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Multiplicative Congruential
Generator (MCG)

xn+1   =   α ⋅ xn    mod  m



Choose constants:

MCG:

 Generate pseudorandom numbers in parallel

 Use different seeds, or

 Use different multipliers

 Fast implementation

 Satisfactory statistical results

 Long period

xn+1   =   α ⋅ xn   mod  m



Choose Modulus

 Prime
 Theoretical basis for choosing multiplicative

constant α
 Our preliminary results show some moduli are

better choices than others
 Sufficiently close to a power of two

 Faster implementation than library call
 Slightly faster for Mersenne primes



Algorithm 1
MCG Computation for

Mersenne Primes

1.   x   ←  α ⋅ x

2.  x   ← γ + λ

   where   x = [γ|λ]   and    |λ| = q

3.  If    x > m    then   x   ← x - m



Algorithm 2
MCG Computation for Primes

Close to 2q

1.   x   ←  α ⋅ x

2.  x   ← k ⋅ γ + λ,

   where   x = [γ|λ]   and    |λ| = q

3.  If   x > 2
q
-1    then x   ← k ⋅ γ′ + λ′

   where   x = [γ′|λ′]   and    |λ′| = q

4. If   x > m    then x   ← x - m



Simulate Rolling Die 229
⋅3

58.9 sModulus operation

50.9 sdrand48()

32.4 slrand48()

13.2 sAlgorithm 2

11.0 sAlgorithm 1



Choose a Set of
Multiplicative Contants

Find “primitive roots” of modulus m:
 What is a primitive root?
       { α2, α3, …, αm -1 }  =  { 2, 3, …, m-1 }
 How long does it take to find one?
       Fast to find a small one
 How to find others?

 Which ones to select?
   The ones that

    “give maximal period sequences of acceptable quality”

 {          | gcd(m-1,n) = 1 } αn



Finding Candidate Multipliers

 Apply LLL reduction
 Approximation to Spectral Results
 NTL Library
•  Fast implementation

 Run Empirical Tests
 Four permutation tests
 One uniformity test
 Six independence tests

 Check Period



Example

     MCG:      26891986 xn  mod  233-9
       LLL-spectral result:  0.756007
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Checking Period

 Time-consuming task for large 2q


  Which algorithm is fastest?
  Unsettled in the literature
  Discovered modification to Brent’s algorithm

 Finds exact period when it is small
 Halts in a reasonable amount of time in worst case
 If period is short, there is negligible effect on run-

time



Using Brent’s Modified Algorithm
PeriodMCG

197398137022074 xn  mod  233-9
LLL-spectral result:   0.753160

Rejected

8589934582
 26891986 xn  mod  233-9

LLL-spectral result:  0.756007
Passes Empirical Tests



Calculating Π in Parallel

Approximation to π
MPI/Hybrid

Test

3.1415196494199336
 Different multiplier

Same seed

3.1415769774466753
Same multiplier
Different seed

Use MCG to pick 232 = 10243 points from a cube and compute
how many fall in the largest sphere inside the cube using 128
processors on 32 nodes with both MPI and hybrid MPI + OpenMP



Calculating Π in Parallel

Each process of 128 MPI processes uses an MCG with the same seed
and different multipliers to pick 128 points from a cube. The points
coincident with the largest sphere contained in the cube are collected from
all processes to generate the following 3D plot.



Summary

 Demonstrated the performance benefit
 Fast Implementation of LLL reduction
 Shown that high LLL-spectral results are

not enough
 Proposed a new empirical testing procedure
 Discovered a way to check the period

 Emphasized importance of running tests
for each application
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