

CUG 2009 Proceedings 1 of 8

Benchmarking and Evaluation of the Weather Research and
Forecasting (WRF) Model on the Cray XT5

Don Morton, Oralee Nudson, and Craig Stephenson,
Arctic Region Supercomputing Center, University of
Alaska, Fairbanks, Alaska

ABSTRACT: The Weather Research and Forecasting (WRF) model is utilized
extensively at ARSC for operational and research purposes. ARSC has developed an
ambitious suite of benchmark cases and, for this work, we present results of scaling
evaluations on the Cray XT5 for distributed (MPI) and hybrid (MPI/OpenMP) modes of
computation. Additionally, we report on our attempts to run a 1km-resolution case study
with over one billion grid points.

KEYWORDS: XT5, WRF, benchmarking

1. Introduction

The Arctic Region Supercomputing Center (ARSC)
has supported the Weather Research and Forecasting
(WRF) model for a number of applications since 2005.
These applications include quasi-operational real-time
forecasts for the Fairbanks Weather Forecast Office of
NOAA's National Weather Service, research support for
the Alaska Volcano Observatory's volcanic ash prediction
model, a wildfire smoke dispersion model, a study of
Beaufort Sea wind regimes for petroleum recovery
operations, and a broad range of research and education
activities.

Given its wide use at ARSC, a benchmarking suite is

being constructed for testing WRF's performance on
architectures ranging from small, single-CPU systems,
novel architectures such as GPU and PS3 systems, to the
largest supercomputing systems with tens of thousands of
processing elements. This paper describes the
benchmarking suite, its initial application on ARSC’s
Cray XT5, and efforts to push the limits with very large-
scale simulations that tax the available computational
resources.

2. The benchmarking suite

The benchmarking suite is inspired by John
Michalakes' [Michalakes2008] benchmark site, which
maintains a collection of ready-to-run input data through
the provision of a restart file (a complete dump of the
model state at a specified forecast time), lateral boundary
condition file, and a namelist (run time parameters) file.
With these files, a user with a properly installed version of
WRF is able to run the benchmark case to evaluate
performance, producing a native WRF output file of all
forecast variables at the simulation’s end, which can be
compared with the benchmark file available on the site. In
short, the user simply needs to compile WRF locally,
download the pre-processed input data, and run the case
study.

We borrowed heavily from this paradigm and adapted

to our unique needs and interests in supporting a broad
array of architectures with a simulation domain centered
on Alaska. Our site [ARSC2009] currently consists of a
collection of test cases based on a common domain
(Figure 1), but with different grid resolutions (see Table
1). The common domain is a 6075km x 6075km area on a
polar projection, centered on Frank Williams' (director of
ARSC) office, or as close as model resolution will allow.
All cases use 28 vertical levels.

CUG 2009 Proceedings 2 of 8

Figure 1. 6075x6075 km benchmark test domain.

Table 1. Various resolutions of the 6075x6075km
benchmark suite

The benchmark case is derived from a 72-hour forecast
for a weather event that surprised Fairbanks residents with
an unexpected major snow fall, captured well by the WRF
model. To create the benchmark files the weather model
is executed for 48 forecast hours (to a point with
interesting weather), and a restart file containing a dump
of the full state of the model at that time, is created. In
addition a file with lateral boundary conditions (LBC's),
and a modified namelist file are created, filled with the
runtime parameters needed to start the simulation with the
restart file and LBC's, and execute for three forecast
hours. The benchmark simulation terminates in the
production of an output file formatted in WRF-native
NetCDF. The intent of producing this output file is to
allow for comparison with a "standard" WRF output file
from our own simulations, though we caution users to
realize that there is no guarantee that our WRF output file
has "more correct" values than ones that might be
produced at other sites. It merely provides a means to see
if the benchmark simulations produce reasonable output.
It is envisioned that comparisons will be performed by
using a graphics package to display the standard and the

benchmark outputs, or the diffwrf utility to obtain a
numerical comparison of desired fields.

