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ABSTRACT: In this paper, we describe how to write efficient, parallel codes for the Cray XMTTM

system, a massively multithreaded shared memory computer. To achieve good performance on Cray
XMT systems, programs must exploit not only coarse-grained parallelism at the algorithmic level, but
also fine-grained parallelism at the loop level. While the Cray XMT compiler is capable of performing
the loop-level optimizations required to expose fine-grained parallelism, it can often do a better job when
additional information is provided by the programmer via pragmas and language constructs. These
“hints” enable the compiler to perform sophisticated transformations that ultimately result in highly
parallel codes. The Canal tool, part of the Cray Apprentice2TM performance tool suite, can be used to
guide the programmer through the process of tuning a program. When properly optimized, programs
written for Cray XMT systems can achieve significant speed up on problems that have never been shown
to attain speed up on conventional multiprocessor systems.
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1 Introduction

The Cray XMTTM system is a massively multi-
threaded shared memory system purpose-built for
parallel applications that require a large shared ad-
dress space. Examples of such applications include
graph analysis, database queries, and other problems
where partitioning the data precludes any potential
gain from adding more processors. Such applica-
tions do not typically run well on conventional dis-
tributed memory systems due to the irregular nature
of memory access patterns. The Cray XMT archi-
tecture enables many threads to be running concur-
rently (up to 128 per processor) so that the memory
accesses from individual threads can be overlapped
with those of other threads, effectively hiding some
or all of the actual memory latency.

Programs that exploit both coarse- and fine-
grained parallelism are able to take advantage of this
latency hiding capability and perform well on Cray
XMT systems. Such programs draw on parallelism
at the algorithmic level as well as at the loop and
instruction level.

Programmers are typically better at identifying
high-level parallelism at the algorithmic level. Such
parallelism requires an insider’s understanding of the

problem space and objectives. In contrast, compilers
are typically better at performing lower level opti-
mizations such as loop parallelization. Often this re-
quires the compiler to perform other transformations
such as loop collapse and scalar expansion. Unfortu-
nately, for languages such as C that were not orig-
inal intended to be parallel, compilers have a diffi-
cult time making the conclusions required to perform
such transformations and parallelize programmer-
written loops. At the same time, programmers have
a difficult time understanding what exactly the com-
piler needs to know in order to best optimize a loop.
Both sides must work together to create an opti-
mized program that runs well on the hardware.

In this paper, we describe how to write efficient
programs for the Cray XMT system. The Cray
XMT compiler is capable of performing sophisti-
cated transformations that ultimately enable par-
allelization of complicated hand-written loops, pro-
viding certain conditions are guaranteed. Using the
Canal tool, part of the Cray Apprentice2TM tool
suite, users can determine why loops were not par-
allelized and then use pragmas and other language
constructs to guide the compiler to do the necessary
transformations to enable parallelization.
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The remainder of this paper is organized as fol-
lows. In Section 2, we give an overview of the
Cray XMT architecture and the programming en-
vironment, including the Canal tool. In Section 3,
we detail specific examples of how the Cray XMT
compiler identifies parallelism in user codes, and in
Section 4 we describe how that parallelism is im-
plemented. Finally, in Section 5 we walk through
an example to illustrate how a programmer can use
Canal to determine changes that enable the com-
piler to generate highly efficient code.

2 Overview of the Cray XMT
System

A Cray XMT system is a distributed, global shared
memory machine built to leverage Cray’s MPP sys-
tem design. A Cray XMT system includes a com-
pute partition comprised of Cray ThreadstormTM

processors and a service partition comprised of AMD
OpteronTM processors, which can be configured for
I/O, login, or system functions. The network topol-
ogy is a 3-D torus, as in the Cray MPP systems.
Both partitions are made up of blades of four pro-
cessors each; the processors on a blade are all of one
type, either Cray Threadstorm processors or AMD
Opteron processors. The compute partition runs
the Cray MTKTM operating system, a single system
image operating system based on BSD; the proces-
sors on the service partition utilize the Cray Linux
EnvironmentTM (CLE).

A single Cray Threadstorm processor has 128
hardware contexts (or streams) and a 64 KB, 4-
way associative instruction cache shared by all the
streams. Each stream consists of 32 general purpose
registers, eight target registers, and a status word
that includes the PC. The processor will issue an
instruction on every cycle in a round-robin fashion
amongst the streams that are ready to execute an in-
struction; if no stream is ready to execute an instruc-
tion, the processor stalls. Up to three operations can
be encoded in a single instruction word: one memory
operation, one arithmetic operation, and one control
flow operation.

The memory system is a global shared memory
address space accessible by all Cray Threadstorm
processors in the compute partition. Each processor
can have up to 8GB of memory associated with it,
all of which is accessible by every other processor

in the system. Each 8-byte word of memory has 2
additional bits associated with it. One of the bits is
called a full-empty bit, used to associate state with
the word. A memory location state is considered
full if the bit is set to one, empty if set to zero. The
other bit is used by the runtime libraries to service
and implement user traps (some of which are asso-
ciated with the full-empty bit).

For more details on the XMT architecture, see
Feo, et al. [2].

2.1 The Cray XMT Programming
Environment and Tools

The Cray XMT Programming Environment includes
a C and C++ compiler, a standard runtime li-
brary that includes support for multithreaded ex-
ecution, a multithreaded debugger (mdb), the Cray
Apprentice2TM tool kit, as well as several auxiliary
libraries such as a parallel random number generator
(libprand), RPC library (libluc), and memory snap-
shot/restore facilities (libsnapshot). For the pur-
poses of this paper, we will focus on the compiler
and the Canal report of the Cray Apprentice2 suite.

The Cray XMT compiler supports C and C++
codes with extensions for parallelization and multi-
threaded execution. These XMT extensions include
language extensions and compiler directives. In ad-
dition, the compiler can detect loop-level parallelism
for multithreaded execution.

