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Abstract: Chip multiprocessors (CMP) are widely used for high performance computing. While this 
presents significant new opportunities, such as on-chip high inter-core bandwidth and low inter-core 
latency, it also presents new challenges in the form of inter-core resource conflict and contention. A 
challenge to be addressed is how well current parallel programming paradigms, such as MPI, OpenMP 
and hybrid, exploit the potential offered by such CMP clusters for scientific applications. In this paper, we 
use processor partitioning as a term about how many cores per node to use for application execution to 
analyze and compare the performance of MPI, OpenMP and hybrid parallel applications on two dual- and 
quad-core Cray XT4 systems, Jaguar with quad-core at Oak Ridge National Laboratory (ORNL) and 
Franklin with dual-core at the DOE National Energy Research Scientific Computing Center (NERSC). We 
conduct detailed performance experiments to identify the major application characteristics that affect 
processor partitioning. The experimental results indicate that processor partitioning can have a significant 
impact on performance of a parallel scientific application as determined by its communication and memory 
requirements. We also use the STREAM memory benchmarks and Intel’s MPI benchmarks to explore the 
performance impact of different application characteristics. The results are then utilized to explain the 
performance results of processor partitioning using NAS Parallel Benchmarks. In addition to using these 
benchmarks, we also use a flagship SciDAC fusion microturbulence code (hybrid MPI/OpenMP): a 3D 
particle-in-cell application Gyrokinetic Toroidal Code (GTC) in magnetic fusion to analyze and compare 
the performance of these MPI and hybrid programs on the dual- and quad-core Cray XT4 systems, and 
study their scalability on up to 8192 cores. Based on the performance of GTC on up to 8192 cores, we use 
Prophesy system to online generate its performance models to predict its performance on more than 10,000 
cores on the two Cray XT4 systems. 
 
Keywords: Performance Evaluation, processor partitioning, MPI, Hybrid MPI/OpenMP, Cray XT4, 
performance modeling 
 

 
1. Introduction 
 
Today, the trend in high performance computing systems 
has been shifting towards cluster systems with CMPs. 
Further, CMPs are usually configured hierarchically to 
form a compute node of cluster systems. For instance, 
Franklin [NERS] at National Energy Research Scientific 
Computing Center (NERSC) is a dual-core Cray XT4 
system, and Jaguar [NCCS] at Oak Ridge National Lab 
(ORNL) is a quad-core Cray XT4 system. Such systems 
have two or more processor cores per node. When using 
the CMP clusters to execute a given application (MPI or 
hybrid), one issue to be addressed is how many processor 
cores per node to use for efficient execution. It is 
expected that the best number is dependent upon 
application characteristics and system configuration. In 
this paper, we define processor partitioning as a term 

about how many processors per node to use for 
application execution, and conduct detailed performance 
experiments to identify the major application 
characteristics that affect processor partitioning. We also 
use processor partitioning to systematically analyze and 
compare the performance of MPI, OpenMP and hybrid 
programs on two Cray XT4 clusters. 

The experiments conducted for this work utilize CMP 
clusters with different number of cores per node. Franklin 
has 2 cores per node, and Jaguar has 4 cores per node. 
Further, each system has a different node memory 
hierarchy. We use Intel’s MPI benchmarks, IMB [IMB] 
and the MPI and OpenMP STREAM memory 
benchmarks [McC] to provide initial performance 
analysis of MPI and OpenMP programs on the two CMP 
clusters. The standard MPI and OpenMP programming 
paradigms of NAS Parallel Benchmarks (NPB) Version 
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3.2.1 [NPB3] make it possible for us to use these 
benchmarks as a basis for a systematically comparative 
performance analysis of MPI and OpenMP programs on 
the CMP clusters. In addition to using these benchmarks, 
we also use a large-scale scientific application: a 3D 
particle-in-cell application Gyrokinetic Toroidal Code 
(GTC) in magnetic fusion [ES05] to analyze and compare 
the performance of these MPI and hybrid programs. 

Our experimental results indicate that, on the two CMP 
clusters, using processor partitioning changes the memory 
access pattern and communication pattern of a MPI 
program. Processor partitioning has significant 
performance impact of a MPI program except 
embarrassingly parallel applications such as EP. The 
memory bandwidth per core is the primary source of 
performance degradation when increasing the number of 
cores per node using processor partitioning. The results 
for hybrid GTC executed on up to 8192 cores indicates 
that MPI versions of these programs outperform their 
OpenMP and hybrid counterparts in most cases, but 
hybrid GTC scales better than its MPI counterpart and 
outperforms its MPI counterpart on 4096 and 8192 cores 
on Franklin.  

The remainder of this paper is organized as follows. 
Section 2 discusses the architectures of two large-scale 
CMP clusters used in our experiments, and compares their 
performance using IMB and STREAM benchmarks. 
Section 3 analyzes and compares performance of MPI and 
OpenMP programs using NPB 3.2.1. Section 4 
investigates performance and scalability of hybrid 
MPI/OpenMP programs on these CMP clusters, and use 
processor partitioning to analyze and compare the 
performance of the MPI GTC and its components. Section 
5 uses Prophesy system [TW03] to online generate 
performance models for GTC and predicts its 
performance on 10,240 cores. Section 6 discusses some 
related work and concludes this paper in Section 7.  

