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ABSTRACT: The Linear Scaling 3 dimensional fragment (LS3DF) method is an O(N) 
ab initio electronic structure method for large scale nano material simulations. The main 
idea of this approach is divide-and-conquer, and the heart of this method is the novel 
patching scheme that effectively cancels out the artificial boundary effect, which exists in 
all divide-and-conquer schemes. This method has made ab intio simulations of the 
thousands-atom nano systems tractable in terms of simulation time, while pertaining 
essentially the same accuracy as the direct calculation methods. The LS3DF method has 
won the Gordon Bell Prize in SC 2008 for its algorithmic achievement. We have applied 
this method to study the electronic structures and the internal electric filed in the 
asymmetric CdSe/CdS core/shell nano structures, which has potential applications for 
the electronic devices and solar cells. 
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1. Introduction 

Nano structures have wide applications in the 
biological imaging, light emitting diodes, solar cells, and 
other electronic devices. The sizes of the nano structures 
are so small that they have very different electronic and 
optical properties from those of bulk materials, which 
have a strong dependence on the sizes of the nano 
structures (quantum confinement effect). Nevertheless, to 
study the properties of nano structures, one needs do ab 
initio calculations on the systems containing 1,000 to 
100,000 atoms, which are too large for the direct ab intio 
methods to simulate. Despite the increasing availability of 
the computer processors, the direct methods have been 
applied to systems with one or two thousand atoms at 
most [1]. This is because even the simplest ab initio 
methods - the density functional theory (DFT) methods 
under the local density approximation (LDA), are 
computationally expensive, scaling as O(N3), where N is 
the size of the system. In addition, due to the 
communication bottleneck the parallelization of the direct 
LDA methods might have a limit in the order of 10,000 
processors [1]. In reality, the most widely used direct 

LDA code, VASP, is difficult to scale to thousands of 
processors. Therefore, both the computational costs and 
the limit on parallelization call for a change in the direct 
O(N3) algorithm. The O(N) methods are required to 
simulate nano structures. Over the past decade, many 
O(N) methods have been developed [2]. These approaches 
can be classified to three main categories, the local orbital 
methods [3-4], the truncated D-matrix methods [5-6], and 
the divide and conquer methods [7]. While these methods 
have been able to successfully cut down the 
computational cost and have been applied to many larger 
systems, there exist some fundamental technical issues 
that are difficult to overcome. For example, in the 
commonly used local orbital methods, there exist 
extraneous local minima in the total energy functional, 
which make the total energy minimization difficult 
(convergence problem). This is due to constraining the 
wave functions on the local orbital manifold. Special 
methods and algorithms have been devised to overcome 
these problems [4]. Moreover, the overlap between 
neighbouring local orbitals has made these methods 
difficult to scale to the large number of processors. Some 
technical issues in the truncated density matrix methods 
(widely used in quantum chemistry) and the existing 
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divide and conquer methods have been discussed in more 
detail in Ref. [9]. As a summary about the previous O(N) 
methods, on top of some fundamental technical issues, the 
main challenge in these methods is to scale the codes to 
tens of thousands of computer processors while 
preserving the ab intio accuracy.  

Recently we have developed a new O(N) method, the 
linearly scaling 3 dimensional fragment (LS3DF) method 
[8,9]. It is a divide and conquer method. It scales to tens 
of thousands of computer processors, and yields 
essentially the same results as the direct LDA methods.  
The code has been run on Cray XT3/XT4 at National 
Energy Research Scientific Computing Center (NERSC) 
at Lawrence Berkeley National Laboratory, Cray 
XT4/XT5 at National Center for Computational Sciences 
(NCCS) at Oak Ridge National Laboratory, and Blue 
Gene/P at Argonne Leadership Computing Facility 
(ALCF), and has shown the linear speedup upto the 
maximum available numbers of processors on all three 
supercomputers. It has reached 442 TFlops running on 
147,456 processors on the Cray XT5 (Jaguar at NCCS) 
[10]. The largest number of processors on which it has 
been run on is 163,840, and the largest physical system it 
has been applied to contains 36,000 atoms.    

