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ABSTRACT:  Field Programmable Gate Arrays (FPGAs), which promise to accelerate calculations by one or 
more orders of magnitude,  are of increased interest in speeding HPC applications. Our CUG 2008 paper evaluated 
performance of two Cray XD1 systems using FASTA, a computational biological human genome comparison 
program. Results indicated typical Cray XD1 FPGA speedups of 50x (Virtex-II Pro 50) and 100x (Virtex-4 LX160) 
compared to a 2.2 GHz Opteron. These results were shown to be scalable to 150 FPGAs. A data transfer bottleneck 
was identified causing the FPGA computations to stop while I/O was performed by the Opteron.  Testing showed this 
I/O time dominated processing time to such an extent that actual FPGA computation time was almost negligible 
compared to Opteron I/O computations. This paper proposes two I/O streaming procedures to overcome this 
bottleneck, to significantly reduce I/O, yielding up to 10X additional speedup (above the 100X already achieved) for 
human genome sequencing. 
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1 Introduction

Computer technology innovations1 are fulfilling long-term projections2 for faster science and engineering 
computations. Heterogeneous computers3 with hardware accelerators, show the potential to speed High-
Performance Computing (HPC) applications by one or more orders of magnitude over traditional 
processors.  In particular, low-power FPGAs, invented in 1984 by Ross Freeman, Xilinx co-founder, are 
extremely flexible devices (Fig. 1. left) containing thousands of functions (Computational Logic Blocks) 
and optional “on-board” processors (Fig. 1. center).  These functions (Fig. 1. right) include adders, 
multipliers, memory, LookUp Tables (LUTs), Digital Signal Processors (DSPs) and high-speed 
communication. Unlike “fixed” processors, FPGA hardware gates are reconfigurable (changeable “on the 
fly”) by users in the “field” (thus, field programmable).

Figure 1. Virtex-4 FPGA (left), PPC processors, memory, I/O (center) and logic slice (right)

FPGA Characteristics: Compared to processors, FPGA layout is extremely regular, simplifying 
fabrication, and allowing FPGAs to be among the first to reduce feature sizes (90nm => 65nm => 45nm). 
This regularity with redundant algorithms, limits radiation damage (i.e. NASA Mars Rovers), making 
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low-powered FPGAs popular for space, flight  and military environments. Thousands of operations per 
clock cycle are possible for FPGA codes to maximize silicon use (>90%), compared to processors whose 
1-2 operations/cycle (< 2% of silicon/cycle) draw 10x FPGA power. Fueled by the growing, high-volume, 
telecommunications market, FPGAs have already experienced 3 generations of “spin-off” to HPC.  
First generation FPGAs, communicated via PCI, replaced discrete logic devices, digital signal processing 
and, with the help of DARPA’s ANS Program, became attractive for High-Performance Embedded 
Computing (HPEC). Their substantial speed increases over traditional ASICS were realized for FPGA-
centric applications with limited I/O using the “slow” PCI bus. 

Figure 2. Three HPC-related Generations of FPGAs (PCI, HyperTransport and socket interfaces)

Second generation FPGAs (Fig. 2. center) offered higher communication via Hypertransport  and 
RocketIO interfaces, considerably increasing the scope and size of potential applications. FPGAs made 
serious inroads into the large DSP and HPEC markets and more serious HPC applications. However, HPC 
sales (< 1%) were a spinoff rather than a driver for FPGA designs, and programming in VHDL/Verilog 
was a serious impediment, as was lengthy (overnight) compile (place/route) times. 

Third generation FPGAs (Fig 2. bottom), characterized by socket  compatibility with processors, use the 
same high-speed I/O communication: AMD’s HyperTransport/AMD or Intel’s PCI-Express or QPI.  
Convey (Fig 2. bottom right) extended this socket innovation to connect  their companion accelerator 
board (4 computation FPGAs and 10 service FPGAs) to a dual-socket X86 board. 

FPGA Coding: FPGAs were developed by logic designers, so for efficiency they are programmed using 
VHDL/Verilog circuit  design languages. These languages require the knowledge and training of a logic 
designer, take months to learn and far longer to code efficiently. Even once this skill is acquired, VHDL 
or Verilog coding is extremely arduous, taking months to develop early prototypes and longer to perfect 
and optimize. FPGA code development, unlike HPC compilers, is greatly slowed by the additional 
lengthy steps required to synthesize, place and route the circuit. A number of “C-to-gate” languages have 
emerged, some including VHDL libraries. This software is generally FPGA-specific, expensive, slow 
(compared to VHDL/Verilog), but still has attracted advocates.

Once the time is taken to code specific applications in VHDL, their FPGA performance is hard to beat.  In 
particular, applications using basic integer or logic operations (compare, add, multiply) such as DNA 
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sequence comparisons, cryptography or chess logic, run extremely fast  on FPGAs. Floating point  and 
double-precision applications rapidly exhausted the slices available on early FPGAs, so they were often 
avoided.  This situation has changed for current  FPGAs, which now have sufficient logic to fit  about  80 
parallel 64-bit multiplies4.  