In the remainder of this paper, we assume that the job 
scheduler for each CMP cluster always dispatches one 
process to one core or one thread to one core. We describe 
a processor partitioning scheme as NxM whereby N 
denotes the number of nodes with M cores per node. 
All experiments were executed multiple times to insure 
consistency of the performance data. The unit for an 
execution time is seconds. 
 
2. Execution Platforms and Performance 
 
In this section, we briefly describe two large-scale CMP 
clusters used for our experiments, use Intel’ MPI 
Benchmark Ping Pong [IMB] to measure and compare 
MPI bandwidth and latency on these CMP clusters, and 
use MPI and OpenMP STREAM memory benchmark 
[McC] to measure and compare sustainable memory 
bandwidth for MPI and OpenMP programs on these CMP 
clusters. 

2.1 Descriptions of Execution Platforms 
 
Details about the two large-scale CMP clusters used for 
our experiments are given in Table 1. These systems 
differ in the following main features: number of 
processors per node, configurations of node memory 
hierarchy, CPU speed and multi-core processors.  
     

Table 1. Specifications of two dual- and quad-core 
Cray XT4 architectures 

Configurations Franklin Jaguar 
Total Cores 19,320 31,328 
Total Nodes 9,660 7,832 
Cores/chip 2 4 
Cores / Node 2 4 
CPU type 2.6 GHz 

Opteron 
2.1 GHz 
Opteron 

Memory/Node 4GB 8GB 
L1 Cache/CPU 64/64 KB 64/64 KB 
L2 Cache/chip 1MB 2MB 
Network 3D-Torus 3D-Torus 

     
    NERSC Franklin [NERS] is a dual-core Cray XT4 
system with 9,660 compute nodes. Each node has dual-
core AMD Opteron processors and 4 GB of memory, and 
is connected to a dedicated SeaStar2 router through 
Hypertransport with a 3D Torus topology. The L2 cache 
is a victim cache which holds only the cache lines evicted 
from L1, whereas most data loaded from memory go 
directly to L1. 

National Center for Computational Sciences Jaguar 
[NCCS] at ORNL is a quad-core Cray XT4 system with 
7,832 compute nodes. Each node has quad-core AMD 
Opteron processors and 8 GB of memory, and is 
connected to a dedicated SeaStar router through 
Hypertransport with a 3D Torus topology.  

 
2.2 MPI Bandwidth and Latency Comparison 
 
In this section, we use Intel’s MPI benchmark PingPong 
[IMB] to measure uni-directional point-to-point 
performance between two processes within the same node 
(one process per processor, the processor partitioning 
scheme 1x2) for intra-node performance, and between 
two nodes (one process per node, the processor 
partitioning scheme 2x1) for inter-node performance on 
Franklin and Jaguar.  
    The results shown in Figure 1 indicate almost doubling 
of the latency and a significant reduction in bandwidth 
when going from communication within a node to 
communication between nodes using PingPong on 
Franklin and Jaguar. Jaguar has much lower inter-core 
latency and higher inter-core bandwidth than that for 
Franklin. Both systems have similar inter-node latency 
and bandwidth for message sizes of less than 128KB. 
Jaguar has a little bit lower inter-core latency and higher 
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inter-core bandwidth than that for Franklin for message sizes of 128KB or more. 
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Uni-directional Intra-node Bandwidth Comparison Using PingPong
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Figure 1. Uni-directional Intra/Inter-node Latency and Bandwidth Comparison Using PingPong 
 

Table 2.  Sustainable Memory bandwidth on Franklin 
Program Type MPI OpenMP 

Processor partitioning scheme 1x2 2x1 2 threads 
Memory Bandwidth (MB/s) 4026.53 6710.89 3565.71 

 
Table 3.  Sustainable Memory bandwidth on Jaguar 

Program Type MPI OpenMP 
Processor partitioning scheme 1x4 2x2 4x1 4 threads 

Memory Bandwidth (MB/s) 5752.19 10066.33 10066.33 5606.77 
 
 

2.3 Sustainable Memory Bandwidth Comparison 
 
In this section, we use the MPI and OpenMP versions of 
the STREAM memory benchmark [McC] to investigate 
memory performance for different processor partitioning 
schemes. The STREAM benchmark is a synthetic 
benchmark program, written in standard Fortran 77 and 
MPI for MPI version and in C and OpenMP for OpenMP 
version. It measures the performance of four long vector 
operations (double precision): COPY (i.e., a(i)=b(i)), 
SCALE (i.e., a(i)=q*b(i)), SUM (i.e., a(i)=b(i)+c(i)), and 
TRIAD (i.e., a(i)=b(i)+q*c(i)), and it is specifically 
intended to eliminate the possibility of data re-use (either 
in registers or caches). The TRIAD allows chained/ 
overlapped/fused multiple/add operations. In this paper, 
we only use unit-stride TRIAD benchmark to measure the 
sustainable memory bandwidth. We find that most CMP 
clusters we used only support array sizes of at most 4M 

( 222 ) with 8 bytes per double precision word because of 
lack of sufficient memory to start the benchmark. So we 
set the array size 4M for MPI and OpenMP STREAM 
benchmarks. 