In this paper, we will present the LS3DF method, 
focusing on its parallel performance. Then we will apply 
the LS3DF method to study the electronic structures of 
the asymmetric CdSe/CdS core/shell nanorods, which 
have potential applications in the solar energy 
conversions. We will present the computational details to 
demonstrate how the LS3DF method is used to solve 
interesting physics problems. 
 
 
2. The LS3DF method 
2.1 Formalism 

The LS3DF method is based on the near-sightedness of 
quantum mechanical effects [11]. The total energy of a 
system can be split into the classical electrostatic energy 
and the quantum mechanical energy (kinetic energy and 
exchange correlation energy). The electrostatic interaction 
is long-ranged, therefore the electrostatic energy must be 
calculated by globally solving the Poission equation.  But 
the quantum mechanical effect is short-ranged, therefore 
it can be solved locally, and then the quantum mechanical 
energy for the whole system can be obtained by 
combining the locally calculated quantum energies. In our 
LS3DF method, we divide a large system into small 
pieces (fragments), and independently calculate each 
fragment, then patch them together to obtain the total 
energy and the total charge density for the whole system. 
As all other divide and conquer methods, the artificial 
boundary effect due to the division of the system must be 

dealt with. The heart of the LS3DF method is a novel 
patching scheme that effectively cancels out the artificial 
boundary effect. Figure 1 and 2 illustrate our division and 
patching scheme using a 2D example for simplicity. In 
Figure 1 a periodic super cell is divided into 4x4 pieces. 
At each fragment grid point (i,j),  we introduce 4 
fragments (along right-upper direction) with different 
sizes, 1x1, 2x1, 1x2 and 2x2. And then all fragments at all 
fragment grid point (i,j), (i=1,…,4; j=1,…,4) will be 
calculated independently using a direct LDA method, eg., 
PEtot [12],  a planewave pseudo potential LDA code. 
Then, the fragments will be summed up according to the 
patching scheme illustrated in Figure 2. Where the 1x1 
(red) and 2x2 (blue) fragments are positive fragments, and 
the other two, the 1x2 (yellow) and the 2x1 (green) are 
negative fragments.  

 

Figure 1. A schematic view of the division of a system 
into small fragments. This 2D periodic super cell is 
divided into 4x4 fragment grids. At each fragment 
grid point (i,j), 4 fragments with different sizes are 
introduced. Where the red, green, yellow, and blue 
rectangles represent the fragments of size 1x1, 2x1, 
1x2 and 2x2, respectively.    

(i,j) 
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Figure 2. The schematic view of the fragment patching  
scheme in the LS3DF method for 2D systems. Here the 
yellow (1x2) and the green (2x1) fragments are negative 
fragments, and blue (2x2) and red (1x1) are positive 
fragments. 
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We can demonstrate how the patching scheme 
recovers a system.  Let’s consider the area covered by the 
red square in Figure 1. For convenience, we denote the 
fragment 1x1 introduced at the fragment grid point (i,j) as 
F11(i,j). By counting how many positive and negative 
fragments cover this area, one can easily see whether this 
area is described properly after all the fragments are 
added up.  This area is covered by 5 positive fragments, 
they are F11(i,j), F22(i-1,j-1), F22(i,j-1), F22(i,j) and F22(i-
1,j). And this area is also covered by four negative 
fragments, which are F21(i,j), F21(i-1,j), F12(i,j) and F12(i,j-
1). When these fragments are summed up using the 
patching scheme in Figure 2, the red square area will be 
covered only once after 4 positive and 4 negative 
fragments cancel out in pairs. We can also show the 
artificial boundary will be removed in this patching 
scheme. Let’s consider the left boundary of the red square 
(edge AB).  We can define a direction (outward) for this 
boundary as shown with a left arrow in Figure 1.  We can 
count how many fragments go through this boundary. 
There are three positive fragments, F11(i,j), F22(i,j), and 
F22(i,j-1) and three negative fragments, F12(i,j), F12(i,j-1), 
and F21(i,j). When these six fragments are summed up, the 
edges from the three negative fragments will cancel out 
the edges from the other three positive fragments. As a 
result the edge (AB, outward) will disappear after the 
fragment summation.  Similarly we can see the artificial 
corners (eg., the corner BAC, outward direction) will 
cancel out. There are two positive fragments, F22(i,j) and 
F11(i,j), and two negative fragments, F12(i,j) and F21(i,j). 
Summing up these four fragments will make the corner 
BAC disappear.  