As WRF is executing it prints to stdout the wall-time in
seconds required for each timestep. At the end of the
simulation this list of execution times for each time step
can be processed with a Python script that we provide, to
accumulate the total time spent over the integration of
timesteps, filtering out the time required for initial and
terminal I/O and setup operations.

To date, the cases with horizontal grid resolution of 81km,
27km, 9km and 3km have been fully implemented, but the
1km case, with over 1 billion grid points, is problematic.
These issues will be discussed later in this paper.

3. Our own preliminary benchmarking

Our preliminary benchmarking activities are meant to
provide an overview of performance issues on ARSC
systems, stimulating more targeted studies in the future.
We made no effort to optimize our compilations; rather,
we used default options provided by the WRF
distribution. In the following tests, we used WRF
V3.0.1.1, compiled with PGI 7.2-3, using the following
compile options from the WRF configuration script to
produce a distributed memory (MPI) version:

Cray XT CNL/Linux x86_64, PGI compiler with gcc
(dmpar)

and a hybrid MPI/OpenMP version:

Cray XT CNL/Linux x86_64, PGI compiler with gcc
(dm+sm)

All tests were performed on ARSC’s Cray XT5,
pingo, comprised of 432 compute nodes, each with 32 GB
of shared memory, 2 quad core 2.3 GHz AMD Opteron
processors, connected through the Cray Seastar 2+
interconnect interface, giving a total of 3,456 compute
cores. The ambitious large-scale test cases are supported
by a 150 TB Lustre scalable file system.

The first tests performed were an assessment of basic

scalability using MPI distributed memory as shown in
Figures 3 - 6. In the 81km and 27km cases we assigned
MPI tasks sequentially to a node, up to eight tasks (see
Figure 2 for XT5 node layout, essentially comprising two
processors with four cores each). In the 9km and 3km
cases we assigned eight MPI tasks to each node, one task
per core.

Horiz Res Grid points
81km 75x75x28 = 157,500
27km 225x225x28 = 1,417,500

9km 675x675x28 = 12,757,500

3km 2025x2025x28 = 114,817,500
1km 6075x6075x28 = 1,033,357,500

CUG 2009 Proceedings 3 of 8

Figure 2. Layout of an XT5 compute node (from Louhi
User’s Guide, © CSC – IT Center for Science Ltd.)

Figure 3. Scalability for 81km test case, 1-8 PEs.

Figure 4. Scalability for 27km test case, 1-16 PEs.

Figure 5. Scalability for 9km test case, 8-128 PEs.

Figure 6. Scalability for 3km test case, 64-2048 PEs.

In the 9km and 3km cases, nodes were always fully

loaded with one task per core, and measured speedup was
near-optimal, relative to a fully-loaded node base case of
8 PEs. In the 81km and 27km cases, the measured
speedup is not nearly as optimal as we load up a node
from 1 to 8 tasks. Although some of this degradation
might be a result of the fine granularity of computation to
communication, it seems likely that scalability within a
node will show performance loss. This motivates the next
set of tests in which we compare the performance of cases
in which nodes are fully populated with eight tasks,
against cases where we distribute tasks so that they don’t
use all of a node’s cores.

CUG 2009 Proceedings 4 of 8

Figure 7. Scalability comparison - 1-8 MPI tasks
assigned to a single node versus 1-8 MPI tasks, one
task per node.

Figure 8. 1-8 MPI tasks assigned to a single node
versus 1-8 MPI tasks, one task per node.

In both cases (Figures 7 and 8), it’s clear that

assigning one MPI task per node (essentially wasting the
other seven cores on a node) gives us close-to-optimal
speedup.

In Figure 9 we look at this another way, considering

eight MPI tasks for the 9km case study, and observing
how performance varies as we distribute the tasks 1 per
node, 2 per node, and 4 per node. Again, it is clear that
we will see our best performance by assigning one task
per node, at the cost of wasting the other seven cores on a
node. We observe that performance degrades only
slightly when increasing the task load from 4 tasks per
node to 8 tasks per node, and note this as an area to be
further analyzed.