Because Franklin has 2 cores per node, we use MPI 
and OpenMP STREAM benchmarks to measure the 
sustainable bandwidths on 2 cores. For different processor 
partitioning schemes, Table 2 shows the sustainable 
memory bandwidth increases from 4026.53MB/s to 
6710.89MB/s with decreasing the number of cores per 
node from 2 cores per node to 1 core per node for using 2 
MPI processes because fewer MPI processes compete for 
memory. We also see that the sustainable memory 
bandwidth for using 2 OpenMP threads is smaller than 
that for using 2 MPI processes for the scheme 1x2.  

Table 3 shows that the sustainable memory bandwidth 
for using 4 OpenMP threads is smaller than that for any 
schemes for using 4 MPI processes, and the memory 
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bandwidths for two schemes 2x2 and 4x1 are the same on 
Jaguar. These memory bandwidths are larger than that for 
the scheme 1x4.  

In summary, Tables 2-3 present the sustainable 
memory bandwidths for MPI and OpenMP on the Dual-
core and quad-core Cray XT4 clusters. This indicates that 
processor partitioning significantly impacts the 
sustainable memory bandwidth. Hence, using fewer cores 
per node results in better sustainable memory bandwidth, 
and using the maximum number of cores per node does 
not result in the highest sustainable memory bandwidth.  
 
3. MPI and OpenMP Programs 
 
In this section, we use the standard NPB benchmarks 
(MPI and OpenMP) (NPB version 3.2.1) with problem 
size of Class B to analyze and compare the performance 
of MPI and OpenMP programs on Franklin and Jaguar. 
NPB has 8 benchmarks (5 kernel benchmarks: CG, EP, 
FT, IS, and MG; 3 application benchmarks: BT, LU, and 

SP). BT and SP require a square number of cores for 
execution and others are executed on a power-of-two 
number of cores. The compiler ftn with the options -O3 –
fastsse is used to compile all benchmarks on both 
systems. 
 
3.1 Performance Comparison 
 
Figure 2 shows MPI and OpenMP performance 
comparison and ratio using NPB on Franklin, where CG-
M stands for MPI version of CG and CG-O stands for 
OpenMP version of CG, and so on. The ratio of MPI to 
OpenMP performance on Franklin indicates that MPI 
versions of CG, EP and IS outperform their OpenMP 
counterparts. However, OpenMP versions of FT and MG 
outperform their MPI counterparts. Especially, the 
OpenMP version of FT outperforms its MPI counterpart 
by a factor of more than 1.32. Note that the OpenMP LU 
does not work on both Franklin and Jaguar.  

  
Performance Comparison of MPI and OpenMP Performance on Franklin 
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Figure 2. MPI and OpenMP performance comparison for Class B on Franklin 
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Figure 3. MPI and OpenMP performance comparison for Class B on Jaguar 
 

    Figure 3 shows MPI and OpenMP performance 
comparison and ratio using NPB on Jaguar. The ratio of 
MPI to OpenMP performance on Jaguar indicates that 
MPI versions of CG, EP and IS outperform their OpenMP 
counterparts. However, OpenMP versions of FT, MG, BT 
and SP outperform their MPI counterparts. Especially, the 
OpenMP versions of FT and SP outperform their MPI 
counterparts by a factor of more than 1.52. 
    In summary, Figures 2 and 3 show MPI and OpenMP 
performance comparison and ratio using NPB on each 

compute node of Franklin and Jaguar. The ratio of MPI to 
OpenMP performance indicates that the MPI versions of 
CG, IS, and EP outperform their OpenMP counterparts, 
however, the OpenMP versions of FT, MG, BT and SP 
outperform their MPI counterparts. As described in 
[BB94] for MPI implementations and in [JF99] for 
OpenMP implementations, OpenMP implementations are 
to reduce the communication overhead of MPI at the 
expense of introducing OpenMP overhead due to thread 
creation and increased memory bandwidth contention to 
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take advantage of on-chip high bandwidth and low 
latency provided by the CMP clusters. In addition, for 
instance, the OpenMP implementation of FT also 
eliminates a 3D data array which was needed in the MPI 
version. This change has improved the memory utilization 
such that OpenMP FT outperforms its MPI counterpart. 
So which parallel programming is the most suitable for 
CMP clusters depends on the nature of an application, 
available parallel programming software and algorithms, 
and compiler support on the CMP clusters. 
 
3.2 Processor Partitioning for MPI NPB 
 
In this section, we use MPI version of NPB benchmarks 
(CG, EP, FT, IS, MG, LU, BT and SP) to investigate how 
and why processor partitioning impacts their performance 
on Jaguar and Franklin. Note that the Cray Performance 
Analysis Tools (CrayPAT) [CPAT] is used to instrument 
the benchmark codes to gather run-time performance 
statistics for our analysis. Two groups of hardware 
counters (groups 2 and 3) are used in our experiments to 
understand the cache and memory performance in a 
USER section generated by CrayPAT.  
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Figure 4. Performance comparisons of NPB 

benchmarks (MPI) with Class B using processor 
partitioning on Jaguar 

 
    Figure 4 shows the performance comparison of NPB 
benchmarks with Class B on 4 cores on Jaguar using 
processor partitioning. We find that using the processor 
partitioning scheme 4x1 always results in the best 
performance, and using the scheme 1x4 results in the 
worst performance. The performance difference between 
the best and the worst performance is up to 115.1% on 4 
cores on Jaguar. 
 
