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Abstract

Quantum Monte Carlo calculations have at their core algorithms based on statistical ensembles of
multidimensional random walkers which are straightforward to use on parallel computers. Nevertheless
some computations have reached the limit of the memory resources for models with more than 1000
electrons because of the need to store a large amount of electronic orbitals related data. Besides that,
for systems with large number of electrons, it is interesting to study if the evolution of one configuration
of random walkers can be done faster in parallel. We present a comparative study of two ways to solve
these problems: i)distributed orbital data done with MPI or Unix inter-process communication tools,
ii)second level parallelism for configuration computation.

Keywords: Quantum Monte Carlo, shared data, Unix interprocess communication, parallel algorithms.

1 Introduction

1.1 Background

Quantum Monte Carlo(QMC) methods are one of
the most precise tools used in computing physical
properties of system that are made of a relatively
large number of atoms: crystals, nanoclusters or

macromolecules. Although QMC has the advantage
of scaling with second or third power of the sys-
tem size, very precise results need a large amount of
sampling of the phase space and therefore the most
challenging QMC problems need to use the most per-
formant hardware and available algorithms [1].

In this paper we present a series of algorith-
mic improvements implemented in the past year
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on CASINO, which is a QMC software package
developed and maintained over the last 10 years
at Cavendish Laboratory, Cambridge University,
UK [2, 3].

In order to fix the terminology we describe briefly
the basic mathematical concepts that provide the
foundation of QMC algorithms, for a more detailed
presentation we direct the reader to Refs [3, 4].

A typical quantum many-body system has Ne

electrons with positions R = {~re}, of which N↑ have
spins up and N↓ = Ne − N↑ have spins down, and
NI ions with positions RI = {~rI}. The particle in-
teraction is described by the quantum Hamiltonian

H = −
∑

i=1,Ne

~
2

2m
∇2

ri
+ V (R,RI) ,

from whose eigenstates and eigenvalues one can com-
pute in principle all physical quantities describing
the system. For realistic Hamiltonian operators ex-
act solution are not available but good physical re-
sults can be obtained with approximate one particle
solution, the most successful technique in this class
being the Density Functional Theory.

CASINO calculations improve further the one
particle solutions adding to them particle correla-
tion contributions with the help of the following two
QMC methods:

1.1.1 Variational Monte Carlo (VMC)

VCM calculations use a trial function Ψ(α,R,RI)
whose parameters α are determined from the mini-
mization of the average energy energy or its variance:

E(α) =
〈Ψ(α)|H |Ψ(α)〉

〈Ψ(α)|Ψ(α)〉
. (1)

A typical trial function for an electronic system
is a product between the Slater determinants of one
particle orbitals multiplied by a function that encap-
sulates the particle correlations.

Ψ(α,R,RI) = eJ(α,R,RI)D↑(r1, . . . , rN↑
) (2)

× D↓(rN↓+1...,rNe
) , (3)

where D↑,↓ are the Slater determinants of the elec-
trons with spin up(↑) or down(↓). The simplest
Jastrow factor J(α,R,RI) is a sum of two-electron
functions

J(α,R,RI) = −
∑

i>j
σi,σj

uσi,σj
(α, |ri − rj |) (4)

where u is taken from the homogeneous electron
gas. Over the years more elaborated extensions of
J(α,R,RI) have been developed in order to include
three electron correlations and electron ion correla-
tions [4].

Many studies it have shown that VMC calcula-
tions recover up to 70−90% of the correlation energy
but the remaining contributions are hard to conquer
because the results cannot be improved systemati-
cally in the VMC framework. As a matter of fact
the main use of VMC calculations in CASINO is to
generate the configuration needed for the Diffusion
Monte Carlo calculation.

1.1.2 Diffusion Monte Carlo (DMC)

DMC calculation is based on the observation that
Schrodinger equation in imaginary time (t = iτ),

−
∂Ψ(R, τ)

∂τ
= −

1

2
∇2Ψ(R, τ)+(V (R)−ET )Ψ(R, τ) .

