
 CUG 2009 Proceedings 1 of 12

Using Processor Partitioning to Evaluate the Performance of MPI, OpenMP and

Hybrid Parallel Applications on Dual- and Quad-core Cray XT4 Systems

Xingfu Wu and Valerie Taylor
Department of Computer Science & Engineering,
Texas A&M University, College Station, TX 77843

Email: {wuxf, taylor}@cse.tamu.edu

Abstract: Chip multiprocessors (CMP) are widely used for high performance computing. While this
presents significant new opportunities, such as on-chip high inter-core bandwidth and low inter-core
latency, it also presents new challenges in the form of inter-core resource conflict and contention. A
challenge to be addressed is how well current parallel programming paradigms, such as MPI, OpenMP
and hybrid, exploit the potential offered by such CMP clusters for scientific applications. In this paper, we
use processor partitioning as a term about how many cores per node to use for application execution to
analyze and compare the performance of MPI, OpenMP and hybrid parallel applications on two dual- and
quad-core Cray XT4 systems, Jaguar with quad-core at Oak Ridge National Laboratory (ORNL) and
Franklin with dual-core at the DOE National Energy Research Scientific Computing Center (NERSC). We
conduct detailed performance experiments to identify the major application characteristics that affect
processor partitioning. The experimental results indicate that processor partitioning can have a significant
impact on performance of a parallel scientific application as determined by its communication and memory
requirements. We also use the STREAM memory benchmarks and Intel’s MPI benchmarks to explore the
performance impact of different application characteristics. The results are then utilized to explain the
performance results of processor partitioning using NAS Parallel Benchmarks. In addition to using these
benchmarks, we also use a flagship SciDAC fusion microturbulence code (hybrid MPI/OpenMP): a 3D
particle-in-cell application Gyrokinetic Toroidal Code (GTC) in magnetic fusion to analyze and compare
the performance of these MPI and hybrid programs on the dual- and quad-core Cray XT4 systems, and
study their scalability on up to 8192 cores. Based on the performance of GTC on up to 8192 cores, we use
Prophesy system to online generate its performance models to predict its performance on more than 10,000
cores on the two Cray XT4 systems.

Keywords: Performance Evaluation, processor partitioning, MPI, Hybrid MPI/OpenMP, Cray XT4,
performance modeling

1. Introduction

Today, the trend in high performance computing systems
has been shifting towards cluster systems with CMPs.
Further, CMPs are usually configured hierarchically to
form a compute node of cluster systems. For instance,
Franklin [NERS] at National Energy Research Scientific
Computing Center (NERSC) is a dual-core Cray XT4
system, and Jaguar [NCCS] at Oak Ridge National Lab
(ORNL) is a quad-core Cray XT4 system. Such systems
have two or more processor cores per node. When using
the CMP clusters to execute a given application (MPI or
hybrid), one issue to be addressed is how many processor
cores per node to use for efficient execution. It is
expected that the best number is dependent upon
application characteristics and system configuration. In
this paper, we define processor partitioning as a term

about how many processors per node to use for
application execution, and conduct detailed performance
experiments to identify the major application
characteristics that affect processor partitioning. We also
use processor partitioning to systematically analyze and
compare the performance of MPI, OpenMP and hybrid
programs on two Cray XT4 clusters.

The experiments conducted for this work utilize CMP
clusters with different number of cores per node. Franklin
has 2 cores per node, and Jaguar has 4 cores per node.
Further, each system has a different node memory
hierarchy. We use Intel’s MPI benchmarks, IMB [IMB]
and the MPI and OpenMP STREAM memory
benchmarks [McC] to provide initial performance
analysis of MPI and OpenMP programs on the two CMP
clusters. The standard MPI and OpenMP programming
paradigms of NAS Parallel Benchmarks (NPB) Version

 CUG 2009 Proceedings 2 of 12

3.2.1 [NPB3] make it possible for us to use these
benchmarks as a basis for a systematically comparative
performance analysis of MPI and OpenMP programs on
the CMP clusters. In addition to using these benchmarks,
we also use a large-scale scientific application: a 3D
particle-in-cell application Gyrokinetic Toroidal Code
(GTC) in magnetic fusion [ES05] to analyze and compare
the performance of these MPI and hybrid programs.

Our experimental results indicate that, on the two CMP
clusters, using processor partitioning changes the memory
access pattern and communication pattern of a MPI
program. Processor partitioning has significant
performance impact of a MPI program except
embarrassingly parallel applications such as EP. The
memory bandwidth per core is the primary source of
performance degradation when increasing the number of
cores per node using processor partitioning. The results
for hybrid GTC executed on up to 8192 cores indicates
that MPI versions of these programs outperform their
OpenMP and hybrid counterparts in most cases, but
hybrid GTC scales better than its MPI counterpart and
outperforms its MPI counterpart on 4096 and 8192 cores
on Franklin.

The remainder of this paper is organized as follows.
Section 2 discusses the architectures of two large-scale
CMP clusters used in our experiments, and compares their
performance using IMB and STREAM benchmarks.
Section 3 analyzes and compares performance of MPI and
OpenMP programs using NPB 3.2.1. Section 4
investigates performance and scalability of hybrid
MPI/OpenMP programs on these CMP clusters, and use
processor partitioning to analyze and compare the
performance of the MPI GTC and its components. Section
5 uses Prophesy system [TW03] to online generate
performance models for GTC and predicts its
performance on 10,240 cores. Section 6 discusses some
related work and concludes this paper in Section 7.

In the remainder of this paper, we assume that the job
scheduler for each CMP cluster always dispatches one
process to one core or one thread to one core. We describe
a processor partitioning scheme as NxM whereby N
denotes the number of nodes with M cores per node.
All experiments were executed multiple times to insure
consistency of the performance data. The unit for an
execution time is seconds.

2. Execution Platforms and Performance

In this section, we briefly describe two large-scale CMP
clusters used for our experiments, use Intel’ MPI
Benchmark Ping Pong [IMB] to measure and compare
MPI bandwidth and latency on these CMP clusters, and
use MPI and OpenMP STREAM memory benchmark
[McC] to measure and compare sustainable memory
bandwidth for MPI and OpenMP programs on these CMP
clusters.

