

 Overview of the Cray XMT
TM

system

 Introduction to loop parallelism

 Why do we care about loop parallelism?

 Parallel execution of loops: threads and iterations

 Identifying parallelism

 Conditions necessary for parallelism

 Compiler transformations to augment parallelism

 Pragmas to assist parallelization

 Implementing parallelism

 Parallel regions

 Single processor, multiprocessor, and loop future parallelism

 A parallelization example

 Architected for large-scale data analysis

 Exploits thousands of parallel threads accessing
large irregular datasets

 Hardware supports 128 concurrent threads per
processor; runtime software supports
“oversubscription”

 Architecture supports scaling to over 8000
sockets and 1M threads

 Architecture supports scaling to 128 terabytes
of shared memory

 The Cray XMT
TM

system is built on the Cray XT
TM

infrastructure

 Uses the same cabinets, boards, scalable interconnect, I/O and storage
infrastructure, user environment, and administrative tools … just
changes the processor

 Overview of the Cray XMT
TM

system

 Introduction to loop parallelism

 Why do we care about loop parallelism?

 Parallel execution of loops: threads and iterations

 Identifying parallelism

 Conditions necessary for parallelism

 Compiler transformations to augment parallelism

 Pragmas to assist parallelization

 Implementing parallelism

 Parallel regions

 Single processor, multiprocessor, and loop future parallelism

 A parallelization example

 Applications on the Cray XMTTM system require lots of parallelism to
perform well.

 Each processor has 128 hardware threads

 A machine typically has hundreds of processors

 If your application does not take advantage of these resources, it will
not perform up to the capabilities of the machine.

 There are two main sources of parallelism in user applications

 User-specified future-based parallelism

 User specifies code that can run on another thread via a future
statement

 Compiler-generated loop parallelism (focus of this talk)

 The compiler breaks up the loop iterations and runs them on
different threads.

 User may assist the compiler in this process

 A “normal” (non-parallelized) loop
consists of a series of iterations that
run one at a time (in order) on a
single thread.

for(i=0; i<N; i++) {

foo[i] = bar[i];

}

4

5

3

7

2

1

0

0

0

0

0

0

4

5

3

7

2

1

bar foo

 A parallelized loop consists of a
series of iterations that may run
simultaneously on multiple threads.

 Every thread executes a distinct
subset of the iterations

for(i=0; i<N; i++) {

foo[i] = bar[i];

}

4

5

3

7

2

1

0

0

0

0

0

0

4

5

3

7

2

1

bar foo

 Overview of the Cray XMT
TM

system

 Introduction to loop parallelism

 Why do we care about loop parallelism?

 Parallel execution of loops: threads and iterations

 Identifying parallelism

 Conditions necessary for parallelism

 Compiler transformations to augment parallelism

 Pragmas to assist parallelization

 Implementing parallelism

 Parallel regions

 Single processor, multiprocessor, and loop future parallelism

 A parallelization example

 The compiler attempts to parallelize your loops if:

 It can figure out how to compute the number of iterations prior to
executing the loop

 It can prove that there are no dependences between iterations

 There are no function calls with unknown side effects (e.g., output)

 The loop has a simple structure (e.g., no multiple exits)

 Pragmas are promises made by the user that help the compiler establish
that these conditions hold.

 This loop parallelizes:

void foo(int n) {

int i;

int my_array[n];

for (i = 0; i < n; i++) {

my_array[i] = i;

}

return;

}

 This loop does not:

 a and b may point to overlapping memory

void foo(int *a, int *b) {

int i;

for (i = 0; i < 10000; i++) {

a[i] = b[i];

}

}

foo(x+5000, x);

 The Cray XMTTM compiler supports a number of pragmas that can be used
to give the compiler additional information about loops and the variables
referenced inside them. The most commonly used are:

 pragma mta assert noalias

 pragma mta assert no dependence

 pragma mta assert parallel

 The compiler treats these pragmas as promises by the user

 The compiler trusts what you tell it

 If you give incorrect information, and the compiler relies on it, your
program may not run correctly.

 Promises that the listed variables are not aliased with any other variables.

 Must appear within the scope and after the declarations of the listed
variables.

 Only need to use once per variable (not once per loop).