(5)
is a diffusion equation plus a source/sink term given
by the potential. If the parameter ET is tuned to
the groundstate energy the trial wavefunction func-
tion is projected to the ground state of the Hamil-
tonian. The anti-symmetric nature of the electronic
wavefunction poses serious problems for the numer-
ical solution of Eq (5). A way out of to this dif-
ficulty is to introduce the so called fixed-node ap-
proximation, in which a modification of Eq (5) is
used that projects the wavefunction onto the ground
state wavefunction which has the same nodal surface
of a trial wavefunction. In practice is was found that
this is a very good approximation.

1.2 A Survey of CASINO algorithm
and the memory problem

At its core CASINO algorithm uses configurations of
Ne three dimensional random walkers (RW) which
evolve according to the distribution probability as-
sociated to wave trial function for VMC calculation,
Eq (1), or to the Schrodinger equation for DMC cal-
culation , Eq (5).

A typical CASINO calculation involves the fol-
lowing main steps:

• read the input parameters and the needed data
such as orbital data coefficients, Jastrow pa-
rameters,

• run a VMC calculation to generate the RW
configurations needed for DMC,
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• run a DMC calculation: evolve the configura-
tion, compute the local energy and decide on
branching, accumulate statistics of the observ-
able quantities.

The computation proceeds by moving one walker
at a time, the transition probability at each step de-
pends on the current values of the Jastrow factor
and one particle orbitals (OPO) at the current po-
sition of all random walkers. The orbitals can be
represented using various basis sets, including plane
waves, Gaussians, or B-splines. In this article we are
concerned with the representation in B-Splines [5],
which are localised third order polynomials sitting
on a three-dimensional grid in real space. They share
the same properties of plane-waves as being system-
atically improvable and unbiased, but they are lo-
calised, and as such a factor 1/Ne more efficientthan
plane waves: for each point in space there are always
only 64 B-Splines that have non-zero values. The
evaluation of each orbital therefore only requires the
evaluation of the value of 64 B-splines, and fetching
from memory of the corresponding 64 coefficients.

In the program the B-Splines coefficients (BC)
are stored in a rank five array a(1 : Nb, 0 : Ngx−1, 0 :
Ngy − 1, 0 : Ngz − 1, Ns), where Nb, Ngx, Ngy, Ngz,
Ns are the number of orbitals, the number of the
of grid points in the three spatial direction and the
number of spins, respectively.

The amount of BC needed in computation is de-
termined by two factors: i) For each spin value the
the number of orbitals must be equal with the num-
ber of electrons with that spin, ii) the grid spacing is
determined by the precision of the one particle cal-
culation, the higher the precision the finner the grid
must be.

This two requirements conspire to create a large
amount of BC. For example, if we consider a sys-
tem with 1000 electrons, split in half spin up, half
spin down, we need at least 500 one-particle orbitals
for a non-magnetic system since in this case one can
use the same set of BC for both spins. The spatial
grid can reach or exceed 80 points in each direction,
hence, for the previous quoted numbers one needs
approximately 2 GB of memory, if the values of BC
are stored in double precision. This amount of mem-
ory is close to the maximum available memory of the
currently used processors.

In the following sections we present a study of
several solutions we have tried to this problem: In
section 2 we describe the algorithms used for shared
BC and the results of the performance measurements

for each algorithm. In section 3 the second level par-
allelism algorithm is described and its performance
is analysed. In section 4 we discusses some other
improvements applied to the code and the general
conclusions.

We mention that the performance measurements
runs were done on HECToR, which is a Cray XT4
based in UK and used by the academic and scien-
tific research communities [7]. We have tested the
code on the dual core AMD Opteron which equips
the system in phase I and on the quadcore AMD
Opteron that will be used on phase II of HECToR.
The dual core processor has the following technical
specifications: 2.8 GHz clock rate, 6 GB of RAM,
64KB L1 cache, 1MB L2 cache, peak performance
11.2 Gflops in double precision. The quadcore pro-
cessor has the following technical specifications: 2.3
GHz clock rate, 8 GB of RAM, 64 L1 cache, 512 KB
L2 cache, 2 MB L3 cache(shared), peak performance
close to 40 Gflops in double precision. The code was
compiled with PGI v8.0.2.