The patching scheme for 2D systems can be 
generalized to 3D systems straightforwardly. In 3D cases, 
at each fragment grid point (i,j,k), eight fragments with 
different sizes will be introduced, they are 1x1x1, 1x1x2, 
1x2x1, 2x1x1, 1x2x2, 2x2x1,2x1x2, and 2x2x2. Among 
them, 2x2x2, 2x1x1, 1x2x1 and 1x1x2 are positive 
fragments and 2x2x1, 2x1x2, 1x2x2, and 1x1x1 are 
negative fragments. And the patching scheme can be 
expressed in the following form, 

 
 
 
 
 
                                

The presumption of this boundary effect cancellation is 
that the charge densities of the different fragments at a 
given boundary will be very similar near that boundary. 
And our tests have shown that this presumption always 
holds as long as the smallest fragment (1x1x1) is not too 

small. For more details about the LS3DF method, see Ref. 
[8,9]. 

Figure 3 shows the flow chart of the LS3DF method. 
In the LS3DF method, the equation to solve is the 
fragment Khon-Sham equation (as shown in the red box 
in Figure 3).  This can be derived variationally by 
minimizing the total energy of the whole system with 
respect to the fragment wavefunctions 

! 

"
i

F
(r) . This 

equation is similar to the Kohn-Sham equation in direct 
LDA methods (LS3DF differs from the direct LDA by 

only one extra surface passivation potential). But the 
direct methods solve for the whole system, while the 
LS3DF method solves for many small systems. As in 
other direct methods, the equation is solved 
selfconsistently (SCF) for the whole system.  For a given 
input total potential 

! 

V
tot

in
(r) , the dividing subroutine in 

the LS3DF code, Gen_VF, calculates the fragment 
potential 

! 

V
F
(r)  for each fragment. Then the main kernel 

routine, PEtot_F calculates the wavefunctions for each 
fragment independently, using one of the iterative eigen 

Figure 3. The flowchart of the LS3DF method. The red 
box shows the Khon-Sham equation for fragments. It is the 
most time consuming part in the LS3DF code.  

GENPOT: 

Total =

! 

{F 222 + F 211+ F121+ F112
i, j ,k

"                  

                              

! 

"F 221" F 212 " F122 " F111} 



 
 

CUG 2009 Proceedings 4 of 12 
 

value solvers (eg., conjugate gradient). Then the patching 
subroutine, Gen_dens, sums up the fragment charge 
densities to obtain the total charge density of the whole 
system. From the total charge density, the output total 
potential 

! 

V
tot

out  can be calculated by solving the Poisson 
equation for the whole system using the subroutine, 
GENPOT.  This output total potential 

! 

V
tot

out  will be the 
input total potential for the next iteration (in practice, to 
stabilize the convergence, the 

! 

V
tot

out  is usually mixed with 
the input total potentials from the previous iterations 
before used by the next iteration). These steps will be 
repeated, until the difference between the output and input 
total potential is smaller than a predetermined stoping 
criterion. 

  
 

Figure 4 shows the schematic of the LS3DF 
calculations. First a large system is divided into many 
small fragments, and these fragments are sorted into the 
Ng number of groups. The total number of processors    is 
also divided into the same number of processor groups Ng 
with the Np number of processors within each group. 
Then each processor group carries out the calculations for 
one group of fragments one after another fragments 
without communication with other processor groups. The 
ideal parallel scaling of the LS3DF method comes from 
the minimum communication needed in this  most time 
consuming part. 

