
DCA++: Winning the

Gordon Bell Prize

with Generic Programming

Michael S. Summers

May 3 2009

Abstract

The 2009 Gordon Bell prize was won by the DCA++
code, the first code in history to run at a sus-
tained 1.35 petaflop rate. While many GB prize
wining codes have been written in FORTRAN, the
DCA++ code is fully object-oriented C++ and
makes heavy use of generic programming. This pa-
per discusses how the DCA++ team simultaneously
achieved world class performance and also the main-
tainability and elegance of modern software prac-
tice.

1 DCA++:
The Rest of the Story

The DCA++ team is a large diverse team with a
joint skill set that covers all aspects of designing, de-
veloping, hosting, running and using HPC applica-
tions. The story of this team’s scientific pursuits and
how they won the Gordon Bell prize has been well
told by the team’s leadership. For a quick overview,
the funding sources, and the full list of team mem-
bers see Thomas Schulthess’s “The DCA++ story”
[TSCH09]. What has been mentioned but not pre-
sented in detail is the software development story
behind the DCA++.

The team’s software development experience in-
fluenced its development. The author’s own experi-
ence started in the early 70’s, using FORTRAN on a
CDC 6600 (designed by Seymour Cray). In the 80’s
he researched prototype command and control sys-
tems for the Air Force. Some of these systems ran
on artificial intelligence machines such as the Sym-
bolics 3600. Finally his experience came full circle

back to scientific computing with Version 2 of the
DCA++ code.

Figure 1: The code of DCA++ Version 2 was de-
signed using skills first learned on a Symbolics Lisp
Machine.

Researchers working in the 80’s with Symbolics
systems were asked to demonstrate very complex hy-
brid AI/numerical applications. Because of the na-
ture of the problems they faced, the research often
involved a mix of computer science, physics, and en-
gineering. Since they needed to explore many possi-
bilities they also had to develop and re-develop their
software very quickly.

These researchers recognized that they were
jointly developing both procedural and ontological
knowledge and that they were encoding this knowl-
edge into the software they developed. They under-
stood that in order to manage the complexity and
cost of their software they needed the ability to de-
fine software abstractions, and they developed lan-
guages and tools to this end.

However, it was not the languages and tools that
managed the complexity of their code. It was the
identification and use of correct/efficient abstrac-
tions (concepts in generic programming terminol-
ogy) that managed complexity both in their minds
and in their code. The structure of the code had
to reflect the most efficient way to think about the
problem. In cases where there were real time re-
quirements the abstraction process had to be inter
woven with performance confederations.

Looking back, the Symbolics represents more than
a hardware and software platform. It represents the
collective software development wisdom of its time.

This paper is the story of the application of this
wisdom to the DCA++ code.

1

Cray User Group 2009 Proceedings

http://www.er.doe.gov/ASCR/ASCAC/Meetings/Mar09/Schulthess.pdf

2 DCA++ Requirements

The DCA++ code is a multi-scale, quantum field
theory application. At the bulk scale the “bath” (see
Figure 2) is represented with a self energy function.
At the atomic scale it uses a very large set of dis-
order configurations to model the many impurities
that would be found in a super-conducting material.
Each disorder configuration (the cluster of Figure 2)
is represented by a single band 2D Hubbard model.

The self energy of the bath is used to initialize
the clusters and the correlation functions computed
from the clusters can be used to compute a new
self energy. The code iterates until a self consistent
self energy and correlation function are found. The
computation of each cluster’s correlation functions
involves a Monte Carlo integration (represented by
the dice in the figure).

Figure 2: The DCA++ code computes correlation
functions from a description of the material lat-
tice. Material properties such as the superconduct-
ing transition temperature, Tc, can be calculated
from the correlation functions.

The structure of this problem has at least three
levels of hierarchical parallelism (see Figure 3). The
available processors are first divided up into teams,
one for each disorder configuration. Each disorder
team can then be divided into Monte Carlo integra-
tion sub-teams.

Each integration sub-team uses a separate Markov
chain to generate a sequence of integrand values.
The processing of each Markov chain involves an ex-
pensive update procedure which can optionally be
handled by sub-sub-team of processors. The update
procedure involves some linear algebra which is the
current bottleneck in the system. The code spends
95% of its time in these procedures. Depending on
the hardware it may be appropriate for the bottle-
neck sub-sub-teams to share memory.

Figure 3: The DCA++ has a natural parallelism
structure that can make use of a very large number
of processors.

The DCA++ code was constructed in two stages.
The first stage, Version 1, was developed to demon-
strate that the team’s algorithms could be imple-
mented efficiently and that the code could be or-
ganized to scale to 50k or more processors. While
Version 1 was written in C++ and made some use of
object orientation and generic programming, it was
not written in a way that would reduce the cost of
adding future extensions.

