CRANY

THE SUPERCOMPUTER COMPANY

Optimizing Loop-level Parallelism in Cray XMT™ Applications

Michael Ringenburg and Sung-Eun Choi

CUG 2009

CRANY

THE SUPERCOMPUTER COMPANY

Outline

e Overview of the Cray XmMT™ system

Introduction to loop parallelism
e Why do we care about loop parallelism?
e Parallel execution of loops: threads and iterations

Identifying parallelism
e Conditions necessary for parallelism
e Compiler transformations to augment parallelism
e Pragmas to assist parallelization
* Implementing parallelism
e Parallel regions
* Single processor, multiprocessor, and loop future parallelism

A parallelization example

CRANY

THE SUPERCOMPUTER COMPANY

Overview of the Cray XMT™ system

e The Cray XMT™ system is built on the Cray XT™ infrastructure

e Uses the same cabinets, boards, scalable interconnect, I/O and storage
infrastructure, user environment, and administrative tools ... just

changes the processor
e Architected for large-scale data analysis

e Exploits thousands of parallel threads accessing
large irregular datasets

e Hardware supports 128 concurrent threads per
processor; runtime software supports
“oversubscription”

* Architecture supports scaling to over 8000
sockets and 1M threads

» Architecture supports scaling to 128 terabytes
of shared memory

Bakan R L

CRANY

THE SUPERCOMPUTER COMPANY

Outline

e Overview of the Cray XMt ™ system

e Introduction to loop parallelism
* Why do we care about loop parallelism?
* Parallel execution of loops: threads and iterations

Identifying parallelism
e Conditions necessary for parallelism
e Compiler transformations to augment parallelism
e Pragmas to assist parallelization
* Implementing parallelism
e Parallel regions
* Single processor, multiprocessor, and loop future parallelism

A parallelization example

CRANY

THE SUPERCOMPUTER COMPANY

Why do we care about loop parallelism?

o Applications on the Cray XMT™ system require lots of parallelism to
perform well.

e Each processor has 128 hardware threads
* A machine typically has hundreds of processors
* If your application does not take advantage of these resources, it will
not perform up to the capabilities of the machine.
e There are two main sources of parallelism in user applications
e User-specified future-based parallelism

e User specifies code that can run on another thread via a future
statement

* Compiler-generated loop parallelism (focus of this talk)

e The compiler breaks up the loop iterations and runs them on
different threads.

e User may assist the compiler in this process

What is loop parallelism?

for (i=0; i<N; i++) {
foo[i] = bar[i];

IH

* A “normal” (non-parallelized) loop
consists of a series of iterations that
run one at a time (in order) on a
single thread.

C=RA0Y

THE SUPERCOMPUTER COMPANY

What is loop parallelism?

for (1=0; i<N; i++) {
foo[i] = bar[i];

e A parallelized loop consists of a
series of iterations that may run
simultaneously on multiple threads.

e Everythread executes a distinct
subset of the iterations

Hh
NS

CRANY

THE SUPERCOMPUTER COMPANY

Outline

e Overview of the Cray XMt ™ system

Introduction to loop parallelism
e Why do we care about loop parallelism?
e Parallel execution of loops: threads and iterations

Identifying parallelism
* Conditions necessary for parallelism
e Compiler transformations to augment parallelism
* Pragmas to assist parallelization

* Implementing parallelism
e Parallel regions
* Single processor, multiprocessor, and loop future parallelism

A parallelization example

Bakan R L

CRANY

THE SUPERCOMPUTER COMPANY

When will the compiler parallelize a loop?

e The compiler attempts to parallelize your loops if:

e It can figure out how to compute the number of iterations prior to
executing the loop

e |t can prove that there are no dependences between iterations

e There are no function calls with unknown side effects (e.g., output)

e The loop has a simple structure (e.g., no multiple exits)

e Pragmas are promises made by the user that help the compiler establish
that these conditions hold.