 Can also use restrict pointers to get the same affect.

void foo(int *x, int*y, int*z) {

#pragma mta noalias *x, *y

for (int i = 0; i < N; i++) {

z[i] = x[i] + y[i];

}

}

 Promises that any memory location accessed in the loop via any variable
on the no dependence list is accessed by exactly one iteration of the loop

 Appears immediately before a loop

 Variables must be noalias or restrict pointers

 Can also use with no variable list. This makes the pragma apply to all
memory references in the loop (and doesn’t require noalias pragmas).

#pragma mta assert noalias *IA

#pragma mta assert no dependence *IA

for (int i = 0; i < N; i++) {

IA[i][1] = IA[i][INDEX[i]];

}

 Promises that the iterations of the loop can safely be executed
concurrently without any synchronization.

 Does not force the compiler to parallelize the loop, but it is a strong
suggestion.

 Should only be used when other techniques to get your loop to parallelize
fail. It limits the types of optimizations and transformations the compiler
can perform on the loop.

 You are only asserting that the loop is parallel as written.

 Compiler worries that loop transformations may invalidate that.

#pragma mta assert parallel

for (int i = 0; i < N; i++) {

printf(“May appear out of order %d”,i);

}

 The compiler will attempt to restructure code to find or enhance
parallelism:

 Scalar expansion

 Reductions

 Loop collapse

 You can view the ways the compiler restructured your code in Canal (text-
based) or in the Canal report of the Cray Apprentice2

TM
tool suite (GUI-

based).

 This loop can not be parallelized as written because of dependences
between the reads and writes of t in different iterations (writing t in one
iteration may overwrite the value of t from another iteration before it is
used):

int t;

for (i = 0; i < n; ++i) {

t = sqrt(b[i]);

...

a[i] = t + 5;

}

 This loop can not be parallelized as written because of dependences
between the reads and writes of t in different iterations (writing t in one
iteration may overwrite the value of t from another iteration before it is
used):

 The compiler solves this by converting the scalar integer t into an array of
integers

int t;

for (i = 0; i < n; ++i) {

t[i] = sqrt(b[i]);

...

a[i] = t[i] + 5;

}

 The compiler attempts to recognize loops that calculate sums, products,
minimums, and maximums over an array. E.g.:

 The compiler converts these to reductions

 Each thread computes the min/max/sum/product over a sub-section of
the array.

 Threads then combine results to determine the final value.

int min = MAX_VAL;

for (i = 0; i < n; i++) {

if (x[i] < min)

min = x[i];

}

void foo(int* restrict num_bars, int size_x,

int* restrict x, int* restrict bar)

{

for (int i = 0; i < size_x; i++)

for (int j = 0; j < num_bars[i]; j++)

x[i] += bar[i + j];

}

 How do we handle nested parallel loops?

 Option 1: Go parallel for the outer loop, and then again for the inner loop.

 Inefficient – there is a significant overhead to going parallel. If we nest,
then every iteration of the outer loop has to pay that overhead.

 Limits the effectiveness of the load balancing obtained by some of the
scheduling methods.

 Option 2: Loop collapse.

 Convert the nested pair of parallel loops to a single parallel loop that
simulates the execution of the nested loops.

 Create a new parallel loop to calculate the total number of iteration
of the inner loop (across all iterations of the outer loop).

 Convert the pair of loops into a single loop where each iteration
corresponds to a distinct outer/inner iteration pair.

 Often a big performance win.

void foo(int* restrict num_bars, int size_x,

int* restrict x, int* restrict bar)

{

for (int i = 0; i < size_x; i++)

for (int j = 0; j < num_bars[i]; j++)

x[i] += bar[i + j];

}

// t[i] = total # of inner loop iterations

// in first i iterations of outer loop

t[0] = 0;

for (i = 0; i < size_x; i++)

t[i + 1] = t[i] + num_bars[i];

for (k = 0; k < t[size_x]; k++) {

// Set i to index of largest element of t

// less than k (use binary search)

i = max_element_less_than(t, k);

j = k - t[i];

x[i] += bar[i + j]; // original loop body

}

 Overview of the Cray XMT
TM

system

 Introduction to loop parallelism

 Why do we care about loop parallelism?

 Parallel execution of loops: threads and iterations

 Identifying parallelism

 Conditions necessary for parallelism

 Compiler transformations to augment parallelism

 Pragmas to assist parallelization

 Implementing parallelism

 Parallel regions

 Single processor, multiprocessor, and loop future parallelism

 A parallelization example

 The compiler will attempt to merge nearby loops, and intervening serial
code, into parallel regions.

