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ABSTRACT:  The Weather Research and Forecasting (WRF) model is utilized 
extensively at ARSC for operational and research purposes. ARSC has developed an 
ambitious suite of benchmark cases and, for this work, we present results of scaling 
evaluations on the Cray XT5 for distributed (MPI) and hybrid (MPI/OpenMP) modes of 
computation. Additionally, we report on our attempts to run a 1km-resolution case study 
with over one billion grid points.  
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1. Introduction 

The Arctic Region Supercomputing Center (ARSC) 
has supported the Weather Research and Forecasting 
(WRF) model for a number of applications since 2005.  
These applications include quasi-operational real-time 
forecasts for the Fairbanks Weather Forecast Office of 
NOAA's National Weather Service, research support for 
the Alaska Volcano Observatory's volcanic ash prediction 
model, a wildfire smoke dispersion model, a study of 
Beaufort Sea wind regimes for petroleum recovery 
operations, and a broad range of research and education 
activities. 

 
Given its wide use at ARSC, a benchmarking suite is 

being constructed for testing WRF's performance on 
architectures ranging from small, single-CPU systems, 
novel architectures such as GPU and PS3 systems, to the 
largest supercomputing systems with tens of thousands of 
processing elements.  This paper describes the 
benchmarking suite, its initial application on ARSC’s 
Cray XT5, and efforts to push the limits with very large-
scale simulations that tax the available computational 
resources. 

 

2.  The benchmarking suite  

The benchmarking suite is inspired by John 
Michalakes' [Michalakes2008] benchmark site, which 
maintains a collection of ready-to-run input data through 
the provision of a restart file (a complete dump of the 
model state at a specified forecast time), lateral boundary 
condition file, and a namelist (run time parameters) file.  
With these files, a user with a properly installed version of 
WRF is able to run the benchmark case to evaluate 
performance, producing a native WRF output file of all 
forecast variables at the simulation’s end, which can be 
compared with the benchmark file available on the site.  In 
short, the user simply needs to compile WRF locally, 
download the pre-processed input data, and run the case 
study. 

 
We borrowed heavily from this paradigm and adapted 

to our unique needs and interests in supporting a broad 
array of architectures with a simulation domain centered 
on Alaska.  Our site  [ARSC2009] currently consists of a 
collection of test cases based on a common domain 
(Figure 1), but with different grid resolutions (see Table 
1).  The common domain is a 6075km x 6075km area on a 
polar projection, centered on Frank Williams' (director of 
ARSC) office, or as close as model resolution will allow.  
All cases use 28 vertical levels. 
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Figure 1. 6075x6075 km benchmark test domain. 
 
 
Table 1. Various resolutions of the 6075x6075km 
benchmark suite 
 

 
The benchmark case is derived from a 72-hour forecast 
for a weather event that surprised Fairbanks residents with 
an unexpected major snow fall, captured well by the WRF 
model.  To create the benchmark files the weather model 
is executed for 48 forecast hours (to a point with 
interesting weather), and a restart file containing a dump 
of the full state of the model at that time, is created.  In 
addition a file with lateral boundary conditions (LBC's), 
and a modified namelist file are created, filled with the 
runtime parameters needed to start the simulation with the 
restart file and LBC's, and execute for three forecast 
hours.  The benchmark simulation terminates in the 
production of an output file formatted in WRF-native 
NetCDF.  The intent of producing this output file is to 
allow for comparison with a "standard" WRF output file 
from our own simulations, though we caution users to 
realize that there is no guarantee that our WRF output file 
has "more correct" values than ones that might be 
produced at other sites.  It merely provides a means to see 
if the benchmark simulations produce reasonable output.  
It is envisioned that comparisons will be performed by 
using a graphics package to display the standard and the 

benchmark outputs, or the diffwrf utility to obtain a 
numerical comparison of desired fields. 

 
As WRF is executing it prints to stdout the wall-time in 
seconds required for each timestep.  At the end of the 
simulation this list of execution times for each time step 
can be processed with a Python script that we provide, to 
accumulate the total time spent over the integration of 
timesteps, filtering out the time required for initial and 
terminal I/O and setup operations. 

 
To date, the cases with horizontal grid resolution of 81km, 
27km, 9km and 3km have been fully implemented, but the 
1km case, with over 1 billion grid points, is problematic.  
These issues will be discussed later in this paper. 

