

 Overview of the Cray XMT
TM

system

 Introduction to loop parallelism

 Why do we care about loop parallelism?

 Parallel execution of loops: threads and iterations

 Identifying parallelism

 Conditions necessary for parallelism

 Compiler transformations to augment parallelism

 Pragmas to assist parallelization

 Implementing parallelism

 Parallel regions

 Single processor, multiprocessor, and loop future parallelism

 A parallelization example

 Architected for large-scale data analysis

 Exploits thousands of parallel threads accessing
large irregular datasets

 Hardware supports 128 concurrent threads per
processor; runtime software supports
“oversubscription”

 Architecture supports scaling to over 8000
sockets and 1M threads

 Architecture supports scaling to 128 terabytes
of shared memory

 The Cray XMT
TM

system is built on the Cray XT
TM

infrastructure

 Uses the same cabinets, boards, scalable interconnect, I/O and storage
infrastructure, user environment, and administrative tools … just
changes the processor

 Overview of the Cray XMT
TM

system

 Introduction to loop parallelism

 Why do we care about loop parallelism?

 Parallel execution of loops: threads and iterations

 Identifying parallelism

 Conditions necessary for parallelism

 Compiler transformations to augment parallelism

 Pragmas to assist parallelization

 Implementing parallelism

 Parallel regions

 Single processor, multiprocessor, and loop future parallelism

 A parallelization example

 Applications on the Cray XMTTM system require lots of parallelism to
perform well.

 Each processor has 128 hardware threads

 A machine typically has hundreds of processors

 If your application does not take advantage of these resources, it will
not perform up to the capabilities of the machine.

 There are two main sources of parallelism in user applications

 User-specified future-based parallelism

 User specifies code that can run on another thread via a future
statement

 Compiler-generated loop parallelism (focus of this talk)

 The compiler breaks up the loop iterations and runs them on
different threads.

 User may assist the compiler in this process

 A “normal” (non-parallelized) loop
consists of a series of iterations that
run one at a time (in order) on a
single thread.

for(i=0; i<N; i++) {

foo[i] = bar[i];

}

4

5

3

7

2

1

0

0

0

0

0

0

4

5

3

7

2

1

bar foo

 A parallelized loop consists of a
series of iterations that may run
simultaneously on multiple threads.

 Every thread executes a distinct
subset of the iterations

for(i=0; i<N; i++) {

foo[i] = bar[i];

}

4

5

3

7

2

1

0

0

0

0

0

0

4

5

3

7

2

1

bar foo

 Overview of the Cray XMT
TM

system

 Introduction to loop parallelism

 Why do we care about loop parallelism?

 Parallel execution of loops: threads and iterations

 Identifying parallelism

 Conditions necessary for parallelism

 Compiler transformations to augment parallelism

 Pragmas to assist parallelization

 Implementing parallelism

 Parallel regions

 Single processor, multiprocessor, and loop future parallelism

 A parallelization example

 The compiler attempts to parallelize your loops if:

 It can figure out how to compute the number of iterations prior to
executing the loop

 It can prove that there are no dependences between iterations

 There are no function calls with unknown side effects (e.g., output)

 The loop has a simple structure (e.g., no multiple exits)

 Pragmas are promises made by the user that help the compiler establish
that these conditions hold.

 This loop parallelizes:

void foo(int n) {

int i;

int my_array[n];

for (i = 0; i < n; i++) {

my_array[i] = i;

}

return;

}

 This loop does not:

 a and b may point to overlapping memory

void foo(int *a, int *b) {

int i;

for (i = 0; i < 10000; i++) {

a[i] = b[i];

}

}

foo(x+5000, x);

 The Cray XMTTM compiler supports a number of pragmas that can be used
to give the compiler additional information about loops and the variables
referenced inside them. The most commonly used are:

 pragma mta assert noalias

 pragma mta assert no dependence

 pragma mta assert parallel

 The compiler treats these pragmas as promises by the user

 The compiler trusts what you tell it

 If you give incorrect information, and the compiler relies on it, your
program may not run correctly.

 Promises that the listed variables are not aliased with any other variables.

 Must appear within the scope and after the declarations of the listed
variables.

 Only need to use once per variable (not once per loop).