Figure 9. Performance comparison from distribution
of WRF MPI tasks 1 per node, 2 per node, 4 per node,
and 8 per node.

WRF supports a hybrid distributed memory (MPI)
and shared memory (OpenMP) model whereby coarse
domain partitioning produces patches of grid points for
the distributed memory paradigm, and patches may be
further decomposed into tiles of grid points for threaded
shared memory computations. Although some groups
have noted slightly better performance with this paradigm,
our tests – again, using default compile options – show the
distributed memory MPI paradigm to perform better.

The first hybrid test is meant to observe the

scalability of threads, assigned to a single MPI task,
increasing from one to eight on a single node (Figure 10).
The Perfect Walltime curve is relative to a single thread
and, as in the distributed memory mode we observe that
scalability degrades as we load a node’s cores.

Figure 10. General scalability of 1-8 OpenMP threads
(assigned to a single MPI task) on a single node.

Taking this a step further, in Figure 11 we compare

thread performance on a single node (1-8 threads running
under a single MPI task) to MPI task performance,
whereby we assign 1-8 MPI tasks to a single node. In this
case, we see that the hybrid and distributed memory
modes produce comparable performance for a small

CUG 2009 Proceedings 5 of 8

number of cores per node, but as we more fully utilize the
cores in a node, MPI shows significantly better
performance than the hybrid mode. This is a finding that
we discuss in more detail shortly.

Figure 11. Single node performance of 1-8 OpenMP
threads (assigned to a single MPI task) versus 1-8 MPI
tasks.

Looking at a more real-world scenario (Figure 12), we
compare the hybrid performance with MPI performance
on a larger number of fully-loaded nodes. In the hybrid
scheme we again allocated one MPI task to each node,
and each MPI task managed eight OpenMP threads – one
thread per core. In the distributed memory scheme we
assigned eight MPI tasks to each node – one task per core.

Figure 12. Comparison of hybrid OpenMP/MPI and
MPI on 8-128 PEs. OpenMP threads are executed
eight to a node, assigned to a single MPI task. In MPI
distributed memory mode, MPI tasks are assigned
eight to a node.

Although the scaling of the graph suggests a possible
improvement of hybrid performance as we increase the
number of PEs, the reality is that in all of these cases the
performance of the hybrid scheme was worse by almost a
factor of two – in the 128 PE case, the hybrid scheme took

490 sec, while the distributed memory scheme took 294
sec.

Finally, we were curious about how different

MPI/OpenMP decompositions might affect performance,
so we initiated a series of scalability tests comparing the
following hybrid scenarios:

• 1 MPI task per node, managing eight threads
• 2 MPI tasks per node, each managing four

threads
• 4 MPI tasks per node, each managing two

threads
• Pure MPI – eight MPI tasks per node

Figure 13. Comparison of different hybrid
OpenMP/MPI allocations.

Although it’s hard to tell from the graph (Figure 13),

hybrid performance improved as we increased the number
of MPI tasks on each node, decreasing the number of
threads managed by an MPI task. The pure MPI mode
still exhibited the best performance, though the case where
we used four MPI tasks per node, each managing only two
threads, exhibited performance very close to that of the
MPI distributed memory mode. We believe this may
indicate that MPI processes have a greater affinity for a
core, exhibiting much less context switching than a set of
OpenMP threads. In short, the use of MPI distributed
memory mode has consistently given us better
performance than a hybrid approach, but we cautiously
note that we have seen other presentations where the
hybrid approach was marginally better than MPI (though
we are not aware of any similar studies performed on the
Cray XT5 with a PGI-compiled WRF).

3. Setting up a large-scale problem

Our original intent was to include a 1km resolution
case in the benchmark suite, consisting of over one billion
grid points. As we pursued this direction we ran into
memory limitations, and consultations with Peter Johnsen

CUG 2009 Proceedings 6 of 8

and John Michalakes provided some insight in other ways
to go about this.

Table 2. Memory requirements for the billion grid
point case.