2.1.1 Language extensions

The Cray XMT compiler recognizes two type quali-
fiers, sync and future, that are used to indicate that
the full-empty bits should be utilized whenever ac-
cessing the variable. Specifically, for sync qualified
variables, a use (load) of the variable can only pro-
ceed if the variable’s state is full; upon completion
of the load, its state is set to empty. An assignment
(store) to a sync variable can only proceed if the vari-
able’s state is empty; upon completion of the store,
its state is set to full. Loads and stores that are is-
sued when the variable is not in the required state
will block until the variable’s state changes. State
changes occur atomically along with the operation.

Future variables are similar to sync variables, ex-
cept that a load will only proceed if the state is full
(and leaves the state full) and a store will also only
proceed if the state is full (and leaves the state full).
Future variables are typically used in future state-
ments. Future statements define a block of work
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(referred to as a future) that is to be executed by
some thread. A future variable can be associated
with a future statement to guarantee that the future
has been executed. Upon completion of the future,
the future variable associated with the future state-
ment is set to full. Any uses of the future variable
will block until the future has been executed. Fu-
ture statements describe what we refer to as explicit
parallelism, because the parallelism is made explicit
by the programmer.

2.1.2 Loop-level parallelism and Canal

In addition to future statements, the Cray XMT
compiler supports implicit parallelism in the form of
compiler-generated loop-level parallelism, the focus
of this paper. If the compiler can determine that a
loop can be safely executed in parallel, it will gener-
ate loop parallelism by distributing the iterations of
a loop across multiple software threads. The runtime
library assigns these threads to hardware streams,
which then execute them in parallel. The compiler
also inserts calls to create (fork) and terminate (join)
threads.

The results of loop parallelization and other
transformations can be seen in Canal. The Canal
report has two parts—an annotated view of the com-
piled source code, and a report containing addi-
tional information about loops in the code. The
annotated source view contains annotations for
each loop in a user’s code, as well as a selec-
tion of messages about the transformations that
were applied to the code. For example, the fol-
lowing snippet tells us that two nested loops were
parallelized, and that reduction and manhattan
loop collapse (indicated by the m) were used (Sec-
tion 3.2 discusses these transformations in detail):

| for (int i=0; i<sz; i++) {
| int begin = index[i];
| int end = index[i+1];
| for (int j=begin; j<end; j++)

7 PP:m$ | m[i]+=int_fetch_add(&a[j],1);
** reduction moved out of 1 loop

| }

The other piece of the Canal report is the additional
loop information section. This section contains de-
tails about loops, such as scheduling information and
instruction counts. An example is shown in Figure 1.

Throughout the remainder of this paper, as we
describe various optimizations, transformations, and

conditions for parallelization, we will show how they
can be viewed in the Canal report.

3 Identifying parallelism

The Cray XMT compiler attempts to parallelize user
codes whenever it deems it safe and potentially prof-
itable. Automatic dependence analysis is used to
identify loops whose iterations are independent and
can thus be executed concurrently. Users can insert
pragmas to aid dependence analysis in the presence
of aliasing. Loop transformations are also automat-
ically applied to remove unnecessary dependencies.

In this section, we describe how the compiler
identifies loops that are safe to parallelize. We start
by discussing the conditions the compiler looks for
to establish whether it is safe to parallelize a loop.
We then discuss the transformations that the com-
piler uses to remove unnecessary dependencies, and
finally talk about how user inserted pragmas can as-
sist the compiler with this process.

3.1 Conditions for safe parallelization

Fundamentally, the Cray XMT compiler has two
requirements in order to safely parallelize a loop.
First, it must be able to prove that the loop’s itera-
tions can be safely executed in parallel. Second, the
compiler must be able to figure out how to sched-
ule the iterations prior to entering the loop. These
requirements result in four conditions that the com-
piler looks for to determine whether a loop can be
parallelized:

1. The number of loop iterations can be deter-
mined prior to the execution of the loop.

2. The loop does not contain any early exits, such
as return or break statements.

3. There are no data dependencies between iter-
ations of the loop.

4. The loop does not cause any observable side
effects, such as I/O.

Condition 1 relates to the requirement that the
compiler be able to figure out how to schedule the
loop’s iterations. Unless the compiler knows how
many iterations will execute, it cannot schedule
them—otherwise, it may schedule iteration N + 1
of a loop that should only iterate N times. For
example, the compiler will not parallelize the loop:
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Parallel region 37 in main
Multiple processor implementation
Requesting at least 60 streams

Loop 38 in main at line 107 in region 37
Stage 1 of recurrence
Loop summary: 1 memory operations, 0 floating point operations

2 instructions, needs 45 streams for full utilization
pipelined

Loop 39 in main at line 107 in region 37
Stage 2 of recurrence
Loop summary: 4 memory operations, 0 floating point operations

4 instructions, needs 45 streams for full utilization
pipelined

Figure 1: An example of the additional loop information presented in the Canal report. Here we see loops
38 and 39 are two stages of a recurrence computation (see Section 3.2.3), and are both part of parallel region
37 (see Section 4.1). We also see information about instruction counts and requested streams.

for(int i=0; i < num_its; i++) {
foo[i] = 2 * i;
num_its -= bar[i];

}

because the line which decrements num its
changes the loop upper bound during the loop’s
execution, making it impossible to determine
the number of iterations prior to entering the
loop. We can see this in the Canal report:

1 X | for(int i=0; i < num_its; i++) {
1 X | foo[i] = 2 * i;
1 X | num_its -= bar[i];

| }

The X annotation indicates that the loop was not
parallelized due to structural problems—in this case,
an inability to compute the number of iterations.