2.1 Descriptions of Execution Platforms

Details about the two large-scale CMP clusters used for
our experiments are given in Table 1. These systems
differ in the following main features: number of
processors per node, configurations of node memory
hierarchy, CPU speed and multi-core processors.

Table 1. Specifications of two dual- and quad-core
Cray XT4 architectures

Configurations Franklin Jaguar
Total Cores 19,320 31,328
Total Nodes 9,660 7,832
Cores/chip 2 4
Cores / Node 2 4
CPU type 2.6 GHz

Opteron
2.1 GHz
Opteron

Memory/Node 4GB 8GB
L1 Cache/CPU 64/64 KB 64/64 KB
L2 Cache/chip 1MB 2MB
Network 3D-Torus 3D-Torus

 NERSC Franklin [NERS] is a dual-core Cray XT4
system with 9,660 compute nodes. Each node has dual-
core AMD Opteron processors and 4 GB of memory, and
is connected to a dedicated SeaStar2 router through
Hypertransport with a 3D Torus topology. The L2 cache
is a victim cache which holds only the cache lines evicted
from L1, whereas most data loaded from memory go
directly to L1.

National Center for Computational Sciences Jaguar
[NCCS] at ORNL is a quad-core Cray XT4 system with
7,832 compute nodes. Each node has quad-core AMD
Opteron processors and 8 GB of memory, and is
connected to a dedicated SeaStar router through
Hypertransport with a 3D Torus topology.

2.2 MPI Bandwidth and Latency Comparison

In this section, we use Intel’s MPI benchmark PingPong
[IMB] to measure uni-directional point-to-point
performance between two processes within the same node
(one process per processor, the processor partitioning
scheme 1x2) for intra-node performance, and between
two nodes (one process per node, the processor
partitioning scheme 2x1) for inter-node performance on
Franklin and Jaguar.
 The results shown in Figure 1 indicate almost doubling
of the latency and a significant reduction in bandwidth
when going from communication within a node to
communication between nodes using PingPong on
Franklin and Jaguar. Jaguar has much lower inter-core
latency and higher inter-core bandwidth than that for
Franklin. Both systems have similar inter-node latency
and bandwidth for message sizes of less than 128KB.
Jaguar has a little bit lower inter-core latency and higher

 CUG 2009 Proceedings 3 of 12

inter-core bandwidth than that for Franklin for message sizes of 128KB or more.

Uni-directional Intra-node Latency Comparison Using PingPong

0.1

1

10

100

1000

10000

1 10 100 1000 10000 100000 1000000 10000000

Message Size (Bytes, log scale)

La
te

nc
y

(u
s,

 lo
g

sc
al

e)

Franklin
Jaguar

Uni-directional Inter-node Latency Comparison Using PingPong

1

10

100

1000

10000

1 10 100 1000 10000 100000 1000000 10000000

Message Size (Bytes, log scale)

La
te

nc
y

(u
s,

 lo
g

sc
al

e)

Franklin
Jaguar

Uni-directional Intra-node Bandwidth Comparison Using PingPong

0.1

1

10

100

1000

10000

1 10 100 1000 10000 100000 1000000 10000000

Message Size (Bytes, log scale)

Ba
nd

w
id

th
 (M

B/
s,

 lo
g

sc
al

e)

Franklin
Jaguar

Uni-directional Inter-node Bandwidth Comparison Using PingPong

0.1

1

10

100

1000

10000

1 10 100 1000 10000 100000 1000000 10000000

Message Size (Bytes, log scale)

Ba
nd

w
id

th
 (M

B/
s,

 lo
g

sc
al

e)

Franklin
Jaguar

Figure 1. Uni-directional Intra/Inter-node Latency and Bandwidth Comparison Using PingPong

Table 2. Sustainable Memory bandwidth on Franklin
Program Type MPI OpenMP

Processor partitioning scheme 1x2 2x1 2 threads
Memory Bandwidth (MB/s) 4026.53 6710.89 3565.71

Table 3. Sustainable Memory bandwidth on Jaguar

Program Type MPI OpenMP
Processor partitioning scheme 1x4 2x2 4x1 4 threads

Memory Bandwidth (MB/s) 5752.19 10066.33 10066.33 5606.77

2.3 Sustainable Memory Bandwidth Comparison

In this section, we use the MPI and OpenMP versions of
the STREAM memory benchmark [McC] to investigate
memory performance for different processor partitioning
schemes. The STREAM benchmark is a synthetic
benchmark program, written in standard Fortran 77 and
MPI for MPI version and in C and OpenMP for OpenMP
version. It measures the performance of four long vector
operations (double precision): COPY (i.e., a(i)=b(i)),
SCALE (i.e., a(i)=q*b(i)), SUM (i.e., a(i)=b(i)+c(i)), and
TRIAD (i.e., a(i)=b(i)+q*c(i)), and it is specifically
intended to eliminate the possibility of data re-use (either
in registers or caches). The TRIAD allows chained/
overlapped/fused multiple/add operations. In this paper,
we only use unit-stride TRIAD benchmark to measure the
sustainable memory bandwidth. We find that most CMP
clusters we used only support array sizes of at most 4M

(222) with 8 bytes per double precision word because of
lack of sufficient memory to start the benchmark. So we
set the array size 4M for MPI and OpenMP STREAM
benchmarks.

Because Franklin has 2 cores per node, we use MPI
and OpenMP STREAM benchmarks to measure the
sustainable bandwidths on 2 cores. For different processor
partitioning schemes, Table 2 shows the sustainable
memory bandwidth increases from 4026.53MB/s to
6710.89MB/s with decreasing the number of cores per
node from 2 cores per node to 1 core per node for using 2
MPI processes because fewer MPI processes compete for
memory. We also see that the sustainable memory
bandwidth for using 2 OpenMP threads is smaller than
that for using 2 MPI processes for the scheme 1x2.

Table 3 shows that the sustainable memory bandwidth
for using 4 OpenMP threads is smaller than that for any
schemes for using 4 MPI processes, and the memory

 CUG 2009 Proceedings 4 of 12

bandwidths for two schemes 2x2 and 4x1 are the same on
Jaguar. These memory bandwidths are larger than that for
the scheme 1x4.