 Can also use restrict pointers to get the same affect.

void foo(int *x, int*y, int*z) {

#pragma mta noalias *x, *y

for (int i = 0; i < N; i++) {

z[i] = x[i] + y[i];

}

}

 Promises that any memory location accessed in the loop via any variable
on the no dependence list is accessed by exactly one iteration of the loop

 Appears immediately before a loop

 Variables must be noalias or restrict pointers

 Can also use with no variable list. This makes the pragma apply to all
memory references in the loop (and doesn’t require noalias pragmas).

#pragma mta assert noalias *IA

#pragma mta assert no dependence *IA

for (int i = 0; i < N; i++) {

IA[i][1] = IA[i][INDEX[i]];

}

 Promises that the iterations of the loop can safely be executed
concurrently without any synchronization.

 Does not force the compiler to parallelize the loop, but it is a strong
suggestion.

 Should only be used when other techniques to get your loop to parallelize
fail. It limits the types of optimizations and transformations the compiler
can perform on the loop.

 You are only asserting that the loop is parallel as written.

 Compiler worries that loop transformations may invalidate that.

#pragma mta assert parallel

for (int i = 0; i < N; i++) {

printf(“May appear out of order %d”,i);

}

 The compiler will attempt to restructure code to find or enhance
parallelism:

 Scalar expansion

 Reductions

 Loop collapse

 You can view the ways the compiler restructured your code in Canal (text-
based) or in the Canal report of the Cray Apprentice2

TM
tool suite (GUI-

based).

 This loop can not be parallelized as written because of dependences
between the reads and writes of t in different iterations (writing t in one
iteration may overwrite the value of t from another iteration before it is
used):

int t;

for (i = 0; i < n; ++i) {

t = sqrt(b[i]);

...

a[i] = t + 5;

}

 This loop can not be parallelized as written because of dependences
between the reads and writes of t in different iterations (writing t in one
iteration may overwrite the value of t from another iteration before it is
used):

 The compiler solves this by converting the scalar integer t into an array of
integers

int t;

for (i = 0; i < n; ++i) {

t[i] = sqrt(b[i]);

...

a[i] = t[i] + 5;

}

 The compiler attempts to recognize loops that calculate sums, products,
minimums, and maximums over an array. E.g.:

 The compiler converts these to reductions

 Each thread computes the min/max/sum/product over a sub-section of
the array.

 Threads then combine results to determine the final value.

int min = MAX_VAL;

for (i = 0; i < n; i++) {

if (x[i] < min)

min = x[i];

}

void foo(int* restrict num_bars, int size_x,

int* restrict x, int* restrict bar)

{

for (int i = 0; i < size_x; i++)

for (int j = 0; j < num_bars[i]; j++)

x[i] += bar[i + j];

}

 How do we handle nested parallel loops?

 Option 1: Go parallel for the outer loop, and then again for the inner loop.

 Inefficient – there is a significant overhead to going parallel. If we nest,
then every iteration of the outer loop has to pay that overhead.

 Limits the effectiveness of the load balancing obtained by some of the
scheduling methods.

 Option 2: Loop collapse.

 Convert the nested pair of parallel loops to a single parallel loop that
simulates the execution of the nested loops.

 Create a new parallel loop to calculate the total number of iteration
of the inner loop (across all iterations of the outer loop).

 Convert the pair of loops into a single loop where each iteration
corresponds to a distinct outer/inner iteration pair.

 Often a big performance win.

void foo(int* restrict num_bars, int size_x,

int* restrict x, int* restrict bar)

{

for (int i = 0; i < size_x; i++)

for (int j = 0; j < num_bars[i]; j++)

x[i] += bar[i + j];

}

// t[i] = total # of inner loop iterations

// in first i iterations of outer loop

t[0] = 0;

for (i = 0; i < size_x; i++)

t[i + 1] = t[i] + num_bars[i];

for (k = 0; k < t[size_x]; k++) {

// Set i to index of largest element of t

// less than k (use binary search)

i = max_element_less_than(t, k);

j = k - t[i];

x[i] += bar[i + j]; // original loop body

}

 Overview of the Cray XMT
TM

system

 Introduction to loop parallelism

 Why do we care about loop parallelism?

 Parallel execution of loops: threads and iterations

 Identifying parallelism

 Conditions necessary for parallelism

 Compiler transformations to augment parallelism

 Pragmas to assist parallelization

 Implementing parallelism

 Parallel regions

 Single processor, multiprocessor, and loop future parallelism

 A parallelization example

 The compiler will attempt to merge nearby loops, and intervening serial
code, into parallel regions.