An estimate of memory requirements for this billion

point case is outlined in Table 2 (estimates come from
computations provided by John Michalakes). Although
great effort has gone into making WRF decompose well
amongst available processors, there is the necessity of
maintaining some global buffer space for necessary
scatter/gather operations. This additional memory is
assigned to PE0, and in large-scale cases can pollute an
otherwise well-balanced decomposition. For example,
consider that the XT5 nodes each have 32 GBytes
available (some of which is used by the OS). Table 2
suggests that with 160 PEs WRF would use 3.5 GBytes
per task, or 28 GBytes per node. However, PE0 (and only
PE0) would additionally need to store the global buffer of
4.1 GBytes, so we have to allocate enough cores to fit this
additional requirement into PE0. One way around this is
to use some clever PBS Pro wizardry and assign PE0 to a
node by itself, and then assign the other tasks eight to a
node (except for the last node, which will only have seven
tasks assigned to it). In this way, PE0 only needs to
satisfy the memory requirements of a single task plus the
global buffer.

Although we made a number of attempts, we were

never able to get this billion grid point case running.
Despite numerous attempts, we constantly ran into a
roadblock during the pre-processing stage, in which the
model was complaining that we were requesting a vertical
level higher than was possible given the input data. For
those who might be interested, the specific error message
was

 p_top_requested < grid%p_top_possible from data

Since we were using the same input data that we had used
in the other benchmarking cases, our initial suspicion
(based on previous experience with fine resolution
domains) was that the 1km resolution constituted too
much downscaling, and that ultimately our errors were
numerical in origin.

To test this hypothesis that our problem was caused

by the fine resolution, we went back to the 3km resolution
case, which we knew was successful, and increased the
horizontal domain from 2025x2025 grid points to
6075x6075, thus giving us a billion grid points at a
coarser resolution (with a resulting domain that extended
into the southern hemisphere). However, we ran into
exactly the same problem that we encountered with the
1km resolution case, so then began to suspect that
somehow our data was becoming corrupted, possibly a
result of a software defect that manifested itself in large-
scale memory situations.

To test the hypothesis that the memory usage (as

opposed to high resolution) was somehow causing a
problem, we went back to our 1km case, but reduced the
number of horizontal grid points from 6075x6075 to
3038x3038, giving us about 250 million grid points. This
case set up well for us, strengthening our theory that the
sheer size of the problem (in terms of number of grid
points) is the real issue that needs to be addressed. This is
where we stand now on the implementation of a 1km
benchmark case – making this work is a worthy pursuit,
given that there are no practical limitations that should be
stopping us, and achieving success with this case helps us
push the limits of WRF and the Cray XT5.

In the meantime, given the problems we were facing

with the 1km case, we decided to create a 2km benchmark
case that covered the same region as our other successful
cases, using 3038x3038x28 grid points (approximately
250 million). The intent was to produce this benchmark
in the same way that we produced the others – run the
simulation, generate restart files (complete dump of the
state of the model), and provide the user with the restart
file, namelist of parameters, and lateral boundary
condition file so that they can run a benchmark case with
no pre-processing required. Although our simulations
proceeded well, our scheme fell apart due to memory
allocation issues when we tried to write the restart file.

To gain a feel for the restart file sizes, we note that

the restart file for the 9km case is 4.2 GBytes, in size, and
about 37.7 GBytes for the 3km case. This file is, by
default, written solely by PE0, so it is easy to see that
memory limitations may come into play. WRF provides a
capability to perform I/O operations on a set of processors
separate from the computations, and Peter Johnsen was
very helpful in pointing out how to facilitate this in an
XT5 / PBS Pro environment (along with use of parallel
NetCDF), but we ran into too many roadblocks and
temporarily abandoned this path.