Table 4. Performance comparison of CG with Class B 

on Jaguar using hardware counters’ performance 
CG 1x4 2x2 4x1 Diff.(%) 

Runtime(s) 48.76 44.16 42.57 14.54% 
D1+D2 hit ratio 92.90% 93% 93.60%  
D1 hit ratio 66.50% 66.50% 66.50%  

D2 hit ratio 79.20% 79.40% 79.30%  
Mem-D1 BW 
(MB/s) per core 

1826.96 2033.86 2144.60 17.39% 

L2-D1 BW  
(MB/s) per core 

6823.20 7774.85 8175.28 19.82% 

L2-Mem BW 
(MB/s) per core 

947.68 1036.18 1066.93 12.58% 

Comm. % 2.30% 3.20% 4.30%  
 
Table 5. Performance comparison of EP with Class B 

on Jaguar using hardware counters’ performance 
EP 1x4 2x2 4x1 Diff.(%) 

Runtime (s) 28.47 28.39 28.36 0.388% 
D1+D2 hit ratio 99.10% 99.10% 99.10%  
D1 hit ratio 99.10% 99.10% 99.10%  
D2 hit ratio 3.30% 3.30% 3.30%  
Mem-D1 BW 
(MB/s) per core 288.54 288.71 288.73 0.066% 
L2-D1 BW  
(MB/s) per core 2.65 2.64 2.65 0.189% 
L2-Mem BW 
(MB/s) per core 144.32 144.41 144.44 0.082% 
Comm. % 0 0 0  

 
Table 6. Performance comparison of FT with Class B 

on Jaguar using hardware counters’ performance 
FT 1x4 2x2 4x1 Diff.(%) 

Runtime (s) 52.45 38.52 36.42 44.01% 
D1+D2 hit ratio 97.90% 97.90% 97.90%  
D1 hit ratio 90% 90% 90%  
D2 hit ratio 81.60% 81.20% 82.10%  
Mem-D1 BW 
(MB/s) per core 976.57 1281.864 1307.241 33.86% 
L2-D1 BW  
(MB/s) per core 3619.66 4770.22 4861.41 34.31% 
L2-Mem BW 
(MB/s) per core 418.06 572.86 582.13 39.24% 
Comm. % 7.70% 7.90% 8.00%  

 
Table 7. Performance comparison of IS with Class B 

on Jaguar using hardware counters’ performance 
IS 1x4 2x2 4x1 Diff.(%) 

Runtime (s) 2.04 1.73 1.67 22.16% 
D1+D2 hit ratio 98% 98% 98%  
D1 hit ratio 96.40% 96.40% 96.40%  
D2 hit ratio 50.90% 50.60% 50.40%  
Mem-D1 BW 
(MB/s) per core 438.78 460.79 471.49 7.45% 
L2-D1 BW 
(MB/s) per core 380.77 399.79 409.08 7.44% 
L2-Mem BW 
(MB/s) per core 230.99 246.31 251.14 8.72% 
Comm. % 6.40% 8.60% 9.40%  

 
    Tables 4-11 show the runtime (seconds), the hardware 
counters’ performance and communication percentage for 
NPB benchmarks with Class B from Figure 4. The 
D1+D2 hit ratio shows how many memory references 
were found in cache. The cache hit ratio is affected by 
cache-line reuse and prefetching, and is useful because 
the L2 cache serves as a victim cache for L1. “Mem-D1 
BW (MB/s) per core” measures the bandwidth (MB/s) per 
core for the data traffic between memory and L1 data 
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cache; “L2-Mem BW (MB/s) per core” measures the 
bandwidth (MB/s) per core for the data traffic between L2 
and memory; and “L2-D1 BW (MB/s) per core” measures 
the L2 to Dcache bandwidth per core. “Comm. %” means 
the communication percentage. “Diff.(%)” means the 
largest performance difference percentage among 
difference processor partitioning schemes, 1x4, 2x2 and 
4x1. 
    Table 4 indicates that there is 14.54% performance 
(runtime) difference between the scheme 4x1 and 1x4 for 
CG with Class B on Jaguar. When decreasing from using 
4 cores per node (1x4) to 1 core per node (4x1), the 
communication percentage increases a little bit because 
the communication pattern changes from intra-node 
communication to inter-node communication. Each cache 
hit ratio does not change much, however, the memory 
bandwidth per core (Mem-D1, L2-D1 and L2-Mem) has 
significant impact of performance degradation of CG. 
There is 12.58% or more bandwidth difference across the 
different processor partitioning schemes.  
    As we know, EP is an embarrassingly parallel 
benchmark. Table 5 indicates that processor partitioning 
has very little performance impact of EP. Table 6 presents 
that there is 44.01% performance difference and 33.86% 
or more bandwidth difference between the scheme 4x1 
and 1x4 for FT with Class B on Jaguar. Table 7 presents 
that there is 22.16% performance difference and 7.44% or 
more bandwidth difference between the scheme 4x1 and 
1x4, and the communication percentage increases from 
6.40% to 9.40% for IS with Class B on Jaguar. 
 