 

3.  Our own preliminary benchmarking  

Our preliminary benchmarking activities are meant to 
provide an overview of performance issues on ARSC 
systems, stimulating more targeted studies in the future.  
We made no effort to optimize our compilations;  rather, 
we used default options provided by the WRF 
distribution.  In the following tests, we used WRF 
V3.0.1.1, compiled with PGI 7.2-3, using the following 
compile options from the WRF configuration script to 
produce a distributed memory (MPI) version: 

 
Cray XT CNL/Linux x86_64, PGI compiler with gcc 
(dmpar) 

 
and a hybrid MPI/OpenMP version: 

 
Cray XT CNL/Linux x86_64, PGI compiler with gcc 
(dm+sm) 
 

All tests were performed on ARSC’s Cray XT5, 
pingo, comprised of 432 compute nodes, each with 32 GB 
of shared memory, 2 quad core 2.3 GHz AMD Opteron 
processors, connected through the Cray Seastar 2+ 
interconnect interface, giving a total of 3,456 compute 
cores.  The ambitious large-scale test cases are supported 
by a 150 TB Lustre scalable file system. 

 
The first tests performed were an assessment of basic 

scalability using MPI distributed memory as shown in 
Figures 3 - 6.  In the 81km and 27km cases we assigned 
MPI tasks sequentially to a node, up to eight tasks (see 
Figure 2 for XT5 node layout, essentially comprising two 
processors with four cores each).  In the 9km and 3km 
cases we assigned eight MPI tasks to each node, one task 
per core. 

 
 

Horiz Res Grid points 
81km 75x75x28 = 157,500 
27km 225x225x28 = 1,417,500 

9km 675x675x28 = 12,757,500 

3km 2025x2025x28 = 114,817,500 
1km 6075x6075x28 = 1,033,357,500 
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Figure 2. Layout of an XT5 compute node (from Louhi 
User’s Guide, © CSC – IT Center for Science Ltd.) 
 
 

 

 
Figure 3. Scalability for 81km test case, 1-8 PEs. 
 

 
Figure 4. Scalability for 27km test case, 1-16 PEs. 
 

 
Figure 5. Scalability for 9km test case, 8-128 PEs. 

 
 
 
 

 
Figure 6. Scalability for 3km test case, 64-2048 PEs. 

 
 
In the 9km and 3km cases, nodes were always fully 

loaded with one task per core, and measured speedup was 
near-optimal, relative to a fully-loaded node base case of 
8 PEs.  In the 81km and 27km cases, the measured 
speedup is not nearly as optimal as we load up a node 
from 1 to 8 tasks.  Although some of this degradation 
might be a result of the fine granularity of computation to 
communication, it seems likely that scalability within a 
node will show performance loss.  This motivates the next 
set of tests in which we compare the performance of cases 
in which nodes are fully populated with eight tasks, 
against cases where we distribute tasks so that they don’t 
use all of a node’s cores.   
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Figure 7. Scalability comparison - 1-8 MPI tasks 
assigned to a single node versus 1-8 MPI tasks, one 
task per node. 

 

 
Figure 8. 1-8 MPI tasks assigned to a single node 
versus 1-8 MPI tasks, one task per node. 

 
In both cases (Figures 7 and 8), it’s clear that 

assigning one MPI task per node (essentially wasting the 
other seven cores on a node) gives us close-to-optimal 
speedup. 

 
In Figure 9 we look at this another way, considering 

eight MPI tasks for the 9km case study, and observing 
how performance varies as we distribute the tasks 1 per 
node, 2 per node, and 4 per node.  Again, it is clear that 
we will see our best performance by assigning one task 
per node, at the cost of wasting the other seven cores on a 
node.   We observe that performance degrades only 
slightly when increasing the task load from 4 tasks per 
node to 8 tasks per node, and note this as an area to be 
further analyzed. 

 
 

 
Figure 9. Performance comparison from distribution 
of WRF MPI tasks 1 per node, 2 per node, 4 per node, 
and 8 per node. 
 

WRF supports a hybrid distributed memory (MPI) 
and shared memory (OpenMP) model whereby coarse 
domain partitioning produces patches of grid points for 
the distributed memory paradigm, and patches may be 
further decomposed into tiles of grid points for threaded 
shared memory computations.  Although some groups 
have noted slightly better performance with this paradigm, 
our tests – again, using default compile options – show the 
distributed memory MPI paradigm to perform better. 

 
The first hybrid test is meant to observe the 

scalability of threads, assigned to a single MPI task, 
increasing from one to eight on a single node (Figure 10).  
The Perfect Walltime curve is relative to a single thread 
and, as in the distributed memory mode we observe that 
scalability degrades as we load a node’s cores. 

 

 
Figure 10. General scalability of 1-8 OpenMP threads 
(assigned to a single MPI task) on a single node. 