2 Sharing large BC data sets

In the initial algorithm of CASINO each task has a
copy of the BC needed to compute the orbitals val-
ues. Since the BC sets are identical on each task and
their values do not change during computation the
obvious solution to the memory problem is to share
the data among groups of tasks, especially when the
hardware provides shared memory.

In this section we present the main features of
three solutions for BC sharing which are schemati-
cally illustrated in Fig 1 and discussed in the follow-
ing.

2.1 Shared memory on a processor
or node (SHM)

At the time of writing MPI standard does not offer
the possibility to address a common memory seg-
ment for a group of tasks on shared memory systems.
Nevertheless shared memory can be used with the
help of the Unix System V inter-process communi-
cation functions shmget, shmat [6], which allocate a
memory segment and attach it to the memory space
of each calling task.

The main steps this algorithm are as follow:

1. find the task belonging to the same proces-
sor or node (multiple processors that share
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memory) with ”mpi get processor name” pro-
cedure,

2. allocate the memory needed to store the BC
and attach it to the tasks memory space with
shmget and shmat,

3. pass the reference of the shared memory seg-
ment to the FORTRAN program via a Cray
pointer.

The implementation uses a set of functions writ-
ten in C which group the tasks that can use shared
memory and create the shared memory segment for
them. The subroutines that make available the
shared memory to a FORTRAN pointer using Cray
pointers are provided in a FORTRAN module.

There are two non-portable components in this
implementation according to CASINO coding stan-
dard (FORTRAN95+MPI), although widely avail-
able on parallel computer systems: the shared mem-
ory subroutines, which are not portable on a non-
Unix operating systems, and the Cray pointers,
which are not FORTRAN 95 compliant.

In order to conform with CASINO portability re-
quirements or for use in cases in which shared mem-
ory is not needed an alternative FORTRAN module
is provided that implements the initial algorithm in
which each task has a full copy of the BC. The user
can switch between the two modules with the help
of a makefile variable(CASINO does not use code
preprocessing).

2.2 MPI two-sided data transfers
(MPI-2S)

This algorithm is fully compliant with FORTRAN
95 as it uses two-sided MPI calls for BC transfers
between tasks.

The main steps of the algorithm works as follow:

1. The total number of tasks of a given compu-
tation is split in groups of size ng.

2. The BC are distributed among each group of
tasks in the following manner: each task has
the full spatial grid and Nb/ng orbitals picked
with a periodic rule.

3. When a task needs to compute the orbitals’
values for a given electron it broadcasts the
electron’s coordinates to its group members
and waits for them to return the orbitals’ val-
ues whose BC are stored on each of them.

Because each task evolves its configuration ran-
domly a synchronization mechanism must be pro-
vided. In the current implementation it consists in
additional ’sentinel calls’ in the inner loop of the
configuration computation that answer the requests
of orbital computation from the associated tasks.

2.3 One-sided data transfers (MPI-
1S,SHMEM)

This is a variation study of MPI-2S that tries to
avoid the synchronisation delays of the previous al-
gorithm using one-sided data transfer provided by
MPI or SHMEM libraries. In this case the task that
reaches the orbitals computation sector transfers the
set of BC from the memory of the associated tasks
without the need of a matching call on their side.
This algorithm has two drawbacks: i)the amount of
data to transfer between two tasks is 64 times larger
than in the case of the orbital transfer, ii) the data
set to be transferred has non-contiguous memory ad-
dresses because it is a 4×4 block of the spatial grid.

2.4 Tests results

In Table 1 we present the execution times of the
orbital computing subroutine for the discussed algo-
rithms. We collected data from a short run ( 12 time
steps) but which yields more that 103 timing points
for the observed sections. The data were collected
in the DMC section using the internal timer of the
code. We present also the total time taken by the
DMC calculation. The electronic system has 1024
electrons and the BC size is approximately 2.4 GB.

As expected, the results show that SHM algo-
rithm is by far the most efficient since it avoids un-
necessary data transfers between tasks. MPI two-
sided looks as an acceptable alternative when shared
memory is not available. The weak performance
of the MPI one-sided algorithm deserves some fur-
ther comments. Although at first sight the one-sided
MPI features would seem to be asynchronous, there
is no requirement in the MPI specifications that they
should be implemented as such, and indeed in the
MPICH implementation they are all saved up and
performed together at the next collective or sync
call, where they are handled internally as part of
the underlying 2-sided MPI communications design.
The SHMEM calls on the other hand are usually per-
formed asynchronously being built directly on top
of the XT Portals library which does provide some
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degree of asynchronous support, and in fact the re-
sults show that SHMEM algorithm performance is
slightly better than the MPI-2S algorithm.