Table 8. Performance comparison of MG with Class B 

on Jaguar using hardware counters’ performance 
MG 1x4 2x2 4x1 Diff.(%) 

Runtime (s) 8.72 5.23 4.17 109.11% 
D1+D2 hit ratio 96.40% 96.40% 95.20%  
D1 hit ratio 96.10% 96.10% 94.80%  
D2 hit ratio 19.60% 15.30% 9.60%  
Mem-D1 BW 
(MB/s) per core 1479.01 2456.26 3038.94 105.47% 
L2-D1 BW  
(MB/s) per core 145.52 237.58 299.29 105.68% 
L2-Mem BW  
(MB/s) per core 810.50 1360.86 1673.36 106.46% 
Comm. % 2.30% 3.80% 4.40%  

 
Table 9. Performance comparison of LU with Class B 

on Jaguar using hardware counters’ performance 
LU 1x4 2x2 4x1 Diff.(%) 

Runtime (s) 225.54 147.82 106.74 111.30% 
D1+D2 hit ratio 95.20% 95.10% 95.20%  
D1 hit ratio 94.80% 94.80% 94.80%  
D2 hit ratio 10.70% 9.70% 9.60%  
Mem-D1 BW  
(MB/s) per core 1168.9 1822.13 2462.21 110.64% 
L2-D1 BW  
(MB/s) per core 82.09 124.45 177.28 115.95% 
L2-Mem BW  
(MB/s) per core 512.77 882.74 1211.03 136.18% 
Comm. % 1.70% 3.50% 4.40%  

Table 10. Performance comparison of BT with Class B 
on Jaguar using hardware counters’ performance 

BT 1x4 2x2 4x1 Diff.(%) 
Runtime (s) 165.95 134.65 125.79 31.93% 
D1+D2 hit ratio 99.30% 99.30% 99.30%  
D1 hit ratio 98.40% 97.80% 97.80%  
D2 hit ratio 57.30% 67.30% 67.60%  
Mem-D1 BW  
(MB/s) per core 273.91 288.84 295.53 7.89% 
L2-D1 BW  
(MB/s) per core 339.94 570.60 578.19 70.09% 
L2-Mem BW  
(MB/s) per core 116.58 120.43 179.23 53.74% 
Comm. % 1.90% 2.20% 2.40%  

 
Table 11. Performance comparison of SP with Class B 

on Jaguar using hardware counters’ performance 
SP 1x4 2x2 4x1 Diff.(%) 

Runtime (s) 275.35 179.98 128.01 115.10% 
D1+D2 hit ratio 92.80% 92.70% 92.70%  
D1 hit ratio 91.20% 91.10% 91.1%  
D2 hit ratio 52.80% 48.30% 45.1%  
Mem-D1 BW  
(MB/s) per core 1212.99 1861.85 2605.24 114.78% 
L2-D1 BW  
(MB/s) per core 266.18 409.21 589.88 121.61% 
L2-Mem BW  
(MB/s) per core 510.43 992.14 1328.96 160.36% 
Comm. % 1.10% 1.10% 1.90%  

 
    Table 8 shows that there is 109.11% performance 
difference and 105.47% or more bandwidth difference 
between the scheme 4x1 and 1x4 for MG with Class B on 
Jaguar. Table 9 shows that there is 111.30% performance 
difference and 110.64% or more bandwidth difference 
between the scheme 4x1 and 1x4 for LU with Class B on 
Jaguar. Table 10 shows that there is 31.93% performance 
difference and 7.89% or more bandwidth difference 
between the scheme 4x1 and 1x4 for BT with Class B on 
Jaguar. Table 11 shows that there is 115.10% 
performance difference and 114.78% or more bandwidth 
difference between the scheme 4x1 and 1x4 for SP with 
Class B on Jaguar. Tables 8-11 also show that the 
communication percentage does increase a little bit with 
decreasing number of cores per node.  
    In brief, using processor partitioning changes the 
memory access pattern and communication pattern of a 
MPI program. Regarding the merits of using processor 
partitioning, the hardware performance counters’ data is 
conclusive. Processor partitioning has significant 
performance impact of a MPI program except 
embarrassingly parallel applications such as EP. The 
memory bandwidth (Mem-D1, L2-D1 and L2-Mem) per 
core is the primary source of performance degradation 
when increasing the number of cores per node. 
    Figure 5 shows the performance comparison of NPB 
benchmarks with Class C on 4 cores on Jaguar using 
processor partitioning. Similarly, we find that using the 
scheme 4x1 always results in the best performance, and 
using the scheme 1x4 results in the worst performance. 