As Figure 4 shows, Version 2, a complete rewrite,
was required to meet all of Version 1’s requirements
and to also be written in a way that would reduce
the cost of developing the many envisioned exten-
sions. The allocation of requirements between Ver-
sion 1 and 2 was also chosen to match the work loads
and skills of the team’s principle software developers.
The principal developer of Version 1, Gonzalo Al-
varez, an excellent and efficient coder, was foremost
a physicist. The version that he produced provided
the author (only a “wannabe” quantum mechanic)
with the basis he needed to ’refactor’ Version 1 into
Version 2. This pairing of skill sets has worked well
for us.

3 Refactoring

The basic idea of refactoring is presented in Fig-
ure 5. As every code is developed, it increases in
both functionality and complexity. As the complex-
ity of the code grows it becomes harder and harder
to change until it reaches a ceiling where adding new
capabilities is too costly. While it may appear that
the code is at an impasse at this point, it is usually
not so.

2

Cray User Group 2009 Proceedings

Figure 4: The DCA++ Requirements distributed
between versions.

Much of the complexity of the code is not intrinsic
to the problem the code is solving. During the refac-
toring process code is rewritten (often just a por-
tion of it) so that 1) the non-intrinsic complexity is
greatly reduced and 2) the new abstractions used in
the code change the rate at which complexity grows
with additional functionality. This is illustrated in
Figure 5 by the reduced slope after refactoring.

Figure 5: Refactoring enables us to afford more func-
tionality.

It is usually not possible to avoid refactoring by
comprehensive upfront design. This is especially
true for research code. There are several reasons
for this:

• The design of the programs abstractions involve
many trade-offs. We often need experience with
actual systems before we can make good design
decisions.

• As researchers we are learning about the prob-
lem we are trying to solve as we develop the
code.

• As researchers we are also discovering the best
algorithms to use as we develop the code.

• Many refactoring opportunities can be identi-
fied by simply looking for redundant (or nearly
redundant) code.

• Upfront designs of a system of abstrac-
tions/concepts are usually too general. Devel-
opers end up writing more code than necessary
and leave this code untested.

4 The Race to the Finish

Our experience developing the DCA++ and submit-
ting it for the Gordon Bell prize provides an inter-
esting illustration of the refactoring process.

Figure 6 presents the two year time frame prior to
the Gordon Bell DCA++ runs in November of 2008.
During the first year Gonzalo Alvarez was writing
Version 1 and the author was working on the un-
derlying symmetry package which is shared by both
systems. When the symmetry package was finished
and integrated into Version 1, work on Version 2 be-
gan.

Development of Version 1 continued. As it demon-
strated its functionality and performance it became
the production version. It was used to demonstrated
that it could scale to the order of 50k processors and
was expected to be the Gordon Bell code.

Figure 6: The time line of the DCA++ development.

Initially the performance runs were to be on the
“old” Jaguar XT4, later in the year it became clear
that the XT5 (with it’s 150k processors) would be
available for Gordon Bell Prize runs. There was
a narrow time window in which the new machine
would be available for this purpose. By that time
several things had changed.

• We had developed a very detailed automated
testing system to verify that Version 2 was pro-
ducing exactly the same results as Version 1.

3

Cray User Group 2009 Proceedings

This system showed that Version 2 was very
close to meeting its functional requirements.

• After sorting out some issues, Version 2 ap-
peared to be running as fast as Version 1.

• We had decided that we should modify the
codes so that the Monte Carlo integration would
operate in single precision. Due to the nature
of the integration process, we knew it was un-
necessary to run this part of the code in dou-
ble precision. It was also clear that our perfor-
mance would increase significantly if we made
this change.

Figure 7: During the Gordon Bell runs a need to
modify the collective MPI approach was discovered.

In the end it was very close race, Version 2 passed
all of its acceptance test days before the window on
the XT5 opened. However during the runs the refac-
toring paid off in two ways:

• The precision change turned out to be fairly
trivial for Version 2 (an afternoon’s work) and
difficult for Version 1. This change resulted in
1.35 petaflops/s instead of .7 petaflops/s.

• Running on 150k processors versus 50k proces-
sors revealed a weakness in the MPI collective
communication approach that we had previ-
ously taken. The same approach was used by
both versions. However, Version 2 required a
change to only a few lines of code in one inher-
ited method, whereas the same change in Ver-
sion 2 had to be made in various places.

As a result, Version 1 never actually crossed the
finish line in terms of petaflop performance.

Figure 8: The use of generic programming made the
change of precision easy in Version 2. The actual
change from dgemm to sgemm did not require any
code changes. It was performed automatically at
compile time by the C++ template and overloaded
function matching.

5 After the Gordon Bell Runs

After the Gordon Bell runs, Version 2 became the
production code. Gonzalo Alvarez now maintains
this code and jealously guards it against unvalidated
modifications since he (and the other Physicists on
the team) use the code for their work. The author
works on the development versions. Just before the
Gordon Bell runs we switched our version control
system from Subversion(SVN) to Mercurial(Hg) (a
distributed system). As Figure 6 shows, we now use
Hg to manage all of the development and production
branches of the code, periodically merging develop-
ment capabilities back into the production version.