In summary, Tables 2-3 present the sustainable
memory bandwidths for MPI and OpenMP on the Dual-
core and quad-core Cray XT4 clusters. This indicates that
processor partitioning significantly impacts the
sustainable memory bandwidth. Hence, using fewer cores
per node results in better sustainable memory bandwidth,
and using the maximum number of cores per node does
not result in the highest sustainable memory bandwidth.

3. MPI and OpenMP Programs

In this section, we use the standard NPB benchmarks
(MPI and OpenMP) (NPB version 3.2.1) with problem
size of Class B to analyze and compare the performance
of MPI and OpenMP programs on Franklin and Jaguar.
NPB has 8 benchmarks (5 kernel benchmarks: CG, EP,
FT, IS, and MG; 3 application benchmarks: BT, LU, and

SP). BT and SP require a square number of cores for
execution and others are executed on a power-of-two
number of cores. The compiler ftn with the options -O3 –
fastsse is used to compile all benchmarks on both
systems.

3.1 Performance Comparison

Figure 2 shows MPI and OpenMP performance
comparison and ratio using NPB on Franklin, where CG-
M stands for MPI version of CG and CG-O stands for
OpenMP version of CG, and so on. The ratio of MPI to
OpenMP performance on Franklin indicates that MPI
versions of CG, EP and IS outperform their OpenMP
counterparts. However, OpenMP versions of FT and MG
outperform their MPI counterparts. Especially, the
OpenMP version of FT outperforms its MPI counterpart
by a factor of more than 1.32. Note that the OpenMP LU
does not work on both Franklin and Jaguar.

Performance Comparison of MPI and OpenMP Performance on Franklin

0

50

100

150

200

250

300

350

400

CG-M EP-M FT-M IS-M MG-M LU-M BT-M SP-M CG-O EP-O FT-O IS-O MG-O LU-O BT-O SP-O

NPB Benchmarks

Ti
m

e
(s

)

2

Ratio of MPI to OpenMP Performance on Franklin

0

0.2

0.4

0.6

0.8

1

1.2

1.4

CG EP FT IS MG LU BT SP

NPB Benchmarks

Ra
tio

 o
f M

PI
/O

pe
nM

P

2

Figure 2. MPI and OpenMP performance comparison for Class B on Franklin

Performance Comparison of MPI and OpenMP Performance on Jaguar

0

50

100

150

200

250

300

350

CG-M EP-M FT-M IS-M MG-M LU-M BT-M SP-M CG-O EP-O FT-O IS-O MG-O LU-O BT-O SP-O

NPB Benchmarks

Ti
m

e
(s

)

2
4

Ratio of MPI to OpenMP Performance on Jaguar

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

CG EP FT IS MG LU BT SP

NPB Benchmarks

Ra
tio

 o
f M

PI
/O

pe
nM

P

2
4

Figure 3. MPI and OpenMP performance comparison for Class B on Jaguar

 Figure 3 shows MPI and OpenMP performance
comparison and ratio using NPB on Jaguar. The ratio of
MPI to OpenMP performance on Jaguar indicates that
MPI versions of CG, EP and IS outperform their OpenMP
counterparts. However, OpenMP versions of FT, MG, BT
and SP outperform their MPI counterparts. Especially, the
OpenMP versions of FT and SP outperform their MPI
counterparts by a factor of more than 1.52.
 In summary, Figures 2 and 3 show MPI and OpenMP
performance comparison and ratio using NPB on each

compute node of Franklin and Jaguar. The ratio of MPI to
OpenMP performance indicates that the MPI versions of
CG, IS, and EP outperform their OpenMP counterparts,
however, the OpenMP versions of FT, MG, BT and SP
outperform their MPI counterparts. As described in
[BB94] for MPI implementations and in [JF99] for
OpenMP implementations, OpenMP implementations are
to reduce the communication overhead of MPI at the
expense of introducing OpenMP overhead due to thread
creation and increased memory bandwidth contention to

 CUG 2009 Proceedings 5 of 12

take advantage of on-chip high bandwidth and low
latency provided by the CMP clusters. In addition, for
instance, the OpenMP implementation of FT also
eliminates a 3D data array which was needed in the MPI
version. This change has improved the memory utilization
such that OpenMP FT outperforms its MPI counterpart.
So which parallel programming is the most suitable for
CMP clusters depends on the nature of an application,
available parallel programming software and algorithms,
and compiler support on the CMP clusters.

3.2 Processor Partitioning for MPI NPB

In this section, we use MPI version of NPB benchmarks
(CG, EP, FT, IS, MG, LU, BT and SP) to investigate how
and why processor partitioning impacts their performance
on Jaguar and Franklin. Note that the Cray Performance
Analysis Tools (CrayPAT) [CPAT] is used to instrument
the benchmark codes to gather run-time performance
statistics for our analysis. Two groups of hardware
counters (groups 2 and 3) are used in our experiments to
understand the cache and memory performance in a
USER section generated by CrayPAT.

0

50

100

150

200

250

300

Ti
m

e
(s

)

CG EP FT IS MG LU BT SP

NPB benchmarks (Class B)

Performance comparison using processor
partitioning on Jaguar (quad-core)

1x4
2x2
4x1

Figure 4. Performance comparisons of NPB

benchmarks (MPI) with Class B using processor
partitioning on Jaguar

 Figure 4 shows the performance comparison of NPB
benchmarks with Class B on 4 cores on Jaguar using
processor partitioning. We find that using the processor
partitioning scheme 4x1 always results in the best
performance, and using the scheme 1x4 results in the
worst performance. The performance difference between
the best and the worst performance is up to 115.1% on 4
cores on Jaguar.