 CUG 2009 Proceedings 7 of 12 

The performance difference between the best and the 
worst performance is up to 127.10% on 4 cores. 
Especially, there is 127.10% performance difference 
(runtime) for SP between the scheme 4x1 and the 1x4. 
The hardware performance counters’ performance data 
for Class C also shows that the memory bandwidth per 
core is the primary source of performance degradation 
when increasing the number of cores per node. 
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Figure 5. Performance comparisons of NPB 

benchmarks (MPI) with Class C using processor 
partitioning on Jaguar 
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Figure 6. Performance comparisons of NPB 

benchmarks (MPI) with Class B using processor 
partitioning on Franklin 

 
    Figures 6 and 7 present the performance comparison of 
NPB benchmarks with Class B and C on 4 cores on 
Franklin using processor partitioning. We find the similar 
performance trend, where there is up to 47.09% 
performance difference for Class B, and up to 52.85% 
performance difference for Class C among different 
processor partitioning schemes on dual-core Cray XT4 
system Franklin. Especially, there is 47.09%% 
performance difference and 45.89% or more bandwidth 
difference between the scheme 4x1 and 2x2 for SP with 
Class B on Franklin shown in Table 12. The hardware 
performance counters’ performance data for NPB 
benchmarks on Franklin also shows that the memory 

bandwidth per core is the primary source of performance 
degradation when increasing the number of cores per 
node. 
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Figure 7. Performance comparisons of NPB 

benchmarks (MPI) with Class C using processor 
partitioning on Franklin 

 
Table 12. Performance comparison of SP with Class B 

on Franklin using hardware counters’ performance 
SP 2x2 4x1 Difference (%) 

Runtime (s) 169.36 115.14 47.09% 
D1+D2 hit ratio 92.80% 92.80%  
D1 hit ratio 91.20% 91.10%  
D2 hit ratio 48.90% 45.30%  
Mem-D1 BW  
(MB/s) per core 

 
1962.18 2866.102 46.07% 

L2-D1 BW  
(MB/s) per core 

 
433.072 647.878 49.60% 

L2-Mem BW  
(MB/s) per core 976.701 1424.925 45.89% 
Comm. % 1.00% 1.10%  

 
 
4. Hybrid MPI/OpenMP Programs 
 
In this section, we apply processor partitioning to a hybrid 
MPI/OpenMP Gyrokinetic Toroidal Code (GTC) [ES05] 
to analyze and compare the performance of the hybrid 
programs, and discuss how to combine MPI processes and 
OpenMP threads to achieve good performance on up to 
8192 cores. 
 
4.1 Descriptions of Hybrid MPI/OpenMP 
Programs 
 
The Gyrokinetic Toroidal code (GTC) [ES05] is a 3D 
particle-in-cell application developed at the Princeton 
Plasma Physics Laboratory to study turbulent transport in 
magnetic fusion. GTC is currently the flagship SciDAC 
fusion microturbulence code written in Frotran90, MPI 
and OpenMP. Figure 8 shows a visualization of potential 
contours of microturbulence for a magnetically confined 
plasma using GTC. The finger-like perturbations 
(streamers) stretch along the weak field side of the 
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poloidal plane as they follow the magnetic field lines 
around the torus [SD06].  
     

 
Figure 8. Potential contours of microturbulence for a 

magnetically confined plasma [SD06]. 
 
    Figure 9 presents the basic steps in the GTC code. 
There are 7 major functions: load, field, smooth, poisson, 
charge, shift and pusher in the code. charge, pusher and 
shift dominate the most of the application execution time. 
The test case for GTC studied in this paper is 100 

particles per cell and 100 time steps. The problem sizes 
for the GTC code are listed in Table 13, where micell is 
the number of ions per grid cell, mecell is the number of 
electrons per grid cell, mzetamax is the total number of 
toroidal grid points, and npartdom is the number of 
particle domain partitions per toroidal domain.  

 

 
Figure 9. Particles in cell (PIC) steps [ES05] 

 

 
Table 13. Datasets with scaling the number of processors 

#Procs 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 
micell 100 100 100 100 100 100 200 400 800 1600 3200 6400 12800 
mecell 100 100 100 100 100 100 200 400 800 1600 3200 6400 12800 
mzetamax 2 4 8 16 32 64 64 64 64 64 64 64 64 
npartdom 1 1 1 1 1 1 2 4 8 16 32 64 128 

 
4.2 Processor Partitioning for MPI Programs 
 
In this section, we use the MPI GTC (hybrid GTC with 1 
OpenMP thread) to investigate how processor partitioning 
impacts the performance of MPI programs and their 
components. Similar to the conclusions we drew for NPB 
benchmarks, the hardware performance counters’ 
performance data for GTC on Franklin and Jaguar shows 
that the memory bandwidth per core is the primary source 
of performance degradation when increasing the number 
of cores per node. For sake of simplicity, in this section, 
we just focus on how processor partitioning affects the 
performance of the components of the GTC code. 
 

Table 14.  Performance for different processor 
partitioning schemes on 2 cores on Franklin  

2 Cores 1x2 2x1 Difference (%) 
Runtime 562.23 552.34 1.79% 

load 3.54 3.16 11.99% 
field 1.37 1.15 18.85% 

smooth 2.06 2.04 1.08% 
poisson 6.18 5.36 15.34% 
charge 239.9 238 0.798% 

shift 10.59 9.38 12.85% 
pusher 296.9 291.2 1.96% 

 

Table 15.  Performance for different processor 
partitioning schemes on 64 cores on Franklin  

64 Cores 32x2 64x1 Difference (%) 
Runtime 645.69 617.49 4.57% 

load 3.47 3.15 10.13% 
field 1.35 1.11 21.46% 

smooth 2.04 1.9 7.53% 
poisson 5.97 5.31 12.25% 
charge 263.1 259.4 1.43% 

shift 53.21 33.27 59.93% 
pusher 316.1 312.9 1.02% 

 
    Tables 14-15 show that different processor partitioning 
schemes impact the performance of the MPI GTC on 
Franklin. There is 1.79% performance difference between 
the scheme 1x2 and 2x1 on 2 cores, and 4.57% 
performance difference between the scheme 32x2 and 
64x1 on 64 cores on Franklin. Using one MPI process per 
node achieved the best performance for all cases. 
Although processor partitioning has significant impacts of 
the performance of the functions load, field, poisson and 
shift with 11.99% or more performance difference on 2 
cores and with 10.13% or more performance difference 
on 64 cores, especially, there is 59.93% performance 
difference on 64 cores for the function shift, the functions 
charge and pusher dominate the most of the application 
execution time. So the contributions from the two 
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dominated functions reflect the overall performance 
difference. 
 