 

2.2 Parallel performance and scalability 
 

We have done systematic performance tests for the 
LS3DF method. We have chosen ZnTe1-xOx (x=3%) 
alloy super cells with different sizes to perform the strong 
and weak scaling tests. We carried out these performance 
tests on Cray XT3 (Franklin, dual core) at NERSC. Figure 
5 and 6 show the strong scaling results, where Figure 7 

shows the weak scaling tests.  In these tests, the time and 
flops were measured for the second SCF iteration step to 
avoid possible overhead at the first step. The flops were 
measured using the profiling tool Craypat 4.1. These 
results have been reported in Ref. [13].  In Figure 5, the 
times spent in the four main component subroutines in the 
LS3DF method are reported. The most time consuming 
part, PEtot_F scales well to the number of processors, but 
the other components corresponding the division 
(Gen_VF), patching (Gen_dens), and solving the Poisson 
equation (GENPOT), don’t scale. But these parts account 
for small percentage of the total time (~2%), therefore the 
overall parallel scaling of the LS3DF (the solid blue line 
in Figure 6) is almost linear upto more than 17,000 
processor cores we tested. Figure 7 shows the efficiency 
of the code, the sustained performance is around 40% of 

  

               
   

 
 

     
 

 
     

 
 
 

 
 

 
    

Figure 4. The schematic of the LS3DF calculations.  

Figure 5. The strong scaling speedups of the four 
main subroutines in the LS3DF code. The 
physical system used was ZnTe1-xOx alloy (x=3%) 
with 3,456 atoms. The fragment grid size was 
8x6x9. These tests are carried out on Cray XT3 
(Franklin, dual core) at NERSC.  
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the peak performance of the Franklin. 
 
 
We ran our code (with an improved version) on Cray XT4 
(Franklin, quad core) at NERSC, Cray XT5 (Jaguar) at 
NCCS, and Blue Gene/P (Intrepid) at ALCF.  The Figure 
8 shows the weak scaling results. The LS3DF code has 

shown a linear scaling up to the maximum available 

processors cores on all three supercomputers. It has 
reached 135 Tflops on 36,864 processors on Cray XT4 
(Franklin, quad core) at NERSC at 40% efficiency; 224 
Tflops on 163,840 processors on the Blue Gene/P 
(Intrepid) at ALCF at 40% efficiency; 442 Tflops on 
147,456 processors on Cray XT5 (Jaguar) at NCCS at 

33% efficiency [10]. In our tests, floating point operations 
were measured in the double precision.  
 
 
 
2.3 Convergence, prefactor and accuracy 
 
As briefly mentioned in the introduction, a common issue 
in the O(N) method is the SCF convergence problem. 
Figure 9 shows the convergence rate of the LS3DF 
method, measured by the total energy. To compare with 
the direct methods, we have chosen a small Si quantum 
dot with 339 atoms. Compared to the direct methods, 
there is a slight slowdown with the total energy 
convergence in the LS3DF method, but there is no 
convergence problem, and the convergence rate is 
comparable to the direct methods within 10-6 a.u of energy 
error (the common stopping criteria for SCF iterations). 
Figure 10 shows the convergence of the LS3DF method, 
measured by the total potential. For a system with 3456 
atoms , within 60 SCF iterations, the difference between 
the input and output total potentials was reduced to 10-2  

a.u.  

Figure 8. Weak scaling floating point operation rates on 
different machines. The systems used were ZnTe1-xOx 
alloy (x=8%) with various number of atoms.  

Figure 7. The computational efficiency of the 
LS3DF method. The systems used were ZnTe1-xOx 
alloy (x=3%) with various number of atoms. These 
are weak scaling tests, and carried out on Cray XT3 
(Franklin, dual core).  

Figure 6. The strong scaling speedups for the 
LS3DF (blue) and the main routine PEtot_F (red). 
The dashed line (cyan) is the linear speedup 
modelled based on Amdah’s law. They are the same 
results as in Figure 5. 
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As seen from the LS3DF patching scheme, one area 
of the system covered by many different fragments. We 
have evaluated the prefactor of this method. Figure 11 
shows the comparison of the flops needed for the second 
SCF iteration between the LS3DF method and the direct 
method (PEtot code). The crossover is at around 550 
atoms, this means when the system contains more than 
550 atoms, the LS3DF outperforms the direct LDA 
method. For nano structures with 10,000 atoms, the 
LS3DF can be faster by 3 orders of magnitude, provided 
the direct LDA methods can scale up to thousands of 
processors as the LS3DF method. 

