example

 MCG: 26891986 xn mod 233-9
 LLL-spectral result: 0.756007

Example

 MCG: 26891986 xn mod 233-9
 LLL-spectral result: 0.756007

Example

 MCG: 26891986 xn mod 233-9
 LLL-spectral result: 0.756007

Example

 MCG: 8137022074 xn mod 233-9
 LLL-spectral result: 0.753160

Example

 MCG: 8137022074 xn mod 233-9
 LLL-spectral result: 0.753160

 MCG: 8137022074 xn mod 233-9
 LLL-spectral result: 0.753160

 MCG: 8137022074 xn mod 233-9
 LLL-spectral result: 0.753160

Checking Period

 Time-consuming task for large 2q


 Which algorithm is fastest?
 Unsettled in the literature
 Discovered modification to Brent’s algorithm

 Finds exact period when it is small
 Halts in a reasonable amount of time in worst case
 If period is short, there is negligible effect on run-

time

Using Brent’s Modified Algorithm
PeriodMCG

197398137022074 xn mod 233-9
LLL-spectral result: 0.753160

Rejected

8589934582
 26891986 xn mod 233-9

LLL-spectral result: 0.756007
Passes Empirical Tests

Calculating Π in Parallel

Approximation to π
MPI/Hybrid

Test

3.1415196494199336
 Different multiplier

Same seed

3.1415769774466753
Same multiplier
Different seed

Use MCG to pick 232 = 10243 points from a cube and compute
how many fall in the largest sphere inside the cube using 128
processors on 32 nodes with both MPI and hybrid MPI + OpenMP

Calculating Π in Parallel

Each process of 128 MPI processes uses an MCG with the same seed
and different multipliers to pick 128 points from a cube. The points
coincident with the largest sphere contained in the cube are collected from
all processes to generate the following 3D plot.

Summary

 Demonstrated the performance benefit
 Fast Implementation of LLL reduction
 Shown that high LLL-spectral results are

not enough
 Proposed a new empirical testing procedure
 Discovered a way to check the period

 Emphasized importance of running tests
for each application

Acknowledgements

Thanks to Dr. Jeanie Osburn for her
support.

This work was performed entirely on the
Cray XD1 system at NRL-DC under the
auspices of the U. S. Department of
Defense (DoD) High Performance
Computer Modernization Program
(HPCMP).