C=RA0Y

THE SUPERCOMPUTER COMPANY

Example

e This loop parallelizes:

void foo(int n) {
int 1i;
int my arrayl[n];
for (1 = 0; 1 < n; i++) {
my arrayl[i] = 1;
}

return;

Example 2

e This loop does not:

void foo(int *a, int *b) {
int 1i;
for (1 = 0; i < 10000; i++)
af[i] = b[1i];

}

* aand b may point to overlapping memory

foo (x+5000, x);

C=RA0Y

THE SUPERCOMPUTER COMPANY

CRANY

THE SUPERCOMPUTER COMPANY

Using pragmas to help find parallelism

e The Cray XMT™ compiler supports a number of pragmas that can be used
to give the compiler additional information about loops and the variables
referenced inside them. The most commonly used are:

e pragma mta assert noalias
* pragma mta assert no dependence
e pragma mta assert parallel

e The compiler treats these pragmas as promises by the user
e The compiler trusts what you tell it

* If you give incorrectinformation, and the compiler relies on it, your
program may not run correctly.

C=RA0Y

THE SUPERCOMPUTER COMPANY

The noalias pragma and restrict

void foo(int *x, int*y, int*z) ({
#pragma mta noalias *x, *y
for (int 1 = 0; 1 < N; i++) {
z[i] = x[i] + y[il;

e Promisesthat the listed variables are not aliased with any other variables.

e Must appear within the scope and after the declarations of the listed
variables.

* Only need to use once per variable (not once per loop).

* Canalso use restrict pointers to get the same affect.

C=RA0Y

THE SUPERCOMPUTER COMPANY

The no dependence pragma (or nodep)

#pragma mta assert noalias *IA
#pragma mta assert no dependence *IA
for (int i = 0; 1 < N; i++) {

IA[i] [1] = IA[i] [INDEX[i]];

e Promisesthat any memory location accessed in the loop via any variable
on the no dependence list is accessed by exactly one iteration of the loop

e Appearsimmediately before a loop
e Variables must be noalias or restrict pointers

e Can also use with no variable list. This makes the pragma apply to all
memory references in the loop (and doesn’t require noalias pragmas).

C=RA0Y

THE SUPERCOMPUTER COMPANY

The assert parallel pragma

#pragma mta assert parallel
for (int 1 = 0; 1 < N; i++) {
printf (“"May appear out of order %d”,i);

e Promises that the iterations of the loop can safely be executed
concurrently without any synchronization.

e Does not force the compiler to parallelize the loop, but it is a strong
suggestion.

e Should only be used when other techniques to get your loop to parallelize
fail. It limits the types of optimizations and transformations the compiler
can perform on the loop.

* You are only asserting that the loop is parallel as written.
» Compiler worries that loop transformations may invalidate that.

CRANY

THE SUPERCOMPUTER COMPANY

Compiler transformations for parallelism

e The compiler will attempt to restructure code to find or enhance
parallelism:

e Scalar expansion
e Reductions
e Loopcollapse

e You can view the ways the compiler restructured your code in Canal (text-
based) or in the Canal report of the Cray ApprenticezwI tool suite (GUI-
based).

C=RA0Y

THE SUPERCOMPUTER COMPANY

Scalar expansion

e This loop can not be parallelized as written because of dependences
between the reads and writes of tin different iterations (writing t in one
iteration may overwrite the value of t from another iteration before it is
used):

int t;
for (i = 0; i < n; ++i) {
t = sqrt(b[1]);

a[i] =t + 5;

C=RA0Y

THE SUPERCOMPUTER COMPANY

Scalar expansion

e This loop can not be parallelized as written because of dependences
between the reads and writes of tin different iterations (writing t in one
iteration may overwrite the value of t from another iteration before it is

used):
int t;
for (i = 0; i < n; ++i) {
t[i] = sqrt(b[i])
a[i] = t[1i] + 5;
}

* The compiler solves this by converting the scalar integer t into an array of
integers

C=RA0Y

THE SUPERCOMPUTER COMPANY

Reductions

e The compiler attempts to recognize loops that calculate sums, products,
minimums, and maximums over an array. E.g.:

int min = MAX VAL;
for (1 = 0; i < n; i++) {
if (x[i] < min)
min = x[1i];

e The compiler converts these to reductions

* Each thread computes the min/max/sum/product over a sub-section of
the array.

e Threads then combine results to determine the final value.