 
 
Taking this a step further, in Figure 11 we compare 

thread performance on a single node (1-8 threads running 
under a single MPI task) to MPI task performance, 
whereby we assign 1-8 MPI tasks to a single node.  In this 
case, we see that the hybrid and distributed memory 
modes produce comparable performance for a small 
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number of cores per node, but as we more fully utilize the 
cores in a node, MPI shows significantly better 
performance than the hybrid mode.  This is a finding that 
we discuss in more detail shortly. 

 
Figure 11.  Single node performance of 1-8 OpenMP 
threads (assigned to a single MPI task) versus 1-8 MPI 
tasks. 
 
Looking at a more real-world scenario (Figure 12), we 
compare the hybrid performance with MPI performance 
on a larger number of fully-loaded nodes.  In the hybrid 
scheme we again allocated one MPI task to each node, 
and each MPI task managed eight OpenMP threads – one 
thread per core.  In the distributed memory scheme we 
assigned eight MPI tasks to each node – one task per core. 

 
 

 
Figure 12.  Comparison of hybrid OpenMP/MPI and 
MPI on 8-128 PEs.  OpenMP threads are executed 
eight to a node, assigned to a single MPI task.  In MPI 
distributed memory mode, MPI tasks are assigned 
eight to a node. 
 

Although the scaling of the graph suggests a possible 
improvement of hybrid performance as we increase the 
number of PEs, the reality is that in all of these cases the 
performance of the hybrid scheme was worse by almost a 
factor of two – in the 128 PE case, the hybrid scheme took 

490 sec, while the distributed memory scheme took 294 
sec. 

 
Finally, we were curious about how different 

MPI/OpenMP decompositions  might affect performance, 
so we initiated a series of scalability tests comparing the 
following hybrid scenarios: 

• 1 MPI task per node, managing eight threads 
• 2 MPI tasks per node, each managing four 

threads 
• 4 MPI tasks per node, each managing two 

threads 
• Pure MPI – eight MPI tasks per node 

 

 
Figure 13.  Comparison of different hybrid 
OpenMP/MPI allocations. 

 
 
Although it’s hard to tell from the graph (Figure 13), 

hybrid performance improved as we increased the number 
of MPI tasks on each node, decreasing the number of 
threads managed by an MPI task.  The pure MPI mode 
still exhibited the best performance, though the case where 
we used four MPI tasks per node, each managing only two 
threads, exhibited performance very close to that of the 
MPI distributed memory mode.  We believe this may 
indicate that MPI processes have a greater affinity for a 
core, exhibiting much less context switching than a set of 
OpenMP threads.  In short, the use of MPI distributed 
memory mode has consistently given us better 
performance than a hybrid approach, but we cautiously 
note that we have seen other presentations where the 
hybrid approach was marginally better than MPI (though 
we are not aware of any similar studies performed on the 
Cray XT5 with a PGI-compiled WRF).   

3.  Setting up a large-scale problem  

Our original intent was to include a 1km resolution 
case in the benchmark suite, consisting of over one billion 
grid points.  As we pursued this direction we ran into 
memory limitations, and consultations with Peter Johnsen 
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and John Michalakes provided some insight in other ways 
to go about this.   
 
Table 2. Memory requirements for the billion grid 
point case. 

 
 

 

 
 
 
 

 
An estimate of memory requirements for this billion 

point case is outlined in Table 2 (estimates come from 
computations provided by John Michalakes).  Although 
great effort has gone into making WRF decompose well 
amongst available processors, there is the necessity of 
maintaining some global buffer space for necessary 
scatter/gather operations.  This additional memory is 
assigned to PE0, and in large-scale cases can pollute an 
otherwise well-balanced decomposition.  For example, 
consider that the XT5 nodes each have 32 GBytes 
available (some of which is used by the OS).  Table 2 
suggests that with 160 PEs WRF would use 3.5 GBytes 
per task, or 28 GBytes per node.  However, PE0 (and only 
PE0) would additionally need to store the global buffer of 
4.1 GBytes, so we have to allocate enough cores to fit this 
additional requirement into PE0.  One way around this is 
to use some clever PBS Pro wizardry and assign PE0 to a 
node by itself, and then assign the other tasks eight to a 
node (except for the last node, which will only have seven 
tasks assigned to it).  In this way, PE0 only needs to 
satisfy the memory requirements of a single task plus the 
global buffer. 

 
Although we made a number of attempts, we were 

never able to get this billion grid point case running.  
Despite numerous attempts, we constantly ran into a 
roadblock during the pre-processing stage, in which the 
model was complaining that we were requesting a vertical 
level higher than was possible given the input data.  For 
those who might be interested,  the specific error message 
was  

 
    p_top_requested < grid%p_top_possible from data 
 
Since we were using the same input data that we had used 
in the other benchmarking cases, our initial suspicion 
(based on previous experience with fine resolution 
domains) was that the 1km resolution constituted too 
much downscaling, and that ultimately our errors were 
numerical in origin.   