Condition 2 also relates to the scheduling require-
ment. An early exit from the loop bypasses itera-
tions that would otherwise have executed according
to the compiler’s calculation of the iteration count.
For example, the compiler can parallelize the loop

for (int i = 0; i < n; i++)
my_array[i] = sqrt(i);

because it knows that it will iterate n times. How-
ever, the compiler can not parallelize this loop:

for (int i = 0; i < n; i++) {
my_array[i] = sqrt(i);
if (rare()) break;

}

If rare() is true for an iteration, the later iter-
ations should not execute. If the loop is paral-
lelized, though, some of these iterations may exe-
cute prior to or in parallel with the iteration where
rare() is true. The Canal report for this loop shows
us that multiple exits prevented parallelization:

1 X | for (int i = 0; i < n; i++) {
** loop exit
** multiple exits

1 X | my_array[i] = sqrt(i);
1 X | if (rare()) break;

| }

Condition 3 means that the results of one iter-
ation of the loop will not affect any of the other
iterations. If this were not true, the reordering and
interleaving of iterations that occurs when a loop is
parallelized could result in incorrect behavior. For
example, consider the loop in the following routine:

void foo(int *a, int *b, int n) {
for (int i = 0; i < n; i++)
a[i] = b[i];

}
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If we call this routine with parameters a and b point-
ing to overlapping memory we will create a data
dependence between iterations. Consider the call:

foo(&bar[0], &bar[1], 100);

In this call to foo(), the i=1 iteration of the loop
will write to the memory location bar[1], which is
also read by the i=0 iteration. If this loop is not
parallelized, the i=0 iteration will complete before
the i=1 iteration begins and the memory at bar[0]
will get set to the original value of bar[1]. If, how-
ever, this loop were parallelized, the i=1 iteration
might occur before the i=0 iteration. The memory
at bar[0] would then end up with whatever value
was written to bar[1] in the i=1 iteration. Because
of this data dependence, the compiler will not par-
allelize the loop. This is shown in the Canal report:

| void foo(int *a, int *b, int n) {
| for (int i = 0; i < n; i++)

1 S | a[i] = b[i];
| }

The S annotation indicates that the compiler did not
parallelize the loop due to a data dependence asso-
ciated with the source line where the S appears. If
we know that a and b will never refer to overlapping
memory we can get this loop to parallelize with the
noalias pragma or the restrict type qualifier, as
detailed in Section 3.3.

The final condition, number 4, simply ensures
that any observable side effects will not occur out
of order. For example, consider the following loop:

for(int i = 0; i < 1000; i++)
printf{"Number %d\n", i);

This loop should count up from 0 to 999. How-
ever, if it is parallelized the output may appear out
of order. For this reason, the compiler will avoid
parallelizing loops with function calls that may gen-
erate side effects. Canal indicates this with the
function with unknown side effects message:

| for(int i = 0; i < 1000; i++)
1 S | printf("Number %d\n", i);

**function with unknown side effects:printf
| }

If we do not care about possible reordering of side
effects we can use pragmas to parallelize this loop,
as detailed in Section 3.3.

3.2 Compiler transformations

In Section 3.1, we described the conditions that are
necessary for the Cray XMT compiler to parallelize
a loop. However, many loops that at first glance
may not appear to meet these conditions can be
transformed into equivalent loops that are paralleliz-
able. As a simple example, loops that contain func-
tion calls with unknown side effects can sometimes
be parallelized if the compiler inlines the call. The
compiler aggressively seeks to identify and transform
loops that would benefit from these optimizations.

In this section, we describe some of the most
commonly applied automatic loop transforms used
by the compiler, and show examples of loops that
benefit. In particular, we discuss scalar expansion,
reductions, linear recurrences, and various flavors of
loop collapse.

3.2.1 Scalar Expansion

Scalar expansion is a commonly used loop
transformation that eliminates data dependences
due to unnecessary sharing of scalar vari-
ables. For example, consider the following loop:

for (i = 0; i < n; ++i) {
t = sqrt(b[i]);
...
a[i] = t + 5;

}

In this loop, every iteration will be writing to and
reading from the same integer variable t. This cre-
ates a data dependence because each iteration must
read the value it wrote to t before another iteration
comes along and overwrites t.

However, the compiler is able to recognize that
each iteration only needs the value that it wrote to
t, and does not care about the values written by
other iterations. Thus, the scalar integer t can be
converted into an array of integers t[n], and each
iteration can be rewritten to use a separate element
of the array. The compiler will use this knowledge
to automatically transform the above code into the
following equivalent, but dependence-free, version:

for (i = 0; i < n; ++i) {
t[i] = sqrt(b[i]);
...
a[i] = t[i] + 5;

}
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The compiler then successfully parallelizes
the loop, as seen in the Canal report:

| for (i = 0; i < n; ++i) {
5 P:e | t = sqrt(b[i + 1]);

...
5 P | a[i] = t + 5;

| }

The P annotation indicates that the loop was paral-
lelized, and e indicates that the compiler automati-
cally applied scalar expansion.

3.2.2 Reductions

Reduction is a loop transformation used to paral-
lelize loops containing associative updates of scalar
variables. The Cray XMT compiler supports
sum, product, minimum, and maximum reduc-
tions. For example, consider the following loop:

for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
sum = sum +

array[i*m + j];
if (array[i*m + j] < min)
min = array[i*m + j];

}
}

This loop contains a dependence on the variable sum
(and min as well), because interleaving of the reads
and writes to sum from different iterations could re-
sult in incorrect computation of the final value. This
can be solved by making the read and write behave
as a single atomic memory operation (AMO), us-
ing either the Cray XMT system’s int fetch add
operation or its full/empty bits. This would allow
the loop to be parallelized, but has the potential
to cause hotspotting—a degradation of network per-
formance due to saturation of network links. The
AMO solution causes every thread to send memory
references to the same memory address inside a tight
loop, which can create hotspotting on the links lead-
ing to the node containing that address.

To avoid the potential hotspotting inherent in
the AMO solution, the compiler instead converts
loops containing associative updates into reductions.
Each thread computes the operation over a subset of
the input data and saves the value in a private vari-
able. The threads then combine their results (taking
advantage of the associative nature of the operation)
in a tree like fashion to obtain the final result.