3 Second level of parallelism

The second level parallelism(SLP) algorithm seeks to
increase the computation speed by employing more
that one task to move one RW configuration to its
next state. As the computation time of a configu-
ration in CASINO scales with Np

e , with p = 2, 3,
the computation time per configuration for a sys-
tem with O(104) electrons could be more 100 times
longer than a for a system with O(103) electrons,
which is the maximum used value at the present.
SLP solves also the large size BC problem as it dis-
tributes the BC data among the group of task that
perform the computation for one configuration.

As in the case of MPI-2S algorithm SLP divides
the tasks in groups, named pools, of given size (typi-
cally 2 or 4). At start the program reads the BC and
distribute them among the pool members similar to
MPI-2S algorithm. The difference is that only one
configuration is computed at a time by all the tasks
belonging to a pool. One of the tasks, named ”pool
head”, controls the computation and sends signals
to the other tasks about the next step of the compu-
tation. In this manner the synchronisation problem
is removed and the pool’s tasks can be used to com-
pute more quantities beside the orbitals: sums that
appear in the Jastrow factor, the potential energy
and linear algebra operations needed for the Slater
matrices.

We analyze the efficiency of SLP algorithm in the
following way: for a pool of size n in the ideal case
the computation time of one configuration would be
tn = t1/n. However the communication time be-
tween tasks is not negligible and the work is not
equally distributed over the pool’s tasks because
there are computations done only on the pool’s head.
We can measure the efficiency of a pool usage with
the following parameter:

η =
t1/tn − 1

n − 1
(6)

where η takes value 1 in the ideal case, 0 if the use
of SLP does not increase the computation speed and
becomes negative if the computation time increases
with the pool size.

In Table 2 we present the computation times for
three sections that are done in parallel: one parti-

cle orbitals(OPO), Jastrow function and the Ewald
sum as well as for the whole (DMC) section; the
pool sizes are 1, 2, 4. The input file is identical to
that used for shared memory measurements, see Ta-
ble 1. The efficiency parameter shows that the best
ratio computation/communication is obtained in the
subroutine that computes the orbital values on dual
core processor. The quadcore processor is faster and
consequently the weights of the communication time
increases. There is a significant degradation in effi-
ciency between pools of size 2 and 4 for orbitals and
Jastrow factor, but for Ewald summation increases
slightly. It is also worth mentioning also that effi-
ciency of a quad core processor is overall not signif-
icantly larger than that of two dual core processors.
We note also that the efficiency of the calculation
OPO increases for the larger system.

The overall efficiency in DMC sector of the cur-
rent implementation is rather small as the computa-
tions of the Slater determinant and of the associated
matrices are done on the pool’s head. The Slater de-
terminants are computed in two ways in CASINO:
i) using LU factorization of the Slater matrix, which
scales as N3

e , ii) using an iterative relationship for
the cofactor matrix [8], which scale as N2

e but is nu-
merically unstable. We have implemented a parallel
computation over the pool cores of this two subrou-
tines for VMC calculations using Scalapack subrou-
tines. The timing results, Table 3, show an excellent
scaling for the N3

e algorithm but little improvement
or slight degradation for N2

e algorithm which in fact
is the most important as the ratio of calls between
the two subroutines is small multiple of Ne in the
favor of N2 algorithm.

4 Final remarks and conclu-

sions

In other developments we mention that one of the
authors (RH) has increase significantly the orbital
computation speed after reordering the BC array
storage to a pattern which increase data locality and
uses efficiently the cache memory. Also he has shown
that using single precision BC alleviates the memory
requirements and improves the computation speed.

The performance of BC data input at the begin-
ning of the computation has been improved signif-
icantly. Initially the BC were stored in an ASCII
file and for large sets the reading time could reach
30 minutes. In the current version of CASINO the
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BC data can be converted to binary files using FOR-
TRAN binary or MPI input/output library and the
new input time is of the order of tens of seconds.