Table 16.  Performance for different processor 
partitioning schemes on 4 cores on Jaguar 

4 Cores 1x4 2x2 4x1 Diff.(%) 
Runtime 698.45 668.2 657.47 6.23% 

load 4.34 3.88 3.68 18.05% 
field 1.64 1.14 1.03 58.90% 

smooth 2.46 2.14 2.07 18.95% 
poisson 7.51 5.94 5.47 37.19% 
charge 304.8 296 292.1 4.35% 

shift 16.07 11.76 10.33 55.57% 
pusher 361 346.7 342.2 5.49% 

 
Table 17.  Performance for different processor 

partitioning schemes on 64 cores on Jaguar 
64 Cores 16x4 32x2 64x1 Diff.(%) 
Runtime 792.54 733.85 715.16 10.82% 

load 4.53 3.72 3.72 21.79% 
field 1.73 1.10 1.09 60.39% 

smooth 2.53 2.23 2.06 22.84% 
poisson 6.93 5.70 5.70 21.51% 
charge 333.8 317.2 313.9 6.34% 

shift 55.12 34.6 22.69 142.93% 
pusher 386.8 368.7 365.3 5.89% 

 
    Tables 16-17 also show that different processor 
partitioning schemes impact the performance of the MPI 
GTC on Jaguar. There is 6.23% performance difference 
between the scheme 1x4 and 4x1 on 4 cores, and 10.82% 
performance difference between the scheme 16x4 and 
64x1 on 64 cores on Jaguar. Using one MPI process per 
node achieved the best performance for all cases. 
Although processor partitioning also has significant 
impacts of the performance of the functions load, field,  
smooth, poisson and shift with 18.05% or more 

performance difference on 4 cores and with 21.51% or 
more performance difference on 64 cores, especially, 
there is 55.57%  performance difference on 4 cores and 
142.93% performance difference on 64 cores for the 
function shift, the functions charge and pusher dominate 
the most of the application execution time. So the 
contributions from the two dominated functions reflect 
the overall performance difference.  
    In summary, using processor partitioning, we can 
explore the performance characteristics of the GTC and 
its components, and understand how each component of 
GTC is sensitive to different communication patterns and 
memory access patterns. This should be useful to further 
optimize the application performance. 

 
4.3 Combination of MPI Processes and OpenMP 
Threads 
 
In previous section, we discussed that processor 
partitioning did impact the performance of MPI programs, 
and using one MPI process per node achieved the best 
performance for all cases. Therefore, for the hybrid GTC, 
for sake of simplicity, we use one MPI process per node 
and one OpenMP thread per core on each node to measure 
the performance of the hybrid GTC executed on up to 
8192 cores, and compare the performance with that for its 
MPI counterpart.  

We use the performance on 64 cores as a baseline, and 
define that a relative speedup is the base performance on 
64 cores divided by the performance on N cores (N>=64). 
The larger the speedup is, the better the scalability is. In 
Figure 10, Franklin-MPI means the MPI GTC executed 
on Franklin and Franklin-Hybrid means the hybrid GTC 
executed on Franklin, and so on. Figure 10 indicates that 
the execution times for the hybrid GTC on Jaguar are 
more than two times larger than that for the MPI GTC, 
however, its speedup indicates that GTC scales well on 
Jaguar and Franklin. The hybrid GTC on Franklin has the 
better scalability. 
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Figure 10. MPI and Hybrid Performance Comparison for GTC 
 

Figure 11 indicates that the MPI GTC outperforms the 
hybrid MPI/OpenMP GTC on the two CMP clusters in 

most cases, however, hybrid GTC scales much better than 
its MPI counterpart shown in Figure 10, and outperforms 
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its MPI counterpart on 4096 and 8192 cores on Franklin 
because of the large increase of communication time for 
the MPI GTC on 4096 and 8192 cores. The ratio of MPI 
to hybrid GTC on Jaguar is less than 0.5. Of course, other 
combinations of MPI processes and OpenMP threads such 
as half of cores for MPI processes and another half for 
OpenMP thread on a CMP node can be considered, 
however, our experimental results show that, for most 
cases, using all cores for MPI processes per node results 
in the best performance for GTC on 2048 cores or less. 
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Figure 11. Ratio of MPI to Hybrid Performance for 

GTC on Franklin and Jaguar 
 
5. Performance Modeling Using Prophesy 
System 
 
In this section, we use Prophesy system [TW03, WT06] 
to online generate a performance model based on the 
performance data collected on up to 8192 processors for 
GTC on Jaguar and Franklin, and predict its performance 
on 10,240 processors based on the models as shown in the 
following figures. 
 