 
The accuracy of the LS3DF method depends on the 

size of the smallest fragment (1x1x1 fragment). Usually it 
is typical to choose 8 atom unit cell as its 1x1x1 fragment.  
We have evaluated the errors of the total energy, charge 
density and the dipole moment using Si quantum dots and 
CdSe quantum rods with a few hundred atoms (so to 
make the direct calculations possible), and have shown 
that the error is well under the common stopping criteria 
in the direct methods [9]. Thus the LS3DF method 
generates essentially the same results as the direct 
methods, provided the smallest fragment size (1x1x1) is 
not too small.  In addition, the error of the LS3DF method 
does not grow with the whole system size, it depends only 
on the fragment size. 

 

2.4 Summary about LS3DF method 
 

The LS3DF method scales linearly to over 160,000 
processors. It reached 442 Tflops. It runs on different 
platforms with little retuning. The numerical results are 
the same as a direct DFT based on an O(N3) algorithm, 
but at only O(N) computational cost. The LS3DF method 
can be used to compute electronic structures for  >10,000 
atom systems with total energy and atomic forces within a 
couple   hours. It can be thousand times faster than the 
direct LDA calculations. 

Figure 9. The comparison of the SCF convergence rate 
measured by the total energy between the LS3DF method 
(blue) and the direct method (PEtot code).  

Figure 11. The floating point operations needed for 
one step SCF iteration in the LS3DF and the direct 
method (standalone PEtot). The systems used were 
various size Si quantum dots, and a typical 1 a 
fragment size (a is lattice constant of Si crystal) was 
used for the LS3DF calculations. The flops counts 
were measured on IBM-SP power 3 machine 
(seabrog) at NERSC, using the profiling tool IPM.   

Figure 10. The convergence of the LS3DF method, 
measured by the total potential (in a.u). 
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3.  Electronic structure calculations for 
asymmetric CdSe/CdS core/shell nanorods 

 
3.1 Introduction 
 

With the advance of the synthetic methods, more and 
more different shapes of nano structures have been 
synthesized in the labs. Recently Carbone and his 
colleagues have synthesized asymmetric core/shell 
structures, using newly developed seed growth method 
[14]. Their synthesized asymmetric CdSe/CdS core/shell 
nanorods are illustrated in Figure 12. In the asymmetric 
core/shell nanorods, a CdSe core (the cyan circle covered 
area in Figure 12) is embedded in one end of the 
cylindrical CdS shells.  

 

 
By changing the sizes of the core and the shell (both the 
diameter and length), one can manipulate the electronic 
structures inside the nanorods. Hence these nano 
structures appear to be particularly interesting to solar cell 
applications. In addition, these asymmetric core/shell 
structures provide a system on which one can study the 
quantum confinement effect, the band alignment, the 
strain (due to the mismatch between the lattice constants 
of the core/shell semi-conductor materials), and the 
surface effect. Recently, Luo and Wang have studied the 
electronic structures of the asymmetric CdSe/CdS 
core/shell nanorods, using the charge patching method 
[15], and have predicted the interesting electron and hole 
localizations [16]. The charge patching method is a non-
self consistent method. It constructs the charge density of 
a large system by carrying out the ab initio LDA 
calculations on a few bulk systems and small surface 

systems. This method has been used to study many nano 
structures successfully in the past [17-19]. Nevertheless, 
since the charge density is obtained non-self consistently, 
this method might not be sufficient in some cases, e.g., for 
systems with total  dipole moment, or internal electric 
field.  On the other hand, the LS3DF method is perfect in 
calculating these problems with its selfconsistent charge 
densities and potentials.  

 
In our present work, we have applied the LS3DF 

method to the same four CdSe/CdS core/shell nanorods as 
in Ref. [16]. We have studied the electronic structures of 
these nanorods, focusing on how the CdSe core and the 
surface affect the electronic structures inside the system.   
 