2 FASTA DNA and Protein Search/Alignment

FASTA5 (fasta.bioch.virginia.edu) contains programs for protein:protein, DNA:DNA, protein:translated 
DNA (with frameshifts), and ordered/unordered peptide searches using a unique search heuristic with the 
optimal Smith-Waterman algorithm6-8.  FASTA’s major focus is to accurately calculate similarity statistics 
for biologists to determine whether alignments are random or homotopic.  The FASTA input  file format  is 
the same used for other sequence alignment programs and database search tools (i.e. BLAST9).  FASTA’s 
speed is attributed to its heuristic method of observing the pattern of word hits, word-to-word matches of 
a given length and marking potential matches prior to the time-consuming Smith-Waterman search.  The 
word size selected controls the sensitivity and speed of the program. The word hits returned are examined 
for segments, containing clusters of nearby hits, which are investigated for a possible match.  This is 
accomplished in four steps described in detail10. 

1. Identify regions of highest density in each sequence comparison
2. Re-score using PAM scoring matrix, keeping top scoring segments.  
3. Use joining threshold to remove segments unlikely to contain the highest score segment.
4. Optimize alignment in a narrow band of top scoring segments via dynamic programming. 

Ssearch34 in FASTA uses the Smith-Waterman algorithm6-17, whose essentials are summarized next.

3 Smith-Waterman Algorithm

Similarities between known database and query sequences are frequently used to detect  functional 
similarities, whether for RNA, DNA or proteins. The Smith-Waterman dynamic programming algorithm 
is used in bioinformatics for sequence matching to detect  such similarities by breaking down the sequence 
alignment problem into a set of simpler sub-problems. A scoring table (Fig. 3) is generated with query 
sequence characters written across the top and database sequence characters down its side.  The table is 
then filled with score values that reflect the quality of an alignment  at a specific offset.  The highest  score 
in the table indicates the best potential to solve these sub-problems in parallel. 

The score in a given table cell depends on the quality of the match between the query and database 
characters found at the head of that cell’s row and column. It also depends on the adjoining scores above, 
above left, and directly left.  The overall problem of calculating the total alignment  is broken down into 
the simpler sub-problem of simultaneously calculating the many table score values in parallel.  Once 
scores for a row or column have begun, calculations for adjoining rows or columns may begin in parallel.
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Figure 3. Smith-Waterman Algorithm Scoring

Fig. 3 shows a query sequence “ACGT…C” and a larger database sequence “ACGAAC…G”.  The first 
row and column of the Smith Waterman table are initialized to zero.  The scores are then calculated 
starting in the upper left  corner and proceeding outward. Fig. 3 illustrates how a score of ‘6’ is calculated 
from its adjacent neighbor scores above and to the left, as well as from the fitness of the match between 
the ‘G’ query character and the ‘G’ database character found at the head of its row and column.

The Smith-Waterman algorithm can be divided into sub-problems and solved in parallel on FPGAs6-17. 

4 Algorithm Acceleration

The Smith-Waterman algorithm is an excellent  candidate for FPGA acceleration as it  is a small code 
kernel (Fig. 4.) which calculates the maximum alignment score of two sequences that  consumes 98.61% 
of all FASTA calculations. Numerous copies of this kernel were placed in parallel as a linear systolic 
array of processing elements (PEs) in a pipeline (Fig. 5.) on each VirtexII and Virtex4 FPGA. Twice as 
many PEs fit on Virtex-4 FPGAs, so their solution speed was double that of VirtexII FPGAs.

        

  Figure 4. Ssearch34 Timing Profile                             Figure 5.  Smith-
Waterman Pipeline                             

One query character is preloaded into each PE which then calculates a score in the column for that  query 
character.  The database string (S1) is shifted through the pipeline until each database character is 
compared to each query character, resulting table of scores, Fig. 6., filled from top to bottom over time. 
Building the pipeline of PEs comprises most of the accelerator design.  However, additional logic (Fig. 7)  
is required to feed the PEs, interface the array logic to the processor, and to access the external QDR II 

 Cray Users Group Proceedings, 2009 4 of 9



SRAMs surrounding the FPGA. In addition to PEs, the design uses the internal FPGA block RAM to 
store the complete sequence of query characters. 

Figure 6. Smith-Waterman Score Calculation                    Figure 7. Overall Smith-Waterman Design

External QDR II SRAM stores intermediate results generated when query sequences exceed the number 
of PEs.  Four external QDR II SRAMs are accessed via the Cray QDR II Core and internal block RAM is 
used as an interface FIFO to buffer part of the incoming database sequence.  The FIFO buffering allows 
the Opteron to write the database characters to the pipeline in bursts rather than one character at  a time. 
The Control Logic block (Fig. 7) provides status and control registers for the Opteron, and writes the final 
scores back to the Opteron’s local DRAM memory.  It  does this by interfacing with the Cray RT  Core, 
which processes read/write requests to/from the Opteron.  The status and control registers allow the 
processor to set  up the logic for a given alignment and detect  errors that  may have occurred during its 
operation. When the alignment is complete, the maximum score generated is sent to the Opteron. 