 
Figure 12. Using Prophesy to generate a performance 
model for GTC to predict the performance of GTC on 

10,240 processors for MPI GTC on Franklin 
 

Figures 12 and 13 present the performance models for 
MPI and hybrid GTC on Franklin. Based on these 
performance models, their performance on 10,240 cores is 
predicted shown in the plots from Figures 12 and 13. We 
find that the hybrid GTC has better scalability than the 
MPI GTC because the execution of the hybrid GTC on 
Franklin utilizes the inter-node MPI communication 
shown in Figure 1 and intra-node OpenMP 
communication. 
 

 
Figure 13. Using Prophesy to generate a performance 
model for GTC to predict the performance of GTC on 

10,240 processors for hybrid GTC on Franklin 
 

 
Figure 14. Using Prophesy to generate a performance 
model for GTC to predict the performance of GTC on 

10,240 processors for MPI GTC on Jaguar 
 
Figures 14 and 15 present the performance models for 
MPI and hybrid GTC on Franklin. Based on these 
performance models, their performance on 10,240 cores is 
predicted shown in the plots from Figures 14 and 15. We 
also find that the hybrid GTC has better scalability than 
the MPI GTC. 
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Figure 15. Using Prophesy to generate a performance 
model for GTC to predict the performance of GTC on 

10,240 processors for hybrid GTC on Jaguar 
 
5. Related Work 
 
G. Jost, H. Jin and et al [JJ03] developed two hybrid 
Block Tridiagonal (BT) benchmarks, and compared them 
with the NPB MPI BT and OpenMP BT benchmarks on a 
Sun Fire SMP cluster. They found that the benefit of the 
hybrid implementations of BT was visible on a slow 
network, and the MPI BT turned out to be the most 
efficient for using the high-speed interconnect or shared 
memory. H. Jin, M. Frumkin and J. Yan [JF99] presented 
the OpenMP implementation of NAS parallel benchmarks 
based on the optimized sequential version of NPB2.3-
serial, and compared their performance with the 
performance of MPI implementation of NAS parallel 
benchmarks on shared memory SGI Origin 2000. They 
demonstrated that OpenMP can achieve very good 
performance on the shared memory system although the 
scalability is worse than the MPI counterpart. 
    F. Callello and D. Etiemble [CE00] compared MPI and 
hybrid MPI/OpenMP (OpenMP fine grain parallelization 
after profiling) for NPB 2.3 benchmarks on two IBM 
Power3 systems. The hybrid MPI/OpenMP was to add 
OpenMP parallelization of loop nests in the computation 
part of the MPI code. Their results showed that a unified 
MPI approach is better for most of NPB benchmarks, 
however, the hybrid approach became better only when 
fast processors make the communication performance 
significant and the level of parallelization is sufficient.  
    Wong et al. [WM99] presented a study of the 
architectural requirements and scalability of the NAS 
parallel benchmarks, and identified the factors which 
affected the scalability of benchmark codes through direct 
measurements and simulations on two relevant and 
distinct platforms, a cluster of workstations and a cc-
NUMA SGI Origin 2000. 

    In our previous work [WT07], we proposed processor 
partitioning, and discussed its impacts. In contrast to these 
approaches, we used processor partitioning to 
systematically analyze and compare the performance of 
MPI, OpenMP and hybrid programs on two dual- and 
quad-core Cray XT4 systems. Because these CMP 
clusters provide a natural programming paradigm for 
hybrid programs, if we simply treat the CMPs as 
traditional SMPs for running MPI programs, we may miss 
very interesting opportunities for new architectures and 
algorithm designs that can exploit these new features such 
as on-chip high inter-core bandwidth and low latency. So 
we investigated the performance of a hybrid 
MPI/OpenMP program GTC, and presented its 
performance model generated online by Prophesy system. 
 
6. Conclusions 
 
In this paper, we used processor partitioning to analyze 
and compare the performance of MPI, OpenMP and 
hybrid parallel applications on two dual- and quad-core 
Cray XT4 systems, Jaguar with quad-core and Franklin 
with dual-core, and conducted detailed performance 
experiments to identify the major application 
characteristics that affect processor partitioning. The 
experimental results indicated that processor partitioning 
could have a significant impact on performance of a 
parallel scientific application as determined by its 
communication and memory requirements. We also used 
the STREAM memory benchmarks and Intel’s MPI 
benchmarks to explore the performance impact of 
different application characteristics. The results were then 
utilized to explain the performance results of processor 
partitioning using NAS Parallel Benchmarks. We found 
that the memory bandwidth per core is the primary source 
of performance degradation when increasing the number 
of cores per node using processor partitioning.  
    In addition to using these benchmarks, we also used a 
flagship SciDAC fusion microturbulence code (hybrid 
MPI/ OpenMP): a 3D particle-in-cell application 
Gyrokinetic Toroidal Code (GTC) in magnetic fusion to 
analyze and compare the performance of these MPI and 
hybrid programs on the dual- and quad-core Cray XT4 
systems, and studied their scalability on up to 8192 cores. 
Based on the performance of GTC on up to 8192 cores, 
we used Prophesy system to online generate its 
performance models to predict its performance on 10,240 
cores on the two Cray XT4 systems. 
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