In conclusion, CASINO performance has been
significantly increased by implementing better algo-
rithms that can take advantage of the useful features
of the hardware and libraries used at the moment on
the high performance computing systems.

Two solution for the large size BC have been im-
plemented in CASINO: SHM and MPI-2S. The SHM
version is the fastest but it works only if shared mem-
ory is available via Unix interprocess communication
tools. The MPI two-sided, although slower, is fully
FORTRAN 95 compliant and the sharing of the BC

is not constrained by the presence of shared memory.
The SLP study provides a solution for faster

computation of very large configurations of elec-
trons. Efficiencies up to 50% has been achieved in
parallel sector of the computation, but an algorithm
with better scaling is needed for the iterative com-
putation of the Slater determinant.
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d)

c)

b)

a)

task 0 task 1

C1 . . . Ca0 . . . CN0

BC

C1 . . . Ca1 . . . CN1

BC

C1 . . . Ca0 . . . CN0
C1 . . . Ca1 . . . CN1

BC

C1 . . . Ca0 . . . CN0

1/2 BC

C1 . . . Ca1 . . . CN1

1/2 BC

C1 . . . Ca0 . . . CN0

1/2 BC

C1 . . . Ca1 . . . CN1

1/2 BC

MPI-2S

MPI-1S,SHMEM

Figure 1: Illustration of the BC data access patterns for two tasks in various algorithms. Each task computes
in serial mode a list of configurations C1 . . . CNt

using the stored BC: a) The standard version, b) SHM
version (shared memory needed), c) MPI two-sided version: the BC data are transferred using MPI two-sided
communication, d) one-sided data transfers that can be implemented with MPI or SHMEM.
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CPU 2DC 4DC 4QC
OPO DMC OPO DMC OPO DMC

SHM 130 921 – – 139 882
MPI-2S 371 1184 806 1458 546 1249
MPI-1S 562 1380 1669 2565 1430 2210
SHMEM 210 975 771 1759 536 1271

Table 1: Execution times in seconds for BC sharing algorithms described in Sec 2. The columns are organized
as follow: 2DC shows data of runs made on 2 tasks using one dual core processors, 4DC is for runs of 4
tasks on 2 dual core processor and 4QC for 4 tasks using one quadcore processors. The OPO column shows
the time spent for one particle orbital computation, DMC is the time for the whole diffusion Monte Carlo
computation.

DC QC

pool size 1 2 4 1 2 4

System 1 1024 electrons

OPO 118 80(0.46) 78(0.17) 141 93(0.52) 64(0.40)
Jastrow 271 218(0.24) 189(0.14) 199 151(0.32) 123(0.21)
Ewald 79 59(0.34) 34(0.44) 122 90(0.36) 52(0.45)
DMC 773 656(0.18) 592(0.10) 743 610(0.22) 518(0.14)

System 2 1536 electrons

OPO 267 171(0.56) 143(0.29) 311 197(0.58) 136(0.43)
Jastrow 640 505(0.27) 473(0.12) 454 340(0.36) 317(0.14)
Ewald 183 137(0.34) 81(0.42) 276 207(0.33) 121(0.43)
DMC 1965 1709(0.15) 1531(0.09) 1847 1522(0.21) 1358(0.12)

Table 2: Computing times in seconds for SLP algorithm for dual core (DC) and quadcore (QC) processors
with pools of sizes 1, 2 and 4. The times are for the three section of the code that are computed in parallel
(one particle orbitals, Jastrow, Ewald) and for whole DMC segment that contains also sections executed in
serial mode on the pool’s head. In brackets are the values of the efficiency parameter defined by with Eq
(6).

DC

pool size 1 2 4

System 1 1024 electrons

det N3 12 5.5(1.18) 4.7(0.52)
det N2 94 106(-0.11) 76(0.08)

System 2 1536 electrons

det N3 39 18(1.17) 10(0.90)
det N2 330 344(-0.01) 231(0.14)

Table 3: Computing times in seconds for Slater determinants using Scalapack over the pool. The order N2
e

method shows longer times since it is called a small multiple of Ne more times than the other. In brackets
are the values of the efficiency parameter defined by with Eq (6).
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