
Fast Generation of High-Quality
Pseudorandom Numbers and
Permutations Using MPI and
OpenMP on the Cray XD1

Stephen Bique
Computer Scientist

Center for Computational Sciences

Naval Research Laboratory
Washington, D.C.



Outline

 Introduce MCG
 Choose constants for an MCG “in parallel”
 Choosing the modulus
 Performance benefit
 Choosing multiplicative constant

  How to find candidates
  How to test them

 Examples
 Calculate π in parallel
 Summary



Multiplicative Congruential
Generator (MCG)

xn+1   =   α ⋅ xn    mod  m



Choose constants:

MCG:

 Generate pseudorandom numbers in parallel

 Use different seeds, or

 Use different multipliers

 Fast implementation

 Satisfactory statistical results

 Long period

xn+1   =   α ⋅ xn   mod  m



Choose Modulus

 Prime
 Theoretical basis for choosing multiplicative

constant α
 Our preliminary results show some moduli are

better choices than others
 Sufficiently close to a power of two

 Faster implementation than library call
 Slightly faster for Mersenne primes



Algorithm 1
MCG Computation for

Mersenne Primes

1.   x   ←  α ⋅ x

2.  x   ← γ + λ

   where   x = [γ|λ]   and    |λ| = q

3.  If    x > m    then   x   ← x - m



Algorithm 2
MCG Computation for Primes

Close to 2q

1.   x   ←  α ⋅ x

2.  x   ← k ⋅ γ + λ,

   where   x = [γ|λ]   and    |λ| = q

3.  If   x > 2
q
-1    then x   ← k ⋅ γ′ + λ′

   where   x = [γ′|λ′]   and    |λ′| = q

4. If   x > m    then x   ← x - m



Simulate Rolling Die 229
⋅3

58.9 sModulus operation

50.9 sdrand48()

32.4 slrand48()

13.2 sAlgorithm 2

11.0 sAlgorithm 1



Choose a Set of
Multiplicative Contants

Find “primitive roots” of modulus m:
 What is a primitive root?
       { α2, α3, …, αm -1 }  =  { 2, 3, …, m-1 }
 How long does it take to find one?
       Fast to find a small one
 How to find others?

 Which ones to select?
   The ones that

    “give maximal period sequences of acceptable quality”

 {          | gcd(m-1,n) = 1 } αn



Finding Candidate Multipliers

 Apply LLL reduction
 Approximation to Spectral Results
 NTL Library
•  Fast implementation

 Run Empirical Tests
 Four permutation tests
 One uniformity test
 Six independence tests

 Check Period



Example

     MCG:      26891986 xn  mod  233-9
       LLL-spectral result:  0.756007



Example

     MCG:      26891986 xn  mod  233-9
       LLL-spectral result:  0.756007



Example

     MCG:      26891986 xn  mod  233-9
       LLL-spectral result:  0.756007



Example

     MCG:      8137022074 xn  mod  233-9
           LLL-spectral result:   0.753160



Example

     MCG:      8137022074 xn  mod  233-9
           LLL-spectral result:   0.753160



     MCG:      8137022074 xn  mod  233-9
           LLL-spectral result:   0.753160



     MCG:      8137022074 xn  mod  233-9
           LLL-spectral result:   0.753160



Checking Period

 Time-consuming task for large 2q


  Which algorithm is fastest?
  Unsettled in the literature
  Discovered modification to Brent’s algorithm

 Finds exact period when it is small
 Halts in a reasonable amount of time in worst case
 If period is short, there is negligible effect on run-

time



Using Brent’s Modified Algorithm
PeriodMCG

197398137022074 xn  mod  233-9
LLL-spectral result:   0.753160

Rejected

8589934582
 26891986 xn  mod  233-9

LLL-spectral result:  0.756007
Passes Empirical Tests



Calculating Π in Parallel

Approximation to π
MPI/Hybrid

Test

3.1415196494199336
 Different multiplier

Same seed

3.1415769774466753
Same multiplier
Different seed

Use MCG to pick 232 = 10243 points from a cube and compute
how many fall in the largest sphere inside the cube using 128
processors on 32 nodes with both MPI and hybrid MPI + OpenMP



Calculating Π in Parallel

Each process of 128 MPI processes uses an MCG with the same seed
and different multipliers to pick 128 points from a cube. The points
coincident with the largest sphere contained in the cube are collected from
all processes to generate the following 3D plot.



Summary

 Demonstrated the performance benefit
 Fast Implementation of LLL reduction
 Shown that high LLL-spectral results are

not enough
 Proposed a new empirical testing procedure
 Discovered a way to check the period

 Emphasized importance of running tests
for each application



Acknowledgements

Thanks to Dr. Jeanie Osburn for her
support.

This work was performed entirely on the
Cray XD1 system at NRL-DC under the
auspices of the U. S. Department of
Defense (DoD) High Performance
Computer Modernization Program
(HPCMP).