5 Results: Bascillus_anthracis DNA comparison 

FPGA speedups for the Bacillus_anthracis (Human DNA comparison) were obtained using the FASTA5 
application ssearch34, programmed to call an FPGA version of the Smith-Waterman algorithm6.  Two sets 
output options were used, the first (verbose) prints all alignment sequence details and a second (minimal) 
output with only the scores from the searches. 

Verbose output:   -Q –H –f -10 –g -3 –d 10 –b 10 –s OpenFPGA.mat –E 0.0001
Minimal output:  -Q –H –f -10 –g -3 –d  0 –b 10 –s OpenFPGA.mat –E 0.0001

The data are 18 DNA query sequence files (AE017024-41) and a large database file (AE016879). Each 
query sequence contains ~300 thousand characters and the database exceeds 5 million characters. The 
FPGA version of the Smith-Waterman algorithm limits query sizes to 16k characters and the database size 
to 512k characters. To overcome these limits and maintain valid Opteron to FPGA comparisons, a 
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program was written to split the input  query and database files into smaller sequences. These sequences 
were then fed to both Opteron and FPGA versions of ssearch34.  Runs were compared for both 16k and 
8k character sequence sizes (both verbose and minimal output) using Virtex-4 LX160 FPGAs.

Figure 8. FPGA speedup for 8k and 16k sequence lengths (verbose & minimal output)

Fig. 8 shows that using minimal output of aligned sequence data (green-yellow) significantly improves 
performance (and reduces variability) to 100X speedup compared to verbose output (blue-red curves) 
with ~40X speedup.  The output code took such a small part  of the overall execution time for the Opteron 
version of the code that  it  was not optimized, so it  slows down the faster FPGA version, and actually halts 
FPGA computations while the Opteron is processing output. 8k and 16k query sequence sizes exhibit 
similar performance, with 16k query sequences perfroming only slightly faster. 
With 100x speedup, searches that took 100 days (ie: 14 weeks) now take one day. To see if this speedup is 
scalable, a large FASTA application comparing Human and Mouse DNA was tested on the Naval 
Research Laboratories 150 FPGA Cray XD1 (Fig. 9).

Figure 9. DNA Sequencing Time on 150 FPGAs: actual (left) and dedicated (right) time. 
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Fig. 9 shows Ssearch time along the x-axis for each of the 150 jobs submitted (shown vertically over a 2 
week period. When run in a non-dedicated mode (over two weeks) each of the 150 jobs took 
approximately 1 day to complete except for six run on Virtex4s (top center) which took half a day. All 150 
jobs could finish in 1 day (Fig. 9 right) if run in a dedicated mode on the 150 FPGAs.  
The calculation speed unit often reported for genome comparisons is billions (Giga) cell updates/second,
Or GCUPS.  The Human-Mouse Genome comparison (Fig. 9) took 12.9 days to complete on 150 FPGAs,
For a solution rate of 46 TCUPS, or 605 TCUPS for dedicated mode (Fig. 10). 

Figure 10. Performance of Human-Mouse DNA comparison for Sequential & Parallel FPGAs

However, as the Opteron I/O is the bottleneck, causing the FPGA to halt computations, the athors 
recognized that replacing small I/O packets using “Fortran writes” with streamed I/O (Fig. 11) offers up 
to 10X speed improvement, based on previous experience with streamed I/O.  This streamed I/O approach 
avoids sending many small write packets, (continually halting the FPGA) with large strings.

Figure 11. Technique to string I/O to avoid slower I/O with small formatted data packets.

Alternatively, a similar speedup can be realized by writing the data to a large character buffer in parallel,
and then transferring the buffer to disk using one binary write.nIn either case, achieving the additional 
10X speedup via streamed IO to reflect performance speedup (Fig. 12) of 6088X (20 years on 1 Opteron 
to 1.2 days on 150 Virtex4 FPGAs) or 980X speedup over 150 Opterons.
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Figure 12. Effect of 10X I/O speedup in reducing Human-Mouse genome sequencing time.

6 Concluding Remarks

A description of three generations of FPGAs and their use as HPC accelerators is given together with 
results of their performance to speed Human-Mouse DNA genome sequencing on Cray XD1 computers. 
In addition to 100x speedup using Virtex4 FPGAs observed (over a 2.2GHz AMD Opteron), a technique 
to stream I/O by replacing N Fortran writes with one binary write illustrates how up to 10X further 
speedup is possible, based on previous experience with similar I/O methods on Cray computers.  As HPC 
moves toward heterogeneous computers with accelerators, whether using GPUs or FPGAs, such streamed 
I/O techniques to achieve maximum performance should be of increasing importance.
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