The Canal report displays reductions:

| for (int i = 0; i < n; i++) {
| for (int j = 0; j < m; j++) {

36 PP:$ | sum = sum + array[i*m + j];
** reduction moved out of 2 loops
36 PP:$ | if (array[i*m + j] < min)
** reduction moved out of 2 loops

| min = array[i*m + j];
| }
| }

The reduction message appears after the line con-
taining the associative update that was replaced
with a reduction. The message also indicates the
number of nested loop levels out of which the com-
piler hoisted the global combining phase.

3.2.3 Linear Recurrences

The Cray XMT compiler is also able to par-
allelize certain loops that compute linear recur-
rences. Broadly, a recurrence computation com-
putes each element of an array based on the re-
sults of computing prior elements, for example:

for (int i = st; i < size; i++)
a[i] = foo(a[i-1],a[i-2],...,a[i-st]);

In the general case, loops of this form can not be par-
allelized due to the dependences on previous itera-
tions. However, certain recurrences known as linear
recurrences can be parallelized. In a linear recur-
rence, the computation of element i has the form

a[i] = a[i− k] ∗ f [i] + g[i]

where k is a constant, and f and g can be re-
placed by scalars or constants. A common example
is a loop that computes the prefix sum of an array:

for (int i = 1; i < size; i++)
array[i] = array[i] + array[i - 1];

The Cray XMT compiler can parallelize linear re-
currences where k ≤ 3 using a technique based on
cyclic reductions.

We illustrate this process with the prefix sum
example from above (where k = 1). The com-
piler starts by breaking the array into contiguous
blocks. Threads claim blocks and compute the re-
currence over each block, pretending that all val-
ues before the block are 0. After a block is com-
puted, we store the result of the final element:
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id = block_number;
start = block_start[id];
end = block_start[id + 1];
previous_1 = 0;
for (int i = start; i < end; i++) {
temp_array[i] = previous_1 + array[i];
previous_1 = temp_array[i];

}
block_result_1[id] = previous_1;

Once all of the blocks have been computed, each
block combines its final result with the final results
of all of the previous blocks. This combination is
done in parallel in a tree-like manner similar to re-
ductions (as described in Section 3.2.2). This result
is then used as a starting point to recompute the val-
ues of the next block (e.g., we use the combined re-
sult of the first three blocks to recompute the fourth
block). In our prefix sum example, this step looks
like:

id = block_number;
start = block_start[id];
end = block_start[id + 1];
previous_1 = combined_result_1[id - 1];
for (int i = start; i < end; i++) {
array[i] = previous_1 + array[i];
previous_1 = array[i];

}

The Canal report’s annotated source list-
ing shows users where the compiler applied
the parallel linear recurrence transformation:

| int recur(int *array, int size) {
| for (int i = 1; i < size; i++)

2 L | array[i] = array[i] + array[i-1];
| return array[size-1];
| }

The L annotation indicates that the compiler used
cyclic reduction to parallelize a loop computing a
linear recurrence.

3.2.4 Nested parallelism and loop collapse

The Cray XMT compiler has two approaches for
handling nested parallel loops: nesting parallel re-
gions (parallel regions are a blocks of code executed
in parallel, and surrounded by a single fork and
join—see Section 4.1 for more details), and loop col-
lapse. Consider the following pair of parallel loops:

for (int i = 0; i < n; i++)
for (int j = 0; j < m; j++)
foo[i] += bar[j];

If the compiler parallelized these loops with nested
parallel regions, the code would first go parallel for
the outer loop. Each iteration would then go parallel
again to execute the inner loop in parallel. Parallel
region startup and teardown has a high overhead,
however, so this approach is costly. In addition, mul-
tiple parallel regions can compete with each other for
streams. Thus, the compiler’s preferred approach is
to collapse the loops into a single equivalent loop.
In this case, that collapsed loop might look like:

for (int k = 0; k < n*m; k++) {
i = k / m;
j = k % m;
foo[i] += bar[j];

}

The collapsed loop can then be parallelized with a
single fork and join.

In the rest of this section we describe two of the
most common forms of loop collapse—rectangular
collapse and manhattan collapse. Rectangular col-
lapse is used when the bounds of the inner loop are
fixed across all iterations of the outer loop, while
manhattan collapse is used when the bounds of the
inner loop may vary between iterations of the outer
loop.

Rectangular loop collapse The compiler uses
rectangular loop collapse to collapse two perfectly
nested parallel loops (i.e, the outer loop contains
only the inner loop and nothing else) where the
bounds of the inner loop are known to be fixed across
all iterations of the outer loop. The loop nest in the
following example is eligible because the inner loop is
perfectly nested and has bounds y start and y end,
neither of which is changed inside the outer loop:

for (x = x_start; x < x_end; x++)
for (y = y_start; y < y_end; y++)
grid[x][y] = 1;

If the two loops are not perfectly nested the
compiler can sometimes distribute (i.e, split) the
outer loop into multiple loops such that one of
these loops contains only the perfectly nested in-
ner loop. For example, consider the following loop:
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for (x = x_start; x < x_end; x++) {
row_start[x] = y_start;
for (y = y_start; y < y_end; y++)
grid[x][y] = 1;

}

The compiler can split this loop into two loops:

for (x = x_start; x < x_end; x++)
row_start[x] = y_start;

for (x = x_start; x < x_end; x++)
for (y = y_start; y < y_end; y++)
grid[x][y] = 1;

The inner loop is now perfectly nested, and the com-
piler can collapse it with the outer loop. As we will
see in Section 4.1, these loops can still be imple-
mented as part of a single parallel region.