 A parallel region is surrounded by a single fork and join, saving the
overhead of having to fork and join for every parallel loop.

LOOP A

STATEMENT B //depends on A

STATEMENT C //depends on A

LOOP D //depends on B,C

LOOP E //depends on B,C

FORK

LOOP A

barrier()

if (thread_id == 0)

STATEMENT B

else if (thread_id == 1)

STATEMENT C

barrier()

LOOP D

LOOP E

JOIN

 There are three forms of loop parallelism available: single processor,
multiprocessor, and loop futures.

 The compiler will choose one, based on estimates of overhead versus
performance gained.

 Compiler typically only chooses single processor or multiprocessor.

 You can override the compiler’s choice with a pragma.

 This is a per-region choice.

 Use multiple threads on a single processor.

 Very low overheard.

 Good for shorter loops where the time saved by going parallel does not
justify the expense of more heavy-weight forms of parallelism.

#pragma mta loop single processor

for (int i = 0; i < small_size; i++)

a[i] = b[i];

 Use multiple threads on multiple processors.

 Higher overhead.

 Allows you to take advantage of all the resources of the machine.

#pragma mta loop multiprocessor

for (int i = 0; i < big_size; i++)

a[i] = b[i];

 Loop futures are a highly dynamic style of loop parallelism

 For those familiar with futures, this is not just a loop of futures

 Compiler still manages threads and schedules iterations

 Highest overhead form of loop parallelism

 The only form of parallelism where the number of assigned threads can
increase dynamically

 Good for recursive-style loops with highly variable workloads

#pragma mta loop future

for (i = firstNode; i < lastNode; i++) {

int nbr = Neighbors[i];

int v = int_fetch_add(&Visited[nbr], 1);

if (v == 0) BFS(nbr, A);

}

 Overview of the Cray XMT
TM

system

 Introduction to loop parallelism

 Why do we care about loop parallelism?

 Parallel execution of loops: threads and iterations

 Identifying parallelism

 Conditions necessary for parallelism

 Compiler transformations to augment parallelism

 Pragmas to assist parallelization

 Implementing parallelism

 Parallel regions

 Single processor, multiprocessor, and loop future parallelism

 A parallelization example

bool foo(int *a, int *b, int n,

int sought, int *old_val) {

int i;

for (i = 0; i < n; i++) {

if (b[i] == sought)

break;

a[i] = b[i];

}

return (i < n);

}

1 X | for (i = 0; i < n; i++) {

** loop exit

** multiple exits

1 X | if (b[i] == sought)

| break;

1 X | a[i] = b[i];

| }

bool foo(int *a, int *b, int n,

int sought, int *old_val) {

int i;

int found_index = n;

for (i = 0; i < n; i++) {

if (b[i] == sought)

if (i < found_index)

found_index = i;

}

for (int i = 0; i < found_index; i++)

a[i] = b[i];

return (found_index < n);

}

| for (i = 0; i < n; i++) {

3 P:$| if (b[i] == sought)

** reduction moved out of 1 loop

| if (i < found_index)

| found_index = i;

| }

| for (int i = 0; i < found_index; i++)

4 S | a[i] = b[i];

bool foo(int *a, int *b, int n,

int sought, int *old_val) {

#pragma mta assert noalias *a

int i;

int found_index = n;

for (i = 0; i < n; i++) {

if (b[i] == sought) {

if (i < found_index) {

found_index = i;

}

for (int i = 0; i < found_index; i++)

a[i] = b[i];

return (found_index < n);

}

| #pragma mta assert noalias *a

| int i;

| int found_index = n;

| for (i = 0; i < n; i++) {

3 P:$| if (b[i] == sought) {

** reduction moved out of 1 loop

| if (i < found_index) {

| found_index = i;

| }

| for (int i = 0; i < found_index; i++)

5 P | a[i] = b[i];

 Loop parallelism is an important technique for obtaining good performance
on the Cray XMT

TM
system.

 The compiler will automatically parallelize loop if it can establish that it is
safe to do so.

 Safe means that parallelization will preserve the correct program
behavior.

 Pragmas may be used to assist the compiler in proving safety.

 The compiler will also attempt to aggressively transform loops to make
them safe to parallelize.