Tasks Per Task
(GBytes)

Global Buffer
(GBytes)

128 4.4 4.1
160 3.5 4.1
256 2.2 4.1

512 1.1 4.1

1024 0.58 4.1

CUG 2009 Proceedings 7 of 8

However, since the only problem was a failure to
generate restart files, we were still able to run the 2km
simulation with 250 million grid points just to get a rough
feel for scalability. Hence, Figure 14, although not
generated from our standard benchmark restart file,
depicts the performance (for three forecast hours – just
like the standard benchmark cases) of a quarter-billion
grid point case, using MPI distributed memory mode

Figure 14. 2km scalability, MPI distributed memory
mode.

We additionally ran two hybrid cases and compared

with an MPI case, all running on 1024 cores:

• 8 MPI tasks assigned to each of 128 nodes –
4,109 sec.

• 1 MPI task assigned to each of 128 nodes,
each task running 8 threads – 5,511 sec.

• 1 MPI task assigned to each of 256 nodes,
each running 4 threads (in other words, half
the cores on the 256 nodes were left idle) –
3,910 sec.

Summary

Our primary motivation at this point is to create a
versatile suite of WRF benchmarks that we hope will
facilitate testing the entire spectrum of available
architectures, and that this will be useful to the HPCMP
community and others seeking to understand WRF
performance on new systems. Borrowing heavily from
[Michalakes2008] we have created the initial
infrastructure [ARSC2009] to support this venture. Our
current challenge is to continue pushing the limits by
creating a one-billion grid point benchmark, and that is
where we will direct our near-term efforts. In pushing the
limits on large-scale WRF simulations, we note that
Johnsen, Nyberg and Michalakes have successfully run a
2-billion grid point case, so we’re not on untrodden
ground.

By creating the benchmark suite we had the

opportunity to perform some initial testing of ARSC’s,

Cray XT5, pingo, finding that in all cases, use of the
distributed memory mode yielded better performance than
the hybrid MPI/OpenMP mode. Other groups, however,
have found slightly better results with the hybrid approach
(albeit on other architectures and with other compilers), so
this is an area worthy of further analysis.

Acknowledgments

The authors gratefully acknowledge the support of the
Arctic Region Supercomputing Center in its provision of
computational resources and top-notch user support.
Peter Johnsen of Cray, Inc. and John Michalakes of
NCAR provided invaluable guidance and inspiration for
this work.

About the Authors

Don Morton has been associated with the Arctic
Region Supercomputing Center (ARSC) since 1994, while
maintaining full time academic positions in Oklahoma and
Montana and he has been a sporadic contributor to CUG
meetings (1999 and 2005). Don is currently wrapping up
his final semester after twelve years at The University of
Montana Missoula for a full-time position at ARSC to
finally pursue the research and development activities
which he has always been passionate about, particularly in
the area of weather modelling.

Craig Stephenson began working at ARSC as an

Undergraduate Student Assistant in May of 2004.
Following the completion of his B.S. in Computer Science
from the University of Alaska Fairbanks, Craig began
working full time as a User Consultant for ARSC. In
addition to assisting users on a daily basis, Craig's greatest
work related contributions include developing a tool for
Project Gutenberg which allows users to create a
customized cd of Project Gutenberg electronic books,
programming the backend job submission and results
reporting for the Community Portal for Collaborative
Research on Tsunamis, and recently becoming an editor
for the popular ARSC HPC Newsletter.

Oralee Nudson's first introduction to parallel

computing began as an Undergraduate at Boise State
University writing PVM for a twelve processor Beowulf
cluster. This experience paved the way for her
employment at ARSC as a User Consultant. Oralee has
contributed to ARSC by developing helpful system tools
for use on the ARSC supercomputers, is a member of the
system support and usability teams, and has recently taken
on the supervisory responsibilities for the ARSC
Undergraduate Research Project Assistants. Oralee will
graduate with her M.S. in Computer Science from the

CUG 2009 Proceedings 8 of 8

University of Alaska Fairbanks in May 2009 and plans to
continue working full time as a User Consultant for
ARSC.

References

[ARSC2009] ARSC WRF Benchmarking Suite
http://weather.arsc.edu/BenchmarkSuite/

[Michalakes2008] WRF V3 Parallel Benchmark Page
http://www.mmm.ucar.edu/wrf/WG2/bench/