Table 4. Performance comparison of CG with Class B

on Jaguar using hardware counters’ performance
CG 1x4 2x2 4x1 Diff.(%)

Runtime(s) 48.76 44.16 42.57 14.54%
D1+D2 hit ratio 92.90% 93% 93.60%
D1 hit ratio 66.50% 66.50% 66.50%

D2 hit ratio 79.20% 79.40% 79.30%
Mem-D1 BW
(MB/s) per core

1826.96 2033.86 2144.60 17.39%

L2-D1 BW
(MB/s) per core

6823.20 7774.85 8175.28 19.82%

L2-Mem BW
(MB/s) per core

947.68 1036.18 1066.93 12.58%

Comm. % 2.30% 3.20% 4.30%

Table 5. Performance comparison of EP with Class B

on Jaguar using hardware counters’ performance
EP 1x4 2x2 4x1 Diff.(%)

Runtime (s) 28.47 28.39 28.36 0.388%
D1+D2 hit ratio 99.10% 99.10% 99.10%
D1 hit ratio 99.10% 99.10% 99.10%
D2 hit ratio 3.30% 3.30% 3.30%
Mem-D1 BW
(MB/s) per core 288.54 288.71 288.73 0.066%
L2-D1 BW
(MB/s) per core 2.65 2.64 2.65 0.189%
L2-Mem BW
(MB/s) per core 144.32 144.41 144.44 0.082%
Comm. % 0 0 0

Table 6. Performance comparison of FT with Class B

on Jaguar using hardware counters’ performance
FT 1x4 2x2 4x1 Diff.(%)

Runtime (s) 52.45 38.52 36.42 44.01%
D1+D2 hit ratio 97.90% 97.90% 97.90%
D1 hit ratio 90% 90% 90%
D2 hit ratio 81.60% 81.20% 82.10%
Mem-D1 BW
(MB/s) per core 976.57 1281.864 1307.241 33.86%
L2-D1 BW
(MB/s) per core 3619.66 4770.22 4861.41 34.31%
L2-Mem BW
(MB/s) per core 418.06 572.86 582.13 39.24%
Comm. % 7.70% 7.90% 8.00%

Table 7. Performance comparison of IS with Class B

on Jaguar using hardware counters’ performance
IS 1x4 2x2 4x1 Diff.(%)

Runtime (s) 2.04 1.73 1.67 22.16%
D1+D2 hit ratio 98% 98% 98%
D1 hit ratio 96.40% 96.40% 96.40%
D2 hit ratio 50.90% 50.60% 50.40%
Mem-D1 BW
(MB/s) per core 438.78 460.79 471.49 7.45%
L2-D1 BW
(MB/s) per core 380.77 399.79 409.08 7.44%
L2-Mem BW
(MB/s) per core 230.99 246.31 251.14 8.72%
Comm. % 6.40% 8.60% 9.40%

 Tables 4-11 show the runtime (seconds), the hardware
counters’ performance and communication percentage for
NPB benchmarks with Class B from Figure 4. The
D1+D2 hit ratio shows how many memory references
were found in cache. The cache hit ratio is affected by
cache-line reuse and prefetching, and is useful because
the L2 cache serves as a victim cache for L1. “Mem-D1
BW (MB/s) per core” measures the bandwidth (MB/s) per
core for the data traffic between memory and L1 data

 CUG 2009 Proceedings 6 of 12

cache; “L2-Mem BW (MB/s) per core” measures the
bandwidth (MB/s) per core for the data traffic between L2
and memory; and “L2-D1 BW (MB/s) per core” measures
the L2 to Dcache bandwidth per core. “Comm. %” means
the communication percentage. “Diff.(%)” means the
largest performance difference percentage among
difference processor partitioning schemes, 1x4, 2x2 and
4x1.
 Table 4 indicates that there is 14.54% performance
(runtime) difference between the scheme 4x1 and 1x4 for
CG with Class B on Jaguar. When decreasing from using
4 cores per node (1x4) to 1 core per node (4x1), the
communication percentage increases a little bit because
the communication pattern changes from intra-node
communication to inter-node communication. Each cache
hit ratio does not change much, however, the memory
bandwidth per core (Mem-D1, L2-D1 and L2-Mem) has
significant impact of performance degradation of CG.
There is 12.58% or more bandwidth difference across the
different processor partitioning schemes.
 As we know, EP is an embarrassingly parallel
benchmark. Table 5 indicates that processor partitioning
has very little performance impact of EP. Table 6 presents
that there is 44.01% performance difference and 33.86%
or more bandwidth difference between the scheme 4x1
and 1x4 for FT with Class B on Jaguar. Table 7 presents
that there is 22.16% performance difference and 7.44% or
more bandwidth difference between the scheme 4x1 and
1x4, and the communication percentage increases from
6.40% to 9.40% for IS with Class B on Jaguar.

Table 8. Performance comparison of MG with Class B

on Jaguar using hardware counters’ performance
MG 1x4 2x2 4x1 Diff.(%)

Runtime (s) 8.72 5.23 4.17 109.11%
D1+D2 hit ratio 96.40% 96.40% 95.20%
D1 hit ratio 96.10% 96.10% 94.80%
D2 hit ratio 19.60% 15.30% 9.60%
Mem-D1 BW
(MB/s) per core 1479.01 2456.26 3038.94 105.47%
L2-D1 BW
(MB/s) per core 145.52 237.58 299.29 105.68%
L2-Mem BW
(MB/s) per core 810.50 1360.86 1673.36 106.46%
Comm. % 2.30% 3.80% 4.40%

Table 9. Performance comparison of LU with Class B

on Jaguar using hardware counters’ performance
LU 1x4 2x2 4x1 Diff.(%)

Runtime (s) 225.54 147.82 106.74 111.30%
D1+D2 hit ratio 95.20% 95.10% 95.20%
D1 hit ratio 94.80% 94.80% 94.80%
D2 hit ratio 10.70% 9.70% 9.60%
Mem-D1 BW
(MB/s) per core 1168.9 1822.13 2462.21 110.64%
L2-D1 BW
(MB/s) per core 82.09 124.45 177.28 115.95%
L2-Mem BW
(MB/s) per core 512.77 882.74 1211.03 136.18%
Comm. % 1.70% 3.50% 4.40%

Table 10. Performance comparison of BT with Class B
on Jaguar using hardware counters’ performance