3.2 Computational details 
 

We have applied the LS3DF method to four CdS 
nanorods with/without the CdSe core and with/without 
surface S atoms. They are CdSe/CdS core/shell nanorods 
with Cd and Cd+S terminated surfaces, respectively; and 
the pure CdS nanorods with Cd and Cd+S terminated 
surfaces, respectively. Where the Cd and Cd+S 
terminated surfaces are two surface passivation models.  
In the Cd terminated surface, there are only Cd atoms and 
pseudo hydrogen atoms (with fractional nuclei charges 
and the number of electrons) which passivate the surface 
dangling bonds; while in the Cd+S terminated surface, 
there are both Cd and S atoms on the surface, in addition 
to the pseudo hydrogen atoms. These nanorods are all 
constructed as an ideal wurzite structure, and then relaxed 
using the valence force field method (VFF) [20]. These 
nanorods are 8.4 nm long and  2.4 nm in diameter, and 
have a 2.1 nm of the core diameter when the  core exists. 
There are 3063 atoms in the Cd terminated nanorods, and 
2298 atoms in the Cd+S terminated ones.    

Figure 13 shows how a CdSe/CdS core/shell nanord 
was divided into small fragments (using the CdSe/CdS 
core/shell nanorod with the Cd terminated surface as an 
example). Where (a) is the (orthogonal) side view of the 
nanorod, and (b) is a cross section which passes the core 
area. The solid red lines in (a) and (b) represent the real 
space numerical grid box that contains the nanorod, and 
the green arrows represent the directions of c-axis and 
two primitive lattice vectors, a and b. The dashed cyan 
circle covers the core region. As shown with the dotted 
red lines, the nanorod was cut into a 24x5x5 fragment 
grid, along the direction of c-axis and the two primitive 
lattice vectors, a and b. And the size of the 1x1x1 
fragment is (1/2c)x(2a)x(2b), where a=b=4.288A, 
c=7.002A. And the number of atoms in a 1x1x1 fragment 
ranges from 3 to 72. The maximum number of atoms in a 

Figure 12. An asymmetric CdSe/CdS core/shell 
nanorod. A spherical CdSe core (Se:blue) embedded 
in a CdS cylindrical shell (Cd:magenta; S:yellow). 
The cyan dashed circle shows the CdSe core area. 
White dots are pseudo H atoms.  The diameters of the 
cylinder and the core are 2.8 nm and 2.1 nm, 
respectively. The length of the nanorod is 8.4 nm. 
There are 3063 atoms in this nanorod. It is constructed 
as a wurzite structure. 
 

Cd1113Se84S750H1116 
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2x2x2 fragment is 257 (including about 150 surface 
passivation pseudohydrogen atoms) 
 

We used 48, 24, and 24 numerical grid points (in real 
space) in one unit length of the c-axis and the other two 
primitive lattice vectors to describe the wave functions 
and charge densities. A cut off energy of 35 Ry was used 
for all fragment calculations.  The surface passivation 
potential was generated by an initial selfconsistent 
calculations for each fragment. The total of 60 SCF 
iterations have been carried out in all four nanorods 
calculations. The total computation time was ~ 3 hours for 
each nanorod.  

Figure 14 and 15 show the SCF convergence rates of 
the total energy and the total potential in two core/shell 
nanorods calculations, respectively. Within 60 SCF 
iterations, the total energy was reduced to < 10-5 a.u., and 

the total potential error was reduced to ~10-3 a.u. We have 

seen the similar convergence rate in the other two pure 
CdS nanorods calculations as well (not shown in the 
figure). 

 
The direct outputs from the LS3DF code are the total 

potential (or the charge density) and the total energy. To 
calculate the band edge states, the valence band maximum 
(VBM, or hole) and the conduction band minimum 

Figure 14. The convergence of the LS3DF method, 
measured by the total energy for the CdSe/CdS 
core/shell nanorods with two different surface 
passivations Cd terminated (magenta) and Cd+S 
(blue) terminated.   
  

