Improving CASINO performance for
models with large number of electrons

Lucian Anton’, Dario Alfe?, Randolph Q Hood?, David Tanqueray*

'Nag Ltd, Oxford, UK

“University College of London, UK
SLLNL, USA

*CRAY UK, Reading, UK

II CUG, Atlanta, May 2009 ,z

J' RESEARCH
HECTOR COUNCILS UK



Outline

* Introduction

» Algorithms for distributed data
-Shared memory
- MPI two-sided
-MPI one-sided & SHMEM

» Second level parallelism

* Final remarks & conclusions

H Z
J, RESEARCH
HECTOR COUNCILS UK



QMC and CASINO

Quantum Monte Carlo techniques are used to
compute electronic structure of solids, large
molecules or nano-clusters:

Very precise results
Good scaling with system size
Good parallel efficiency

CASINO is a QMC code developed by Theory of
Condensed Matter group, Cambridge University.

If ran 95 +MPI z
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Mathematical background |

Quantum many-body systems: N_electrons, N, ions.
Computationally challenging problem and of practical interest.
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Mathematical Background I

¢y(r)  ¢(r,) -+ ¢(ry)| One particle solution using
4 Slater determinants (DFT, HF)

by (1) Dy (1) o By lry)

QMC computations incorporate particle correlation
into the solution.
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Mathematical Background Il

VMC: optimize Jastrow function parameters with

> HY (x,R)
Y (x,R)

E ()= dR|¥(, R)

DMC: projects the trial wavefunction unto the
groundstate.

Y (R, T)=expl—%T]‘F(a,R)
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CASINO QMC computational steps

VMC

DMC ' @
Drift-Diffusion ( 1>3N/2 e _(R-R —2T V(R'))
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The origin of the memory problem

Practical computations start from electronic
orbitals obtained with DFT and stored as B-Spline
expansion.

be(N,,0:N,~1,0:N_—1,0:N_—1,N)
1024 electrons need 512 OPO
80 grid points in each direction direction

>2GB in double precision
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Memory organisation

Can we share BC memory
on a processor or a node?
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BC
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SHM

No MPI solution to share memory
on a node, but one can use Unix
Inter process communication library:

Easy to implement.

Needs C functions to allocate the
shared memory.

Cray pointers to pass the reference
to the FORTRAN pointers.
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MPI-2S

C1, .C, C, _’an ¢ NO need Of Shared
memory

* Fully compliant with
CASINO coding standard

/4BC B - Call for orbital
computation must be
synchronous
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Can we avoid the

c.(c).c C.{C_).C. A
1 " 1 @ ‘ synchronisation of MPI-2S
with MPI one-sided or
CRAY SHMEM library?
AN
%BC e s.. %BC
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Timing results
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Second level parallelism |

Why is needed?
For one configuration step we have:

The sums involved in computing the energy
terms scales as N2

Slater matrix elements: N2

Slater determinant: N° (LU decomposition) or
N2(cofactor matrix)

T10(104)]|=~10"*T[0(10%)]

_ QMC algorithms for electronic structure at the petascale -
! l‘[ K P Esler et al, J Phys: Conf Series, 125(2008) 0122057 /z
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Second level parallelism Il

MPI_BCAST

The pool computes

C, thPIGATHER for the same
configuration: OPQO,
Jastrow factor, energy

components, Slater
determinats.

The computation is
controlled by the pool
head.
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SLP timings |

1536 electrons, BC =4.8 GB
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SLP timing Il
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SLP efficiency
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Conclusions

Shared memory with Unix interprocess
communication

Alternative MPI two-sided implementation

|O performance improved as well, better cache
utilisation

SLP reached efficiency close to 50%
OpenMP discussion
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