BT 1x4 2x2 4x1 Diff.(%)
Runtime (s) 165.95 134.65 125.79 31.93%
D1+D2 hit ratio 99.30% 99.30% 99.30%
D1 hit ratio 98.40% 97.80% 97.80%
D2 hit ratio 57.30% 67.30% 67.60%
Mem-D1 BW
(MB/s) per core 273.91 288.84 295.53 7.89%
L2-D1 BW
(MB/s) per core 339.94 570.60 578.19 70.09%
L2-Mem BW
(MB/s) per core 116.58 120.43 179.23 53.74%
Comm. % 1.90% 2.20% 2.40%

Table 11. Performance comparison of SP with Class B

on Jaguar using hardware counters’ performance
SP 1x4 2x2 4x1 Diff.(%)

Runtime (s) 275.35 179.98 128.01 115.10%
D1+D2 hit ratio 92.80% 92.70% 92.70%
D1 hit ratio 91.20% 91.10% 91.1%
D2 hit ratio 52.80% 48.30% 45.1%
Mem-D1 BW
(MB/s) per core 1212.99 1861.85 2605.24 114.78%
L2-D1 BW
(MB/s) per core 266.18 409.21 589.88 121.61%
L2-Mem BW
(MB/s) per core 510.43 992.14 1328.96 160.36%
Comm. % 1.10% 1.10% 1.90%

 Table 8 shows that there is 109.11% performance
difference and 105.47% or more bandwidth difference
between the scheme 4x1 and 1x4 for MG with Class B on
Jaguar. Table 9 shows that there is 111.30% performance
difference and 110.64% or more bandwidth difference
between the scheme 4x1 and 1x4 for LU with Class B on
Jaguar. Table 10 shows that there is 31.93% performance
difference and 7.89% or more bandwidth difference
between the scheme 4x1 and 1x4 for BT with Class B on
Jaguar. Table 11 shows that there is 115.10%
performance difference and 114.78% or more bandwidth
difference between the scheme 4x1 and 1x4 for SP with
Class B on Jaguar. Tables 8-11 also show that the
communication percentage does increase a little bit with
decreasing number of cores per node.
 In brief, using processor partitioning changes the
memory access pattern and communication pattern of a
MPI program. Regarding the merits of using processor
partitioning, the hardware performance counters’ data is
conclusive. Processor partitioning has significant
performance impact of a MPI program except
embarrassingly parallel applications such as EP. The
memory bandwidth (Mem-D1, L2-D1 and L2-Mem) per
core is the primary source of performance degradation
when increasing the number of cores per node.
 Figure 5 shows the performance comparison of NPB
benchmarks with Class C on 4 cores on Jaguar using
processor partitioning. Similarly, we find that using the
scheme 4x1 always results in the best performance, and
using the scheme 1x4 results in the worst performance.

 CUG 2009 Proceedings 7 of 12

The performance difference between the best and the
worst performance is up to 127.10% on 4 cores.
Especially, there is 127.10% performance difference
(runtime) for SP between the scheme 4x1 and the 1x4.
The hardware performance counters’ performance data
for Class C also shows that the memory bandwidth per
core is the primary source of performance degradation
when increasing the number of cores per node.

0

200

400

600

800

1000

1200

Ti
m

e
(s

)

CG EP FT IS MG LU BT SP

NPB benchmarks (Class C)

Performance comparison using processor
partitioning on Jaguar (quad-core)

1x4
2x2
4x1

Figure 5. Performance comparisons of NPB

benchmarks (MPI) with Class C using processor
partitioning on Jaguar

0
20
40
60
80

100
120
140
160
180

Ti
m

e
(s

)

CG EP FT IS MG LU BT SP

NPB Benchmarks (Class B)

Performance comparison using processor
partitioning on Franklin (dual-core)

2x2
4x1

Figure 6. Performance comparisons of NPB

benchmarks (MPI) with Class B using processor
partitioning on Franklin

 Figures 6 and 7 present the performance comparison of
NPB benchmarks with Class B and C on 4 cores on
Franklin using processor partitioning. We find the similar
performance trend, where there is up to 47.09%
performance difference for Class B, and up to 52.85%
performance difference for Class C among different
processor partitioning schemes on dual-core Cray XT4
system Franklin. Especially, there is 47.09%%
performance difference and 45.89% or more bandwidth
difference between the scheme 4x1 and 2x2 for SP with
Class B on Franklin shown in Table 12. The hardware
performance counters’ performance data for NPB
benchmarks on Franklin also shows that the memory

bandwidth per core is the primary source of performance
degradation when increasing the number of cores per
node.

0
100
200
300
400
500
600
700

Ti
m

e
(s

)

CG EP FT IS MG LU BT SP

NPB benchmarks (Class C)

Performance comparison using processor
partitioning on Franklin (dual-core)

2x2
4x1

Figure 7. Performance comparisons of NPB

benchmarks (MPI) with Class C using processor
partitioning on Franklin

Table 12. Performance comparison of SP with Class B

on Franklin using hardware counters’ performance
SP 2x2 4x1 Difference (%)

Runtime (s) 169.36 115.14 47.09%
D1+D2 hit ratio 92.80% 92.80%
D1 hit ratio 91.20% 91.10%
D2 hit ratio 48.90% 45.30%
Mem-D1 BW
(MB/s) per core

1962.18 2866.102 46.07%

L2-D1 BW
(MB/s) per core

433.072 647.878 49.60%

L2-Mem BW
(MB/s) per core 976.701 1424.925 45.89%
Comm. % 1.00% 1.10%

4. Hybrid MPI/OpenMP Programs

In this section, we apply processor partitioning to a hybrid
MPI/OpenMP Gyrokinetic Toroidal Code (GTC) [ES05]
to analyze and compare the performance of the hybrid
programs, and discuss how to combine MPI processes and
OpenMP threads to achieve good performance on up to
8192 cores.

4.1 Descriptions of Hybrid MPI/OpenMP
Programs

The Gyrokinetic Toroidal code (GTC) [ES05] is a 3D
particle-in-cell application developed at the Princeton
Plasma Physics Laboratory to study turbulent transport in
magnetic fusion. GTC is currently the flagship SciDAC
fusion microturbulence code written in Frotran90, MPI
and OpenMP. Figure 8 shows a visualization of potential
contours of microturbulence for a magnetically confined
plasma using GTC. The finger-like perturbations
(streamers) stretch along the weak field side of the

 CUG 2009 Proceedings 8 of 12

poloidal plane as they follow the magnetic field lines
around the torus [SD06].