Figure 15. The convergence of the SCF iterations, 
measured by the total potential for the CdSe/CdS 
core/shell nanorods with two different surface 
passivations Cd terminated (magenta) and Cd+S 
(blue) terminated.   

Figure 13.  This figure shows how we divide the 
CdSe/CdS nanorod into small fragments. Where (a) is 
the (orthogonal) side view of the nanorod, and (b) is a 
cross section which passes the core area.  As shown 
in the dotted red lines, the nanorod is cut into a 
24x5x5 fragment grid. The solid red lines in (a) and 
(b) represent the real space numerical grid box that 
contains the nanorod, and the green arrows represent 
the directions of the c-axis and two primitive lattice 
vectors, a and b of this wurzite structure. The dashed 
cyan circle covers the core region. The color of each 
atom is the same as in Figure 12.   

(b) 

(a) 

c-axis 

b 

a 

  

Cd1113Se84S750H1116 
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(CBM, or electron) states, the folded spectrum method  
(escan code) [20] needs to be applied, using the total 
potential obtained from the LS3DF calculation as the 
input.  The folded spectrum method allows one to 
calculate the electron wavefunctions in the small energy 
window of interest within an O(N) computational cost. 
The band-corrected pseudo potential [18] was used, and 
the same cut off energy (35 Ry) and the real space 
numerical grids were used as in the LS3DF calculations.  
 

3.3 Results and discussion 
 
Table 1 shows the band gaps of the four nanorods. 

We can see how the band gap changes with different 
surfaces (rows 2, and 3) and with the introduction of the 
CdSe core in the CdS nanorods (columns 2, and 3). Table 
1 shows that the band gap change due to the different 
surface passivations (~0.06eV) is smaller than that due to 
the introduction of the CdSe core (~0.15eV) inside the 
CdS nanorods. Figure 17 illustrates the VBM and CBM 
energy level changes when the CdSe core and the 
different surface passivation models are introduced. The 
band gap difference between the CdS nanorods 
with/without the CdSe core is mainly from the VBM shift, 
the CBM change is negligible. The different surface 
passivations make the CBM and VBM shift together. 

 
Table 2 shows the calculated dipole moments for the 

four nanorods. None zero dipole moments inside the  
 

nanorods indicate that there exist the internal electric filed 
inside these nanorods. The dipole moment change due to 
the different surface passivations is significant in the pure 
CdS rods (row 2). As one can see from the table, the 
dipole moment along the c-axis, dz (the other two 
components, dx and dy, are small) has different signs in 
the two different surface passivation models. This  

indicates that one can change the direction of the internal 
electric field inside the pure CdS nanorods by 
manipulating its surface. But in the CdSe/CdS core/shell 
nanorods, the effect from the surface is not as significant 
as in the pure CdS nanorods (row 3).  

 
 

 
Figure 18 shows the isosurface of the wave function 

square (charge density) of the VBM (hole) and the CBM 
(electron) states for the four nanorods. In the both surface 
passivation models, the electron (CBM) and hole (VBM) 
states of the CdSe/CdS core/shell nanorods are separated. 
The electron states are localized in the center of the rods.  

 

Table 1. The band gaps of the four CdS nanorods 
with/without the CdSe core, and with the Cd 
terminated/Cd+S terminated surfaces. The 4-th 
column and the 4-th row show the band gap 
differences of the columns 3 and 2 (column3 –
column2) and of the row 3 and 2 (row3 –row2), 
respectively.   

 

Table 2. The calculated dipole moments (dx,dy,dz) of 
the four CdS nanorods, where the z axis aligns with 
the c-axis, and the dz is in bold blue. The 4-th column 
and the 4-th row show the component-wise 
differences of the columns 3 and 2 (column 3 –column 
2) and of the row 3 and 2 (row 3 –row2), respectively.   
 
 

 

   

 
Figure 17. The illustration of the VBM and CBM 
energy level changes when the CdSe core are 
introduced in the CdS nanorods and two different 
surface passivation models are used. Where the red, 
and black are for the CdS and CdSe/CdS coreshell 
nanorods with the Cd terminated surfaces, 
respectively, while the blue and magenta are for the 
CdS and CdSe/CdS core/shell naorods with Cd+S 
terminated surfaces, respectively. 