In a rectangular collapse, the nested pair is trans-
formed into a single loop whose iterations simulate
every iteration of the original nested pair. The
first step is to normalize the loops to start at 0:

for (i = 0; i < x_end - x_start; i++)
for (j = 0; j < y_end - y_start; j++) {
x = i + x_start;
y = j + y_start;
grid[x][y] = 1;

}

The next step is to replace the loop nest with
a single loop whose upper bound is the prod-
uct of the upper bounds of the previous pair:

int new_bound = (x_end - x_start) *
(y_end - y_start);

for (k = 0; k < new_bound; k++) { ... }

Finally, the compiler rewrites the body of the
loop to compute the original index values:

int new_bound = (x_end - x_start) *
(y_end - y_start);

for (k = 0; k < new_bound; k++) {
i = k / (y_end - y_start);
j = k % (y_end - y_start);
x = i + x_start;
y = j + y_start;
grid[x][y] = 1;

}

Manhattan loop collapse The rectangular col-
lapse described above works whenever the in-
ner loop bounds are the same for every itera-
tion of the outer loop. Many of the graph-
based codes that are frequently run on the
Cray XMT system, however, contain loop nests
that do not meet this condition. For example:

for (int i=0; i<sz; i++) {
int begin = index[i];
int end = index[i+1];
for (int j=begin; j<end; j++) {
total += adj[j];

}
}

In this situation, the compiler will instead attempt
to use a manhattan loop collapse. A loop nest is el-
igible for manhattan collapse if both loops are par-
allelizable, and the inner loop is perfectly nested
except for statements that compute the inner loop
bounds. If the nesting is not perfect, the compiler
will attempt to make it perfect by using loop distri-
bution (as described previously).

A manhattan loop collapse has two steps. First,
the compiler creates a new loop that computes the
number of inner loop iterations. The result of this
loop is an array tripcnt[] whose i-th element con-
tains the number of inner loop iterations executed
during the first i iterations of the outer loop. Thus,
tripcnt[0] is 0, tripcnt[1] is the number of in-
ner loop iterations during the first outer loop iter-
ation, tripcnt[2] is the number of inner loop it-
erations during the first two outer loop iterations,
etc. In our example, the tripcnt[] loop looks like:

tripcnt[0] = 0;
for (int t = 0; t < sz; t++) {
int begin = index[t];
int end = index[t+1];
int iterations = end - begin;
tripcnt[t+1] = tripcnt[t] + iterations;

}

The compiler recognizes that this loop is just a
prefix-sum linear recurrence calculation, and paral-
lelizes it accordingly (see Section 3.2.3).

The second step of the manhattan collapse
creates a single loop which simulates the exe-
cution of the original loop nest. The upper
bound of the new loop will be tripcnt[N],
where N is the number of iterations of the
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outer loop. In our example, this would be:

for (int k = 0; k < tripcnt[sz]; k++) {...}

Here, iteration k will correspond to the k-th iter-
ation of the original inner loop. Inside the new
loop, we use the tripcnt[] array to determine
which values of the inner and outer loop indices
correspond to the k-th iteration of the collapsed
loop. The outer loop index will be the element of
tripcnt[] containing the highest element less than
or equal to k. This is computed by a routine which
performs a binary search on the tripcnt[] array
(note that tripcnt[] will be an ordered array):

int i = highest_less_than(tripcnt, k);

We determine the inner loop index by comput-
ing the difference between k and tripcnt[i]:

int j = k - tripcnt[i];

We then execute the inner loop body, using the
computed indices. Putting it all together, we have:

tripcnt[0] = 0;
for (int t = 0; t < sz; t++) {
int begin = index[t];
int end = index[t+1];
int iterations = end - begin;
tripcnt[t+1] = tripcnt[t] + iterations;

}
for (int k = 0; k < tripcnt[sz]; k++) {
int i = highest_less_than(tripcnt, k);
int j = k - tripcnt[i];
total += adj[j];

}

The m annotation in the Canal report’s an-
notated source listing indicates that the com-
piler performed a manhattan loop collapse:

| for (int i=0; i<sz; i++) {
6 P:e | int begin = index[i];
6 P:e | int end = index[i+1];

| for (int j=begin; j<end; j++) {
10 PP:m$ | total += adj[j];
** reduction moved out of 2 loops

| }
| }

In this loop, we can also see that the compiler ap-
plied the reduction and scalar expansion transfor-

mations.

3.3 Pragmas

The Cray XMT compiler supports a set of pragmas
that programmers can use to provide more infor-
mation about their codes, and that can thus help
identify parallelism. These pragmas have the form:

#pragma mta assert ...

The mta assert pragmas can be thought of as
“promises” to the compiler about properties of user
codes. These promises can be a very powerful way to
improve parallelization and thus performance of ap-
plications. However, it is important to note that the
compiler will rely on the accuracy of these promises,
so it is critical to ensure that the promises are in
fact true. Otherwise, the compiler may make incor-
rect assumptions and generate bad code. In this
section, we discuss three of the most commonly
used assert pragmas: assert noalias, assert no
dependence, and assert parallel. Additional
pragmas are described in the Cray XMT Program-
ming Environment User’s Guide[1].

The assert noalias pragma takes a list of
pointer or array variables as an argument, and is
a promise to the compiler that every variable x
on the list points to memory which is only ac-
cessed through x. It applies to the entire scope
of x. For example, consider the following code:

void vector_x2(int *x, int key,
int n) {

int *z = fetch_vector(key, n);
for (int i = 0; i < n; i++) {
x[i] = 2 * z[i];

}
}

The compiler will not parallelize this loop, be-
cause it does not know if the write to x mod-
ifies memory that is read in another iteration
through z. We can see this in the canal report:

| void vector_x2(int *x, int key,
| int n) {
| int *z = fetch_vector(key, n);
| for (int i = 0; i < n; i++) {

1 S | x[i] = 2 * z[i];
| }
| }
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However, we can get this loop to paral-
lelize by adding an assert noalias pragma:

void vector_x2(int *x, int key, int n) {
#pragma mta assert noalias *x

int *z = fetch_vector(key, n);
for (int i = 0; i < n; i++)
x[i] = 2 * z[i];

}

In this code, the programmer asserts that x does not
refer to the same memory as z (or any other variable
in its scope). The compiler uses this information to
deduce that there are no dependencies between it-
erations and that the loop is thus parallelizable.