Figure 8. Potential contours of microturbulence for a

magnetically confined plasma [SD06].

 Figure 9 presents the basic steps in the GTC code.
There are 7 major functions: load, field, smooth, poisson,
charge, shift and pusher in the code. charge, pusher and
shift dominate the most of the application execution time.
The test case for GTC studied in this paper is 100

particles per cell and 100 time steps. The problem sizes
for the GTC code are listed in Table 13, where micell is
the number of ions per grid cell, mecell is the number of
electrons per grid cell, mzetamax is the total number of
toroidal grid points, and npartdom is the number of
particle domain partitions per toroidal domain.

Figure 9. Particles in cell (PIC) steps [ES05]

Table 13. Datasets with scaling the number of processors

#Procs 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192
micell 100 100 100 100 100 100 200 400 800 1600 3200 6400 12800
mecell 100 100 100 100 100 100 200 400 800 1600 3200 6400 12800
mzetamax 2 4 8 16 32 64 64 64 64 64 64 64 64
npartdom 1 1 1 1 1 1 2 4 8 16 32 64 128

4.2 Processor Partitioning for MPI Programs

In this section, we use the MPI GTC (hybrid GTC with 1
OpenMP thread) to investigate how processor partitioning
impacts the performance of MPI programs and their
components. Similar to the conclusions we drew for NPB
benchmarks, the hardware performance counters’
performance data for GTC on Franklin and Jaguar shows
that the memory bandwidth per core is the primary source
of performance degradation when increasing the number
of cores per node. For sake of simplicity, in this section,
we just focus on how processor partitioning affects the
performance of the components of the GTC code.

Table 14. Performance for different processor
partitioning schemes on 2 cores on Franklin

2 Cores 1x2 2x1 Difference (%)
Runtime 562.23 552.34 1.79%

load 3.54 3.16 11.99%
field 1.37 1.15 18.85%

smooth 2.06 2.04 1.08%
poisson 6.18 5.36 15.34%
charge 239.9 238 0.798%

shift 10.59 9.38 12.85%
pusher 296.9 291.2 1.96%

Table 15. Performance for different processor
partitioning schemes on 64 cores on Franklin

64 Cores 32x2 64x1 Difference (%)
Runtime 645.69 617.49 4.57%

load 3.47 3.15 10.13%
field 1.35 1.11 21.46%

smooth 2.04 1.9 7.53%
poisson 5.97 5.31 12.25%
charge 263.1 259.4 1.43%

shift 53.21 33.27 59.93%
pusher 316.1 312.9 1.02%

 Tables 14-15 show that different processor partitioning
schemes impact the performance of the MPI GTC on
Franklin. There is 1.79% performance difference between
the scheme 1x2 and 2x1 on 2 cores, and 4.57%
performance difference between the scheme 32x2 and
64x1 on 64 cores on Franklin. Using one MPI process per
node achieved the best performance for all cases.
Although processor partitioning has significant impacts of
the performance of the functions load, field, poisson and
shift with 11.99% or more performance difference on 2
cores and with 10.13% or more performance difference
on 64 cores, especially, there is 59.93% performance
difference on 64 cores for the function shift, the functions
charge and pusher dominate the most of the application
execution time. So the contributions from the two

 CUG 2009 Proceedings 9 of 12

dominated functions reflect the overall performance
difference.

Table 16. Performance for different processor
partitioning schemes on 4 cores on Jaguar

4 Cores 1x4 2x2 4x1 Diff.(%)
Runtime 698.45 668.2 657.47 6.23%

load 4.34 3.88 3.68 18.05%
field 1.64 1.14 1.03 58.90%

smooth 2.46 2.14 2.07 18.95%
poisson 7.51 5.94 5.47 37.19%
charge 304.8 296 292.1 4.35%

shift 16.07 11.76 10.33 55.57%
pusher 361 346.7 342.2 5.49%

Table 17. Performance for different processor

partitioning schemes on 64 cores on Jaguar
64 Cores 16x4 32x2 64x1 Diff.(%)
Runtime 792.54 733.85 715.16 10.82%

load 4.53 3.72 3.72 21.79%
field 1.73 1.10 1.09 60.39%

smooth 2.53 2.23 2.06 22.84%
poisson 6.93 5.70 5.70 21.51%
charge 333.8 317.2 313.9 6.34%

shift 55.12 34.6 22.69 142.93%
pusher 386.8 368.7 365.3 5.89%

 Tables 16-17 also show that different processor
partitioning schemes impact the performance of the MPI
GTC on Jaguar. There is 6.23% performance difference
between the scheme 1x4 and 4x1 on 4 cores, and 10.82%
performance difference between the scheme 16x4 and
64x1 on 64 cores on Jaguar. Using one MPI process per
node achieved the best performance for all cases.
Although processor partitioning also has significant
impacts of the performance of the functions load, field,
smooth, poisson and shift with 18.05% or more

performance difference on 4 cores and with 21.51% or
more performance difference on 64 cores, especially,
there is 55.57% performance difference on 4 cores and
142.93% performance difference on 64 cores for the
function shift, the functions charge and pusher dominate
the most of the application execution time. So the
contributions from the two dominated functions reflect
the overall performance difference.
 In summary, using processor partitioning, we can
explore the performance characteristics of the GTC and
its components, and understand how each component of
GTC is sensitive to different communication patterns and
memory access patterns. This should be useful to further
optimize the application performance.

4.3 Combination of MPI Processes and OpenMP
Threads

In previous section, we discussed that processor
partitioning did impact the performance of MPI programs,
and using one MPI process per node achieved the best
performance for all cases. Therefore, for the hybrid GTC,
for sake of simplicity, we use one MPI process per node
and one OpenMP thread per core on each node to measure
the performance of the hybrid GTC executed on up to
8192 cores, and compare the performance with that for its
MPI counterpart.