VBM 

CBM 

CBM 

VBM 



 
 

CUG 2009 Proceedings 10 of 12 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
The hole (VBM) states are localized in core area. The 
surface significantly changes the hole state localization in 
the pure CdS nanorods. In the Cd terminated pure CdS 
nanorod, the hole state (red) is localized at the right end of 
the rod, while in Cd+S terminated surface model, the hole 
state is localized in the left end of the rod. The CdSe core 
inside the asymmetric core/shell nanorods seems to play a 
dominant role to control the spatial location of the hole 
localization. This could be a useful feature for the 
electronic device design, since we can control where to 
localize the hole while we don’t have an exact knowledge 
about the surface passivation in reality.  
 

3.4 Summary about CdSe/CdS core/shell calculations   
 

We have applied the LS3DF method to the asymmetric 
CdSe/CdS core/shell nanorods with different surfaces, 
and also to their counterparts, the pure CdS nanorods to 
study how the core and the surfaces affect the electronic 
structures in these nanorods. We have calculated the 
dipole moments of these nanorods, and have calculated 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 

 
the VBM (hole) and CBM (electron) states and the band 
gaps, utilizing the folded spectrum method. We have 
observed that the hole states are localized in the CdSe 
core area, and the electron states are localized in the 
center area of the nanorods for both the surface 
passivation models (Cd terminated and Cd+S terminated).  
The introduction of the CdSe core in the CdS nanorods, 
makes the band gaps decrease by  0.15 eV and this change 
was mainly due to the VBM shifts (up). We also observed 
that the surfaces have significant effects to the hole state 
localizations and dipole moments in the pure CdS 
nanorods. But with the presence of the CdSe core in the 
nanorod, the effect of the surfaces seems to be 
suppressed. We have seen that the core plays a dominant 
role in determining the spatial locations of the hole 
localization, and also the direction of the internal electric 
filed inside the asymmetric core/shell nanorods.  

We would like to point out that our study is a 
preliminary result for a given nanorod size. Since the 
electronic structure strongly depends on their sizes, more 
systematic study on the core/shell nanorods with different 
sizes (core/shell diameters, and the length of nanorods), 

Figure 18. Isosurface of the wave function square of the conduction band minimum (CBM, green) and the 
valance band maximum (VBM, red) states of the four CdS nanorods with/without CdSe core. Where (a) and 
(b)  are for the CdSe/CdS core/shell nanorods with the Cd terminated and the Cd+S terminated surfaces, 
respectively, while (c) and (d) are for the pure CdS nanorods with the Cd terminated and the Cd+S 
terminated surfaces, respectively. The isovalue larger than 0.001 e/bhor3 was shown for both VBM and 
CBM 
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especially at more reality relevant sizes, is needed to 
conclude how the core and surface affect the electronic 
structures inside these nanorods. In this study, we 
calculated the nanorods with the same sizes as in Ref. 
[16], which is ~2 times smaller than the smallest 
core/shell naorods synthezied in the labs.  
 

Conclusion 
 
We have presented the LS3DF method for ab initio 

electronic structure calculations. We have described how 
the method works without going into the implementation 
details, and have presented the parallel and algorithmic 
scalings, and have summarized the accuracy and the SCF 
convergence rate. We have demonstrated how this method 
can be used to study the electronic structures of large 
nano systems. As a summary, the LS3DF method is an 
O(N) ab initio electronic structure code ; it scales linearly 
to hundreds of thousands of computer processors; it yields 
essentially the same results as the direct LDA methods; it 
can solve a nano system with thousands of atoms 
selfconsistently in a couple of hours. 

Since the code is newly developed, there are still 
many features need to be implemented to make it more 
stable and with more functionalities.. Nevertheless, as it is 
now, it can be applied to study the electronic structures of 
large systems containing tens of thousands of atoms. We 
expect it will find wide applications Nanostructure 
calculations.  
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