The C99 restrict type qualifier is also
available in the Cray XMT compiler. Point-
ers with the restrict qualifier are treated like
noalias variables, so the previous example can
be rewritten as follows and still parallelize:

void vector_x2(int * restrict x, int key,
int n) {

int *z = fetch_vector(key, n);
for (int i = 0; i < n; i++)
x[i] = 2 * z[i];

}

The restrict qualifier can be used in some sit-
uations where noalias is not allowed, such as in
type declarations (e.g., fields of struct declarations
can have restrict-qualified pointer types). On the
other hand, programs using restrict may be less
portable because some C++ compilers do not sup-
port the restrict keyword (unsupported keywords
lead to syntax errors, whereas unsupported pragmas
are typically ignored).

The assert no dependence pragma is a
promise to the compiler regarding dependencies be-
tween iterations of a loop. It must appear directly
before the loop to which it refers. There are two
forms of the no dependence pragma—one with a
comma-separated list of noalias (or restrict) vari-
ables, and the other without a variable list.

The form that takes a variable list promises
that references to memory through variables on the
list do not create any dependencies between iter-
ations. For example, consider the following loop:

for (int i = 0; i < num_move; i++)
arr[dst[i]] = arr[src[i]];

The compiler will not parallelize this loop because

there may be overlap between the elements of arr
pointed to be src and dst. This overlap would
create a dependence. If, however, the programmer
knows that src and dst will point to disjoint sub-
sets of arr, they can use a no dependence pragma:

#pragma mta assert no dependence *arr
for (int i = 0; i < num_move; i++)
arr[dst[i]] = arr[src[i]];

This loop will parallelize.
The alternate form of assert no dependence

takes no variable list, and is a promise that there
are no data dependencies between iterations. The
no variable list form is useful when dependencies in-
volve variables that can’t be declared as noalias or
restrict. For example, consider the following code:

int *dst = &arr[new_start];
for (int i = 0; i < num_move; i++)
*(dst++) = arr[src[i]];

In this case, we can not declare arr to be noalias
because dst does in fact refer to part of the array
arr. This prevents us from using the variable list
version of assert no dependence. We can still use
the no-list version, however, and get parallelization:

#pragma mta assert no dependence
for (int i = 0; i < num_move; i++)
*(dst++) = arr[src[i]];

The assert parallel pragma can be thought
of as the “big hammer” of the Cray XMT com-
piler’s assertion pragmas. It is a promise that the
loop which follows the pragma can safely be exe-
cuted in parallel as written. This does not guar-
antee that the loop will be parallelized (e.g., if the
compiler can not determine an iteration count), but
it is a strong suggestion. The assert parallel
pragma will even cause side effects to be ignored.
For example, this loop will parallelize despite the
possibility that the output may appear out of order:

#pragma mta assert parallel
for(int i = 0; i < 1000; i++)
printf("Number %d\n", i);

The assert parallel pragma can be a power-
ful tool to get difficult loops to parallelize; however,
it should only be used as a last resort when other
techniques fail. Use of assert parallel may limit
optimizations and transformations that the compiler
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might otherwise perform, because the programmer is
only telling the compiler that the loop is safe to par-
allelize, without explaining why. Since the compiler
does not understand why it is safe to parallelize, it
has to be careful not to do anything which might
affect that. This can in turn hurt performance.

4 Implementing parallelism

Once parallel loops have been identified, the next
step is to determine the most efficient implementa-
tion strategy. The Cray XMT compiler supports
three styles of parallelism—single processor, multi-
ple processor, and a highly dynamic style known as
loop futures. The compiler also supports a number
of different iteration scheduling strategies, and at-
tempts to combine nearby parallel loops into par-
allel regions with a single fork and join to reduce
overhead.

In this section we discuss these strategies, and
show how you can view the implementation choices
made by the compiler. We also discuss how you can
override these decisions with pragmas.

4.1 Parallel regions

The Cray XMT compiler will attempt to merge
nearby parallel loops, and possibly intervening se-
rial code, into a single parallel region—a section of
code executed by multiple threads and surrounded
by a single fork and join to begin and end the par-
allelism. Barriers are added to ensure correct exe-
cution. This merging allows the compiler to avoid
paying the overhead of any extra forks and joins.

A parallel region consists of a series of paral-
lel loops, serial code sections, and barriers. Bar-
riers are used to ensure that we complete sec-
tions of the region before the results are needed
by subsequent code in the region. Whenever
a thread hits a barrier, it waits there until
every other thread reaches the barrier. For
example, consider the following code structure:

LOOP A
STATEMENT B // depends on A
STATEMENT C // depends on A
LOOP D // depends on B,C
LOOP E // depends on B,C

The compiler can implement this as a single parallel
region:

FORK
LOOP A
barrier()
if (thread_id == 0)
STATEMENT B

else if (thread_id == 1)
STATEMENT C

barrier()
LOOP D
LOOP E

JOIN

Every thread will execute its portion of the itera-
tions of LOOP A, then wait at the barrier until all
of the other threads have completed their portions.
Threads 0 and 1 will then execute STATEMENTS
B and C in parallel and wait at the barrier. Finally,
every thread will execute its portion of loops D and
E. Since loop E does not depend on loop D, the
threads will not wait between finishing their portion
of D and beginning their portion of E.

The extent of parallel regions can be seen in
the additional loop info section of the Canal report.
Every loop reports either its region or the loop in
which it is nested. If a loop is nested in another
loop, users can refer to the outer loop to discover
the region. For example, in the following Canal
report loops 2 and 3 are part of parallel region 1:

Parallel region 1 in foo
...
Loop 2 in foo in region 1
...
Loop 3 in foo at line 7 in loop 2

4.2 Styles of parallelism

The Cray XMT compiler supports three styles of
parallelism, each with differing overheads and per-
formance characteristics. Single processor paral-
lelism has the lowest overhead, but only takes ad-
vantage of the streams on a single processor of the
Cray XMT system. Multiprocessor parallelism takes
advantage of the streams on all of the processors al-
located to the job, but has significantly higher over-
head. Finally, loop future parallelism has the high-
est overhead, but is also the only form of parallelism
that can dynamically grow to use more streams as
they become available and/or are needed. The com-
piler will choose a parallelism style by default, but
this choice can be overridden by user directives.
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The parallelism style applies to an entire par-
allel region, and the overhead is paid once per
region. Because of this, it rarely makes sense
to specify different parallelism styles for nearby
loops. It will force the loops into separate re-
gions and likely cause additional overhead. For
example, consider the following pair of loops:

// Small loop
for (int i = 0; i < SMALL_N; i++) { ... }
// Big loop
for (int j = 0; j < BIG_N; j++) { ... }

The user might be tempted to request single proces-
sor parallelism for the small loop here, thinking that
the performance benefit of using multiple processors
does not justify the higher overhead of multiproces-
sor parallelism. However, if we were to then request
multiprocessor parallelism for the big loop (because
there is much more to be gained from using many
processors in that case), we would end up paying the
overhead of a single processor fork and join, followed
by the overhead of a multiple processor fork and join.
On the other hand, if both are implemented using
multiprocessor parallelism, the compiler can merge
them into a single region and only pay the overhead
of a single fork and join.

Single processor Single processor parallelism is
typically used for small loops (loops that have a low
iteration count and only do a small amount of work).
The performance gains are limited because the loop
can only take advantage of the streams available on
a single processor. However, this form of parallelism
is significantly cheaper than the others, and so can
be beneficial when the amount of work to be paral-
lelized is small. For example, the compiler will usu-
ally select single processor parallelism for this loop:

for (int i = 0; i < 500; i++)
a[i] = b[i];

This can be seen in the Canal report by looking at
the information for the region containing the loop:

Parallel region 1 in foo
Single processor implementation

If the compiler can not estimate the amount of
work done by a loop (e.g., if the iteration count
is not a compile-time constant), it will assume
that it is large and choose a different style of

parallelism. The user can override this choice,
however, via a command line flag or a pragma.
The -par1 flag causes the compiler to use sin-
gle processor parallelism as its default for all
loops in the program. Similarly, the pragma

#pragma mta parallel single processor

tells the compiler to use single processor paral-
lelism for all subsequent loops in the source file in
which it appears. It takes precedence over any con-
flicting command line flags. Finally, the pragma

#pragma mta loop single processor
for (...) { ... }

tells the compiler to use single processor parallelism
for the following loop, and takes precedence over any
other flags or pragmas.

Multiprocessor Multiprocessor parallelism has
higher startup overhead than single processor paral-
lelism, but also allows your program to take advan-
tage of streams on all processors allocated to your
job. The compiler chooses it when the amount of
work is large (or not known). For example, if we
double the iteration count in our previous example,
the compiler will choose multiprocessor parallelism:

for (int i = 0; i < 1000; i++)
a[i] = b[i];

We can once again see this by viewing the addi-
tional information for the region containing the loop:

Parallel region 1 in foo
Multiple processor implementation

The user can specify multiprocessor parallelism us-
ing the -par command-line flag (this is the default
in the current version of the compiler), or via the

#pragma mta parallel multiprocessor

or

#pragma mta loop multiprocessor
for (...) { ... }

pragmas. These flags and pragmas have the same
meanings as their single processor equivalents.

Loop futures Loop future parallelism is a
highly dynamic form parallelism that is use-
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ful for recursive parallel loops where the work-
load may vary greatly between iterations,
such as in the following example from a re-
cursive depth-first search routine called DFS:

#pragma mta loop future
for (i = firstNode; i < lastNode; i++) {
int nbr = Neighbors[i];
// Ensure that only one thread visits nbr
int v = int_fetch_add(&Visited[nbr], 1);
if (v == 0) DFS(nbr, A);

}

Unlike the other forms of parallelism, loop future
regions are not allocated a fixed number of streams
when the region starts up. Instead, the compiler
produces pointers to a piece of code that executes
iterations of the loop. These pointers, or contin-
uations, are placed on a queue managed by the
runtime library. As streams become available, they
check the queue, grab any available continuations,
and begin executing iterations of the loop. This
allows the region to grow as resources are needed
and become available, but adds significant over-
head. The continuations from all loop future re-
gions are placed into the same queue, so this can
also help with load balancing across multiple lev-
els of a recursive parallel loop (such as in the DFS
example above). As with the other forms of paral-
lelism, we can view loop futures in the Canal report:

Parallel region 1 in foo
Implemented with futures

The compiler does not typically choose loop future
parallelism because of the high overhead and dif-
ficulty of analyzing recursive loops. However, you
can request it with the -parfuture flag or with the

#pragma mta parallel future

or

#pragma mta loop future
for (...) { ... }

pragmas. These flags and pragmas have the same
meanings as their single processor equivalents.

4.3 Loop scheduling

The Cray XMT compiler has a number of different
idioms at its disposal for scheduling the iterations
of a parallel loop. Each of these idioms provides a

different set of trade-offs between overhead and load
balancing. The compiler attempts to choose an id-
iom based on its analysis of the characteristics of the
loop, but pragmas are once again available to allow
the programmer to direct the compiler’s decisions.

The cheapest of the scheduling idioms is
block scheduling. In a block scheduled loop,
each thread will execute a contiguous block of
iterations/threads iterations. For example, if we
have three threads executing a block scheduled par-
allel loop with 100 iterations, one thread will exe-
cute iterations 0-32, another iterations 32-65, and
the third iterations 66-99. Each thread can quickly
calculate the iterations it should execute at the be-
ginning of the loop with no inter-thread communi-
cation, making this the cheapest scheduling tech-
nique. It may also allow for some reuse of register
data since threads will be executing contiguous iter-
ations. However, if the work done by each iteration
varies significantly, some threads may end up doing
more work than others. This results in poor load
balancing, where some threads complete their work
early and then have to wait for other threads with
more work to finish.