C=RA0Y

THE SUPERCOMPUTER COMPANY

Nested parallelism

void foo(int* restrict num bars, int size x,
int* restrict x, int* restrict bar)

{
for (int 1 = 0; i1 < size x; 1i++)
for (int j = 0; j < num bars[i]; Jj++)
x[1] += bar[i + j];
}

e How do we handle nested parallel loops?

e Option 1: Go parallel for the outer loop, and then again for the inner loop.
Inefficient — there is a significant overhead to going parallel. If we nest,
then every iteration of the outer loop has to pay that overhead.

Limits the effectiveness of the load balancing obtained by some of the
scheduling methods.

C=RA0Y

THE SUPERCOMPUTER COMPANY

Loop collapse

void foo(int* restrict num bars, int size x,
int* restrict x, int* restrict bar)

{
for (int 1 = 0; i1 < size x; 1i++)
for (int j = 0; j < num bars[i]; Jj++)
x[1] += bar[i + j];
}

e Option 2: Loop collapse.

Convert the nested pair of parallel loops to a single parallel loop that
simulates the execution of the nested loops.

e Create a new parallel loop to calculate the total number of iteration
of the inner loop (across all iterations of the outer loop).

e Convert the pair of loops into a single loop where each iteration
corresponds to a distinct outer/inner iteration pair.

* Often a big performance win.

EEEEEEEEEEEEEEEEEEEEEEE

Collapse psuedocode

// t[i] = total # of inner loop iterations
// in first i iterations of outer loop
t[0] = O;

for (i = 0; 1 < size x; i++)
t[i + 1] = t[i] + num bars[i];

for (k = 0; k < t[size x]; k++) {
// Set i to index of largest element of t
// less than k (use binary search)
i = max element less than(t, k);
j =k - t[i];

x[i] += bar[i + j]; // original loop body

CRANY

THE SUPERCOMPUTER COMPANY

Outline e — b

e Overview of the Cray XMt ™ system

Introduction to loop parallelism
e Why do we care about loop parallelism?
e Parallel execution of loops: threads and iterations

Identifying parallelism
e Conditions necessary for parallelism
e Compiler transformations to augment parallelism
e Pragmas to assist parallelization
* Implementing parallelism
* Parallel regions
* Single processor, multiprocessor, and loop future parallelism

A parallelization example

.

Parallel regions

LOOP A

STATEMENT B //depends on A
STATEMENT C //depends on A
LOOP D //depends on B,C
LOOP E //depends on B,C

"N

CRRANY

THE SUPERCOMPUTER COMPANY

FORK

LOOP A

barrier ()

if (thread id == 0)
STATEMENT B

else if (thread id == 1)
STATEMENT C

barrier ()

LOOP D

LOOP E

JOIN

The compiler will attempt to merge nearby loops, and intervening serial

code, into parallel regions.

A parallel region is surrounded by a single fork and join, saving the
overhead of having to fork and join for every parallel loop.

CRANY

THE SUPERCOMPUTER COMPANY

The three forms of parallelism

e There are three forms of loop parallelism available: single processor,
multiprocessor, and loop futures.

e The compiler will choose one, based on estimates of overhead versus
performance gained.

e Compiler typically only chooses single processor or multiprocessor.

e You can override the compiler’s choice with a pragma.

e Thisis a per-region choice.

C=RA0Y

THE SUPERCOMPUTER COMPANY

Single processor parallelism

#pragma mta loop single processor
for (int i = 0; i1 < small size; i++)

a[i] = b[i];

e Use multiple threads on a single processor.

e \erylow overheard.
e Good for shorter loops where the time saved by going parallel does not
justify the expense of more heavy-weight forms of parallelism.