 
To test this hypothesis that our problem was caused 

by the fine resolution, we went back to the 3km resolution 
case, which we knew was successful, and increased the 
horizontal domain from 2025x2025 grid points to 
6075x6075, thus giving us a billion grid points at a 
coarser resolution (with a resulting domain that extended 
into the southern hemisphere).  However, we ran into 
exactly the same problem that we encountered with the 
1km resolution case, so then began to suspect that 
somehow our data was becoming corrupted, possibly a 
result of a software defect that manifested itself in large-
scale memory situations.   

 
To test the hypothesis that the memory usage (as 

opposed to high resolution) was somehow causing a 
problem, we went back to our 1km case, but reduced the 
number of horizontal grid points from 6075x6075 to 
3038x3038, giving us about 250 million grid points.  This 
case set up well for us, strengthening our theory that the 
sheer size of the problem (in terms of number of grid 
points) is the real issue that needs to be addressed.  This is 
where we stand now on the implementation of a 1km 
benchmark case – making this work is a worthy pursuit, 
given that there are no practical limitations that should be 
stopping us, and achieving success with this case helps us 
push the limits of WRF and the Cray XT5. 

 
In the meantime, given the problems we were facing 

with the 1km case, we decided to create a 2km benchmark 
case that covered the same region as our other successful 
cases, using 3038x3038x28 grid points (approximately 
250 million).  The intent was to produce this benchmark 
in the same way that we produced the others – run the 
simulation, generate restart files (complete dump of the 
state of the model), and provide the user with the restart 
file, namelist of parameters, and lateral boundary 
condition file so that they can run a benchmark case with 
no pre-processing required.  Although our simulations 
proceeded well, our scheme fell apart due to memory 
allocation issues when we tried to write the restart file.   

 
To gain a feel for the restart file sizes, we note that 

the restart file for the 9km case is 4.2 GBytes, in size, and 
about 37.7 GBytes for the 3km case.  This file is, by 
default, written solely by PE0, so it is easy to see that 
memory limitations may come into play.  WRF provides a 
capability to perform I/O operations on a set of processors 
separate from the computations, and Peter Johnsen was 
very helpful in pointing out how to facilitate this in an 
XT5 / PBS Pro environment (along with use of parallel 
NetCDF), but we ran into too many roadblocks and 
temporarily abandoned this path. 

 

Tasks Per Task 
(GBytes) 

Global Buffer 
(GBytes) 

128 4.4 4.1 
160 3.5 4.1 
256 2.2 4.1 

512 1.1 4.1 

1024 0.58 4.1 
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However, since the only problem was a failure to 
generate restart files, we were still able to run the 2km 
simulation with 250 million grid points just to get a rough 
feel for scalability.  Hence, Figure 14, although not 
generated from our standard benchmark restart file, 
depicts the performance (for three forecast hours – just 
like the standard benchmark cases) of a quarter-billion 
grid point case, using MPI distributed memory mode 

 

 
Figure 14. 2km scalability, MPI distributed memory 
mode. 

 
We additionally ran two hybrid cases and compared 

with an MPI case, all running on 1024 cores: 
 

• 8 MPI tasks assigned to each of 128 nodes – 
4,109 sec. 

• 1 MPI task assigned to each of 128 nodes, 
each task running 8 threads – 5,511 sec. 

• 1 MPI task assigned to each of 256 nodes, 
each running 4 threads (in other words, half 
the cores on the 256 nodes were left idle) – 
3,910 sec. 

Summary 

Our primary motivation at this point is to create a 
versatile suite of WRF benchmarks that we hope will 
facilitate testing the entire spectrum of available 
architectures, and that this will be useful to the HPCMP 
community and others seeking to understand WRF 
performance on new systems.  Borrowing heavily from 
[Michalakes2008] we have created the initial 
infrastructure [ARSC2009] to support this venture.  Our 
current challenge is to continue pushing the limits by 
creating a one-billion grid point benchmark, and that is 
where we will direct our near-term efforts.  In pushing the 
limits on large-scale WRF simulations, we note that 
Johnsen, Nyberg and Michalakes have successfully run a 
2-billion grid point case, so we’re not on untrodden 
ground. 

 
By creating the benchmark suite we had the 

opportunity to perform some initial testing of ARSC’s, 

Cray XT5, pingo, finding that in all cases, use of the 
distributed memory mode yielded better performance than 
the hybrid MPI/OpenMP mode.  Other groups, however, 
have found slightly better results with the hybrid approach 
(albeit on other architectures and with other compilers), so 
this is an area worthy of further analysis. 
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