Interleaved scheduling is another cheap schedul-
ing idiom that can in some cases provide improved
load balancing. In an interleaved parallel loop, each
thread executes iterations separated by the number
of threads. For instance, if there were three threads
and 12 iterations, the first thread would execute
iterations 0, 3, 6, and 9, the second iterations 1,
4, 7, and 10, and the third iterations 2, 5, 8, and
11. Like block scheduling, interleaved scheduling re-
quires only cheap and local computations. In certain
cases, interleaved scheduling can also provide bet-
ter load balancing, e.g., with triangular loop nests:

for(int i = 0; i < n; i++)
for (int j = 0; j < i; j ++)

In this example, later iterations of the outer loop will
do significantly more work than earlier iterations.
Interleaved scheduling will help load balancing be-
cause every thread will execute a similar mix of early
and late iterations. On the other hand, interleaved
scheduling may not allow for the same reuse of reg-
ister data that is possible with block scheduling be-
cause threads do not execute contiguous iterations.

Dynamic scheduling provides good load balanc-
ing for more generalized cases of loops whose work
varies between iterations. In a dynamically sched-
uled parallel loop, a shared counter is used to keep
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track of iterations. Each thread retrieves the value
of the counter to determine which iteration to exe-
cute, and increments it so that the next thread will
claim the next iteration. As threads complete each
iteration, they once again fetch and increment the
counter to claim another iteration. The compiler
uses the Cray XMT system’s atomic fetch-and-add
instruction (int fetch add) to retrieve and update
the counter in order to avoid races between threads.
Dynamic scheduling provides good load balancing
for many loops because threads never stop claim-
ing and executing iterations until every iteration
has been claimed by some thread—thus, we keep
threads working as long as possible. However, dy-
namic scheduling has a high overhead because every
thread must access the shared counter after every it-
eration. This adds an extra global memory reference
per iteration, and may cause contention.

Block dynamic scheduling provides a compromise
between the load balancing of dynamic scheduling
and the low overhead of block scheduling. In a block
dynamic scheduled loop, threads claim blocks of it-
erations instead of single iterations. This reduces
the overhead by decreasing the number of accesses
to the shared counter, while still maintaining some
of the load balancing properties of dynamic schedul-
ing.

Loop scheduling choices can be viewed in the
Canal report by looking at the additional loop info
section, e.g.:

Loop 34 in count2 at line 107 in region 33
Interleave scheduled

Users can direct the compiler to use different
scheduling idioms with the following pragmas:

#pragma mta block schedule
#pragma mta interleave schedule
#pragma mta dynamic schedule
#pragma mta block dynamic schedule

These pragmas apply only to the next loop.

5 An example loop

In this section we show how to apply the information
in this paper and in the Canal report to improve the
performance of an example code. The code we use
contains a search-breakout style loop, where we it-
erate over an array until a sought element is found.
This example initially does not parallelize, but we

show how knowledge of the conditions necessary for
parallelism (Section 3.1) combined with the infor-
mation contained in the Canal report can be used
to rewrite the code and achieve parallelism.

Consider the following routine that copies
the elements from an array b into an ar-
ray a until an element key is found in b:

bool foo(int *a, int *b, int n, int key) {
int i;
for (i = 0; i < n; i++) {
if (b[i] == key) break;
a[i] = b[i];

}
return (i < n);

}

If we compile this routine and view the Canal re-
port, we will see that the for loop is not parallelized:

1 X | for (i = 0; i < n; i++) {
** loop exit
** multiple exits

1 X | if (b[i] == key) break;
** loop exit

1 X | a[i] = b[i];
| }

The Canal report tells us that this loop could
not be parallelized because it has an early exit
(the break) and thus violates condition 2 from Sec-
tion 3.1. To fix this, we need to find a way to
rewrite the loop and remove the break statement.
We can do this by splitting the original loop into
two loops. The first loop will identify the minimum
index of b at which key occurs (this can be paral-
lelized as a reduction, as described in Section 3.2.2).
The second loop will then copy all the elements
of b up to the index identified in the first loop:

bool foo(int *a, int *b, int n, int key) {
int i;
int found_index = n;
for(i = 0; i < n; i++) {
if (b[i] == key)
if (i < found_index)
found_index = i;

}
for(int i = 0; i < found_index; i++)
a[i] = b[i];

return (found_index < n);
}
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If we compile this and view the Canal report, we see
that the search loop now parallelizes as a reduction:

| for(i = 0; i < n; i++) {
3 P:$| if (b[i] == key)
** reduction moved out of 1 loop

| if (i < found_index)
| found_index = i;
| }
| for(int i = 0; i < found_index; i++)

4 S | a[i] = b[i];

However, the copy loop is not parallelized. The
S annotation tells us that there is a dependence
involving the line that copies from b into a. If
we look more closely at this routine, we see that
a and b are pointers that could point anywhere—
including to overlapping memory, which would cre-
ate a dependence. If we know that this routine will
only be called with parameters that point to dis-
joint arrays, we can use the noalias pragma on a:

bool foo(int *a, int *b, int n, int key) {
#pragma mta assert noalias *a
int i;
int found_index = n;
for(i = 0; i < n; i++) {
if (b[i] == key)
if (i < found_index)
found_index = i;

}
for(int i = 0; i < found_index; i++)
a[i] = b[i];

return (found_index < n);
}

If we compile this new version, both loops parallelize:

|#pragma mta assert noalias *a
| int i;
| int found_index = n;
| for(i = 0; i < n; i++) {

3 P:$| if (b[i] == key)
** reduction moved out of 1 loop

| if (i < found_index)
| found_index = i;
| }
| for(int i = 0; i < found_index; i++)

5 P | a[i] = b[i];

6 Summary

The Cray XMT compiler has sophisticated pro-
gram analysis and transformation capabilities to
help users take advantage of the massive multi-
threading possible on the Cray XMT system. In or-
der to take full advantage of these capabilities, a user
needs to have an understanding of how the compiler
transforms and parallelizes codes. In this paper, we
discussed these processes, and showed how to use the
Canal report to gain further insights. Armed with
this knowledge, and the feedback from the Canal
report, programmers can tune their applications to
achieve efficient, scalable loop parallelism.
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