C=RA0Y

THE SUPERCOMPUTER COMPANY

Multiprocessor parallelism

#pragma mta loop multiprocessor
for (int 1 = 0; 1 < big size; i++)
a[i] = b[1];

e Use multiple threads on multiple processors.
e Higher overhead.

e Allows you to take advantage of all the resources of the machine.

C=RA0Y

THE SUPERCOMPUTER COMPANY

Loop future parallelism

#pragma mta loop future

for (i = firstNode; i < lastNode; i++) {
int nbr = Neighbors[i];
int v int fetch add(&Visited[nbr], 1);
if (v == 0) BFS(nbr, 34);

}

e Loop futures are a highly dynamic style of loop parallelism
e Forthose familiar with futures, this is not just a loop of futures
e Compiler still manages threads and schedules iterations

e Highest overhead form of loop parallelism

e The only form of parallelism where the number of assigned threads can
increase dynamically

* Good for recursive-style loops with highly variable workloads

L eRes
Outline ——

—— —

e Overview of the Cray XmT™ system

Introduction to loop parallelism
e Why do we care about loop parallelism?
e Parallel execution of loops: threads and iterations

Identifying parallelism
e Conditions necessary for parallelism
e Compiler transformations to augment parallelism
e Pragmas to assist parallelization

e Implementing parallelism
e Parallel regions
e Single processor, multiprocessor, and loop future parallelism

A parallelization example

EEEEEEEEEEEEEEEEEEEEEEE

An example

bool foo(int *a, int *b, int n,
int sought, int *old val) {

int 1i;
for (1 = 0; 1 < n; i++) {
if (b[i] == sought)
break;

a[i] = b[1];
}

return (i < n);

CRANY
An example

1 X | for (i = 0; i < n; i++) {
** loop exit
** multiple exits

1 X if (b[i] == sought)
break;
1 X a[i] = b[1i];
}

THE SUPERCOMPUTER COMPANY

An example

bool foo(int *a, int *b, int n,
int sought, int *old val) {

int 1i;
int found index n;
for (1 = 0; 1 < n; i++) {
if (b[i] == sought)
if (1 < found index)
found index = 1;

}

for (int i =
afi] = b[1];

return (found index < n);

0; i < found index; i++)

EEEEEEEEEEEEEEEEEEEEEEE

An example

| for (1 = 0; 1 < n; 1i++) {
3 P:S| if (b[i] == sought)
** reduction moved out of 1 loop
if (1 < found index)
found index = 1i;
}
for (int 1 = 0; 1 < found index; i++)
4 S a[i] = b[i];

EEEEEEEEEEEEEEEEEEEEEEE

An example

bool foo(int *a, int *b, int n,
int sought, int *old val) {
#pragma mta assert noalias *a
int 1;
int found index = n;
for (i = 0; 1 < n; i++) {
if (b[i] == sought) {
if (1 < found index) {
found index = 1;
}
for (int i = 0; i1 < found index; i++)
af[i] = b[1i];
return (found index < n);

}

EEEEEEEEEEEEEEEEEEEEEEE

An example

#pragma mta assert noalias *a
int 1;
int found index n,
for (i = 0; i < n; i++) {

3 P:$ if (b[i] == sought) {

** reduction moved out of 1 loop
if (1 < found index) {

found index = 1;

}

for (int 1 =
5P a[i] = b[i];

0; 1 < found index; i++)

CRANY

THE SUPERCOMPUTER COMPANY

Summary

e Loop parallelism is an important technique for obtaining good performance
on the Cray XMT system.

e The compiler will automatically parallelize loop if it can establish that it is
safe to do so.
e Safe means that parallelization will preserve the correct program
behavior.

e Pragmas may be used to assist the compiler in proving safety.

e The compiler will also attempt to aggressively transform loops to make
them safe to parallelize.

AN

THE SUPERCOMPUTER COMPANY