The development branches provide functionality
which:

• Replaces the MpiSplit-based processor topol-
ogy with a multi-dimensional MpiCart topol-
ogy. (See Figure 9) This allows us to construct
multi-dimensional disorder configurations. It
also allows us to add another hierarchical layer
in the parallel processing. This will permit us to
experiment with combining results from many
DCA++ runs each of which has its momentum
structure shifted from the other.

• Provide the capability to exhaustively generate
many combinations of disorder configurations.

• Provide a lightweight Java Script Object Nota-
tion (JSON) parser written in C++ with a few
special features that allow us to handle large
arrays efficiently.

4

Cray User Group 2009 Proceedings

• Replace the Delayed Update Algorithm with a
much faster algorithm.

During all of this development activity low-level
refactoring continues as we learn new ways to make
the code simpler and more succinct.

Figure 9: The development branch of Version 2
has changed from an MpiSplit-based topology to a
Cartesian topology.

We have also been experimenting with the “D”
programming language. The “D” language is sim-
pler than C++, it’s compilers are easier to write
and it has a much cleaner template system. The
very useful meta programming capabilities of C++
were accidental in nature. Because of this they are
unnecessarily awkward. This makes “D”’s template
system very attractive.

So far we have been able to install the GDC com-
piler on smoky.ccs.ornl.gov, construct the equivalent
of mpic++, and write a small test MPI application.
This application links with MPI, BLAS, and LA-
PACK which is all we require of DCA++. The next
step is to write some small benchmark codes and
evaluate them viz. a viz. their C++ equivalent.

Figures 10 and 11 contain summery information
about the current development branch. As the fig-
ures show, the system has a minimum of external
dependencies (requiring only MPI and linear alge-
bra packages) and is almost entirely generic.

As we approach Version 3, we will be reworking
our testing framework. Comparison runs with Ver-
sion 1 are now insufficient since we will be testing
many new capabilities. We will be automating and
extending our unit testing framework. The theoret-
ical side of the team will be identifying new system
level tests. However, as we continue to refactor the
system we find that its clarity makes it easier to ver-
ify through simple audit.

Figure 10: 97% of the DCA++ code is Object Ori-
ented, 89% of it is Generic.

Figure 11: 97% of the DCA++ code is Object Ori-
ented, 89% of it is Generic.

“There are two ways of constructing a software
design: One way is to make it so simple that there
are obviously no deficiencies, and the other way is
to make it so complicated that there are no obvious
deficiencies. The first method is far more difficult. It
demands the same skill, devotion, insight, and even
inspiration as the discovery of the simple physical
laws which underlie the complex phenomena of na-
ture.” [Hoare1980]

6 Summary

Physicists generally understand that working with
complex physical phenomena requires a foundation
in mathematics. Analogously, we have come to un-
derstand that the development of good scientific
code also requires a foundation. This foundation is
a mastery of software technologies like generic pro-
gramming.

5

Cray User Group 2009 Proceedings

The mathematics that a physicist uses to describe
nature makes what he writes clearer to the math-
ematically trained, but at the same time it makes
it more difficult to understand by those who do not
have the requisite training. Similarly, the use of soft-
ware abstraction technologies makes the code easier
to work with for those who have training and harder
to work with for those who don’t.

Our assumption is that in the case of scientific
codes such as DCA++, the use of “SWAT” devel-
opment teams will be the most productive. Clearly
those who learn the mathematics of quantum me-
chanics may also learn the analogous software tech-
nologies.

It has been our experience that it is relatively
easy to develop software that is both high perfor-
mance and well designed. Performance issues do af-
fect the design of the code and the choice of the ab-
stractions used. The developer must be constantly
aware of the performance implications of his design
decisions. Fortunately, compile time technologies
such as generic programming help to improve per-
formance more often than they cause problems.

7 About the Author

Michael Summers
Oak Ridge National Laboratory
S&T Staff
Computer Science and Mathematics Div.
1 Bethal Valley Road, Oak Ridge, TN
(865) 576-4488
x7u@ornl.gov

References

[TSCH09] Thomas C. Schulthess,
schulthess@cscs.ch,
The DCA++ Story.
Advance Scientific Computing,
Advisory Committee Meeting,
Washington DC, March 3-4, 2009.
http://www.er.doe.gov/ASCR/ASCAC/Meetings/Mar09/Schulthess.pdf

[Hoare1980] Charles A. R. Hoare,
1980 Turing Award Lecture;
Communications of the ACM 24 (2),
(February 1981): pp. 75-83.

6

Cray User Group 2009 Proceedings

http://www.er.doe.gov/ASCR/ASCAC/Meetings/Mar09/Schulthess.pdf

	DCA++: The Rest of the Story
	DCA++ Requirements
	Refactoring
	The Race to the Finish
	After the Gordon Bell Runs
	Summary
	About the Author