We use the performance on 64 cores as a baseline, and
define that a relative speedup is the base performance on
64 cores divided by the performance on N cores (N>=64).
The larger the speedup is, the better the scalability is. In
Figure 10, Franklin-MPI means the MPI GTC executed
on Franklin and Franklin-Hybrid means the hybrid GTC
executed on Franklin, and so on. Figure 10 indicates that
the execution times for the hybrid GTC on Jaguar are
more than two times larger than that for the MPI GTC,
however, its speedup indicates that GTC scales well on
Jaguar and Franklin. The hybrid GTC on Franklin has the
better scalability.

Performance of GTC

0
200
400
600
800

1000
1200
1400
1600
1800

64 128 256 512 1024 2048 4096 8192

Number of Cores

Ti
m

e
(s

)

Franklin-MPI
Franklin-Hybrid
Jaguar-MPI
Jaguar-Hybrid

Relative Speedup of GTC

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

64 128 256 512 1024 2048 4096 8192

Number of Cores

Sp
ee

du
p

Franklin-MPI
Franklin-Hybrid
Jaguar-MPI
Jaguar-Hybrid

Figure 10. MPI and Hybrid Performance Comparison for GTC

Figure 11 indicates that the MPI GTC outperforms the
hybrid MPI/OpenMP GTC on the two CMP clusters in

most cases, however, hybrid GTC scales much better than
its MPI counterpart shown in Figure 10, and outperforms

 CUG 2009 Proceedings 10 of 12

its MPI counterpart on 4096 and 8192 cores on Franklin
because of the large increase of communication time for
the MPI GTC on 4096 and 8192 cores. The ratio of MPI
to hybrid GTC on Jaguar is less than 0.5. Of course, other
combinations of MPI processes and OpenMP threads such
as half of cores for MPI processes and another half for
OpenMP thread on a CMP node can be considered,
however, our experimental results show that, for most
cases, using all cores for MPI processes per node results
in the best performance for GTC on 2048 cores or less.

Ratio of MPI to Hybrid GTC

0

0.2

0.4

0.6

0.8

1

1.2

Franklin Jaguar

Systems

R
at

io
 o

f M
PI

/H
yb

rid

64
128
256
512
1024
2048
4096
8192

Figure 11. Ratio of MPI to Hybrid Performance for

GTC on Franklin and Jaguar

5. Performance Modeling Using Prophesy
System

In this section, we use Prophesy system [TW03, WT06]
to online generate a performance model based on the
performance data collected on up to 8192 processors for
GTC on Jaguar and Franklin, and predict its performance
on 10,240 processors based on the models as shown in the
following figures.

Figure 12. Using Prophesy to generate a performance
model for GTC to predict the performance of GTC on

10,240 processors for MPI GTC on Franklin

Figures 12 and 13 present the performance models for
MPI and hybrid GTC on Franklin. Based on these
performance models, their performance on 10,240 cores is
predicted shown in the plots from Figures 12 and 13. We
find that the hybrid GTC has better scalability than the
MPI GTC because the execution of the hybrid GTC on
Franklin utilizes the inter-node MPI communication
shown in Figure 1 and intra-node OpenMP
communication.

Figure 13. Using Prophesy to generate a performance
model for GTC to predict the performance of GTC on

10,240 processors for hybrid GTC on Franklin

Figure 14. Using Prophesy to generate a performance
model for GTC to predict the performance of GTC on

10,240 processors for MPI GTC on Jaguar

Figures 14 and 15 present the performance models for
MPI and hybrid GTC on Franklin. Based on these
performance models, their performance on 10,240 cores is
predicted shown in the plots from Figures 14 and 15. We
also find that the hybrid GTC has better scalability than
the MPI GTC.

 CUG 2009 Proceedings 11 of 12

Figure 15. Using Prophesy to generate a performance
model for GTC to predict the performance of GTC on

10,240 processors for hybrid GTC on Jaguar

5. Related Work

G. Jost, H. Jin and et al [JJ03] developed two hybrid
Block Tridiagonal (BT) benchmarks, and compared them
with the NPB MPI BT and OpenMP BT benchmarks on a
Sun Fire SMP cluster. They found that the benefit of the
hybrid implementations of BT was visible on a slow
network, and the MPI BT turned out to be the most
efficient for using the high-speed interconnect or shared
memory. H. Jin, M. Frumkin and J. Yan [JF99] presented
the OpenMP implementation of NAS parallel benchmarks
based on the optimized sequential version of NPB2.3-
serial, and compared their performance with the
performance of MPI implementation of NAS parallel
benchmarks on shared memory SGI Origin 2000. They
demonstrated that OpenMP can achieve very good
performance on the shared memory system although the
scalability is worse than the MPI counterpart.
 F. Callello and D. Etiemble [CE00] compared MPI and
hybrid MPI/OpenMP (OpenMP fine grain parallelization
after profiling) for NPB 2.3 benchmarks on two IBM
Power3 systems. The hybrid MPI/OpenMP was to add
OpenMP parallelization of loop nests in the computation
part of the MPI code. Their results showed that a unified
MPI approach is better for most of NPB benchmarks,
however, the hybrid approach became better only when
fast processors make the communication performance
significant and the level of parallelization is sufficient.
 Wong et al. [WM99] presented a study of the
architectural requirements and scalability of the NAS
parallel benchmarks, and identified the factors which
affected the scalability of benchmark codes through direct
measurements and simulations on two relevant and
distinct platforms, a cluster of workstations and a cc-
NUMA SGI Origin 2000.

 In our previous work [WT07], we proposed processor
partitioning, and discussed its impacts. In contrast to these
approaches, we used processor partitioning to
systematically analyze and compare the performance of
MPI, OpenMP and hybrid programs on two dual- and
quad-core Cray XT4 systems. Because these CMP
clusters provide a natural programming paradigm for
hybrid programs, if we simply treat the CMPs as
traditional SMPs for running MPI programs, we may miss
very interesting opportunities for new architectures and
algorithm designs that can exploit these new features such
as on-chip high inter-core bandwidth and low latency. So
we investigated the performance of a hybrid
MPI/OpenMP program GTC, and presented its
performance model generated online by Prophesy system.