 A parallel region is surrounded by a single fork and join, saving the
overhead of having to fork and join for every parallel loop.

LOOP A

STATEMENT B //depends on A

STATEMENT C //depends on A

LOOP D //depends on B,C

LOOP E //depends on B,C

FORK

LOOP A

barrier()

if (thread_id == 0)

STATEMENT B

else if (thread_id == 1)

STATEMENT C

barrier()

LOOP D

LOOP E

JOIN

 There are three forms of loop parallelism available: single processor,
multiprocessor, and loop futures.

 The compiler will choose one, based on estimates of overhead versus
performance gained.

 Compiler typically only chooses single processor or multiprocessor.

 You can override the compiler’s choice with a pragma.

 This is a per-region choice.

 Use multiple threads on a single processor.

 Very low overheard.

 Good for shorter loops where the time saved by going parallel does not
justify the expense of more heavy-weight forms of parallelism.

#pragma mta loop single processor

for (int i = 0; i < small_size; i++)

a[i] = b[i];

 Use multiple threads on multiple processors.

 Higher overhead.

 Allows you to take advantage of all the resources of the machine.

#pragma mta loop multiprocessor

for (int i = 0; i < big_size; i++)

a[i] = b[i];

 Loop futures are a highly dynamic style of loop parallelism

 For those familiar with futures, this is not just a loop of futures

 Compiler still manages threads and schedules iterations

 Highest overhead form of loop parallelism

 The only form of parallelism where the number of assigned threads can
increase dynamically

 Good for recursive-style loops with highly variable workloads

#pragma mta loop future

for (i = firstNode; i < lastNode; i++) {

int nbr = Neighbors[i];

int v = int_fetch_add(&Visited[nbr], 1);

if (v == 0) BFS(nbr, A);

}

 Overview of the Cray XMT
TM

system

 Introduction to loop parallelism

 Why do we care about loop parallelism?

 Parallel execution of loops: threads and iterations

 Identifying parallelism

 Conditions necessary for parallelism

 Compiler transformations to augment parallelism

 Pragmas to assist parallelization

 Implementing parallelism

 Parallel regions

 Single processor, multiprocessor, and loop future parallelism

 A parallelization example

bool foo(int *a, int *b, int n,

int sought, int *old_val) {

int i;

for (i = 0; i < n; i++) {

if (b[i] == sought)

break;

a[i] = b[i];

}

return (i < n);

}

1 X | for (i = 0; i < n; i++) {

** loop exit

** multiple exits

1 X | if (b[i] == sought)

| break;

1 X | a[i] = b[i];

| }

bool foo(int *a, int *b, int n,

int sought, int *old_val) {

int i;

int found_index = n;

for (i = 0; i < n; i++) {

if (b[i] == sought)

if (i < found_index)

found_index = i;

}

for (int i = 0; i < found_index; i++)

a[i] = b[i];

return (found_index < n);

}

| for (i = 0; i < n; i++) {

3 P:$| if (b[i] == sought)

** reduction moved out of 1 loop

| if (i < found_index)

| found_index = i;

| }

| for (int i = 0; i < found_index; i++)

4 S | a[i] = b[i];

bool foo(int *a, int *b, int n,

int sought, int *old_val) {

#pragma mta assert noalias *a

int i;

int found_index = n;

for (i = 0; i < n; i++) {

if (b[i] == sought) {

if (i < found_index) {

found_index = i;

}

for (int i = 0; i < found_index; i++)

a[i] = b[i];

return (found_index < n);

}

| #pragma mta assert noalias *a

| int i;

| int found_index = n;

| for (i = 0; i < n; i++) {

3 P:$| if (b[i] == sought) {

** reduction moved out of 1 loop

| if (i < found_index) {

| found_index = i;

| }

| for (int i = 0; i < found_index; i++)

5 P | a[i] = b[i];

 Loop parallelism is an important technique for obtaining good performance
on the Cray XMT

TM
system.

 The compiler will automatically parallelize loop if it can establish that it is
safe to do so.

 Safe means that parallelization will preserve the correct program
behavior.

 Pragmas may be used to assist the compiler in proving safety.

 The compiler will also attempt to aggressively transform loops to make
them safe to parallelize.