6. Conclusions

In this paper, we used processor partitioning to analyze
and compare the performance of MPI, OpenMP and
hybrid parallel applications on two dual- and quad-core
Cray XT4 systems, Jaguar with quad-core and Franklin
with dual-core, and conducted detailed performance
experiments to identify the major application
characteristics that affect processor partitioning. The
experimental results indicated that processor partitioning
could have a significant impact on performance of a
parallel scientific application as determined by its
communication and memory requirements. We also used
the STREAM memory benchmarks and Intel’s MPI
benchmarks to explore the performance impact of
different application characteristics. The results were then
utilized to explain the performance results of processor
partitioning using NAS Parallel Benchmarks. We found
that the memory bandwidth per core is the primary source
of performance degradation when increasing the number
of cores per node using processor partitioning.
 In addition to using these benchmarks, we also used a
flagship SciDAC fusion microturbulence code (hybrid
MPI/ OpenMP): a 3D particle-in-cell application
Gyrokinetic Toroidal Code (GTC) in magnetic fusion to
analyze and compare the performance of these MPI and
hybrid programs on the dual- and quad-core Cray XT4
systems, and studied their scalability on up to 8192 cores.
Based on the performance of GTC on up to 8192 cores,
we used Prophesy system to online generate its
performance models to predict its performance on 10,240
cores on the two Cray XT4 systems.

Acknowledgements

The authors would like to acknowledge DOE NERSC for
the use of the Franklin and Oak Ridge NCCS for the use
of Jaguar under DOE INCITE project “Performance
Evaluation and Analysis Consortium End Station”. We

 CUG 2009 Proceedings 12 of 12

would also like to thank Stephane Ethier from Princeton
Plasma Physics Laboratory and Shirley Moore from
University of Tennessee for providing the GTC code and
datasets.

About the Authors

 Xingfu Wu is a TEES Research Scientist in Department
of Computer Science & Engineering at Texas A&M
University. He is an ACM Senior member and IEEE
member. His research areas mainly focus on performance
analysis, modeling and prediction of high performance
computing applications on large-scale supercomputers
and Grids. His contact information is Department of
Computer Science & Engineering, Texas A&M
University, College Station, TX 77843. His email is
wuxf@cse.tamu.edu.
 Valerie Taylor is Department Head and Royce E.
Wisenbaker Professorship in Engineering, in Department
of Computer Science & Engineering at Texas A&M
University. Her research areas mainly focus on
performance analysis, modeling and prediction of high
performance computing applications on large-scale
supercomputers and Grids. Her contact information is
Department of Computer Science & Engineering, Texas
A&M University, College Station, TX 77843. Her email
is taylor@cse.tamu.edu.

References

[BB94] D. Bailey, E. Barszcz, et al., The NAS Parallel

Benchmarks, Tech. Report RNR-94-007, March
1994.

[CE00] F. Cappello and D. Etiemble, MPI versus
MPI+OpenMP on the IBM SP for the NAS
Benchmarks, SC2000.

[CPAT] CrayPAT: Cray Performance Tools,
https://www.nersc.gov/nusers/systems/franklin/tools.
php#craypat or http://www.nccs.gov/computing-
resources/jaguar/software/?&software =craypat.

[ES05] S. Ethier, First Experience on BlueGene/L,
BlueGene Applications Workshop, ANL, April 27-28,
2005. http://www.bgl.mcs.anl.gov/Papers/GTC_BGL
_ 20050520.pdf.

[IMB] Intel MPI Benchmarks, Users Guide and
Methodolgy Description (Version 2.3),
http://www.intel.com/cd/software/products/asmo-
na/eng/cluster/mpi/219848.htm.

[JF99] H. Jin, M. Frumkin and J. Yan, The OpenMP
Implementation of NAS Parallel Benchmarks and Its

Performance, NAS Technical Report NAS-99-011,
October 1999.

[JJ03] G. Jost, H. Jin, D. Mey, and F. Hatay, Comparing
the OpenMP, MPI, and Hybrid Programming
Paradigms on an SMP Cluster, the Fifth European
Workshop on OpenMP (EWOMP03), September
2003.

[LL07] J. Levesque, J. Larkin, et al., Understanding and
Mutigating Multicore Performance Issues on the
AMD Opteron Architecture, LBNL-62500, March 7,
2007

[McC] John D. McCalpin, STREAM: Sustainable
Memory Bandwidth in High Performance
Computers, http://www.cs.virginia.edu/stream.

[NPB3] NAS Parallel Benchmarks 3.2.1, http://www.nas.
nasa.gov/Resources/Software/npb.html.

[NCCS] NCCS Jaguar, http://www.nccs.gov/computing-
resources/jaguar/

[NERS] NERSC Franklin, http://www.nersc.gov/nusers/
systems/franklin/.

[OH07] K. Olukotun, L. Hammond, and J. Laudon, Chip
Multiprocessor Architecture: Techniques to Improve
Throughput and Latency, Morgan & Claypool
Publishers, 2007.

[SD06] Scientific Discovery, A progress report on the US
DOE SciDAC program, 2006.

[TW03] Valerie Taylor, Xingfu Wu, and Rick Stevens,
Prophesy: An Infrastructure for Performance
Analysis and Modeling System of Parallel and Grid
Applications, ACM SIGMETRICS Performance
Evaluation Review, Volume 30, Issue 4, March 2003.

[WM99] F. Wong, R. Martin, R. Arpaci-Dusseau, and D.
Culler, Architectural Requirements and Scalability of
the NAS Parallel Benchmarks, SC99, 1999.

[WT06] Xingfu Wu, Valerie Taylor, and Joseph Paris, A
Web-based Prophesy Automated Performance
Modeling System, the International Conference on
Web Technologies, Applications and Services
(WTAS2006), July 17-19, 2006, Calgary, Canada.

[WT07] Xingfu Wu and Valerie Taylor, Processor
Partitioning: An Experimental Performance Analysis
of Parallel Applications on SMP Cluster Systems, the
19th International Conference on Parallel and
Distributed Computing and Systems (PDCS 2007),
Nov. 19-21, 2007, Hotel@MIT, Cambridge, MA.

[WT09] Xingfu Wu, Valerie Taylor, Charles Lively and
Sameh Sharkawi, Performance Analysis and
Optimization of Parallel Scientific Applications on
CMP Clusters, Scalable Computing: Practice and
Experience, Vol. 10, No. 1, 2009.

