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Superconductivity: a state of matter with zero
electrical resistivity

Discovery 1911

Heike Kamerlingh Onnes (1853-1926)
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Superconductor repels magnetic field
Meissner and Ochsenfeld, Berlin 1933

Microscopic Theory for Superconductivity 1957

PHYSICAL REVIEW

VOLUME 108,

NUMBER 5§ DECEMBER 1, 1957

Theory of Superconductivity*

J. Barpeen, L. N. Coorer,t anp J. R. Scurierrer}
Department of Physics, University of Illinois, Urbana, Illinois

(Received July 8, 1957)

A theory of superconductivity is presented, based on the fact
that the interaction between electrons resulting from virtual
exchange of phonons is attractive when the energy difference
between the clectrons states involved is less than the phonon
energy, 7uw. It is favorable to form a superconducting phase when
this attractive interaction dominates the repulsive screened
Coulomb interaction. The normal phase is described by the Bloch
individual-particle model. The ground state of a superconductor,
formed from a linear combination of normal state configurations
in which electrons are virtually excited in pairs of opposite spin
and momentum, is lower in energy than the normal state by
amount proportional to an average (fw)*, consistent with the
isotope effect. A mutually orthogonal set of excited states in

one-to-one correspondence with those of the normal phase is
obtained by specifying occupation of certain Bloch states and by
using the rest to form a linear combination of virtual pair con-
figurations. The theory yields a sccond-order phase transition and
a Meissner effect in the form suggested by Pippard. Calculated
values of specific heats and penetration depths and their temper-
ature variation are in good agreement with experiment. There is
an energy gap for individual-particle excitations which decreases
from about 3.5kT. at T=0°K to zero at T.. Tables of matrix
elements of single-particle operators between the excited-state
superconducting wave functions, useful for perturbation expan-
sions and calculations of transition probabilities, are given.
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BCS Theory generally accepted in the early 1970s



Fermions, Bosons, and Cooper Pairs o
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Superconductivity in the cuprates
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Progress has been made in numerous
areas relevant to applications

Highest transition temperature (7¢) observed in a superconduc

No predictive power for T¢ in known materials

No predictive power for design of new SC materials

No explanation for other unusual properties of

cuprates (pseudogap, transport, ...)

Only partial consensus on which materials aspects are

essential for high-T. superconductivity
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The role of inhomogeneities

Stripes in neutron scattering:
Tranquada et al. '95,
Mook et al., ‘00, ...

Random gap _
modulations above T
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Random SC gap ,
modulations in STM &
(BSCCO): '

Lang et al. 02

Charge ordered
“checkerboard” state
(Na doped cuprates):
Hanaguri et al. 04
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From cuprate materials to the Hubbard model

La,CuOq

IF - Sr doping

Introduces

CuO; plane

Holes form Zhang-Rice
singlet states O-px

/

s ="
4 4 y —_—— \
A » —

- —
£ ___,"——'
v'._____;‘—--. ! A

Single band
2D Hubbard
model



2D Hubbard model and its physics

‘ “ Half filling: number of carriers = number of sites
t

A
Formation of a magnetic moment ,f’—“

‘ ‘ ‘ when U Is large enough 1 U
/.ﬂ v
‘ ‘ ‘ Antiferromagnetic alignment of
neighboring moments —
U ) ) x ¥ I J = 421U

Energy

v
1. When t>> U; 2. When U >> 8t at half filling (not doped)
Model describes a metal with Model describes a “Mott Insulator” with antiferromagnetic ground state
band width W=8t (as seen experimentally seen in undoped cuprates)

W=8t
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Hubbard model for the cuprates

‘ “ Half filling: number of carriers = number of sites
t

Formation of a magnetic moment l f—,

‘ ‘ ‘ when U Is large enough 1 AU
/" v
‘ ‘ ‘ Antiferromagnetic alignment of
neighboring moments —
U J ] x ¥ I | = 482U

Energy

o
3. Parameter range relevant for superconducting cuprates
U=8t

. . No simple solution!
Finite doping levels (0.05 — 0.25)

Typical values: U~10eV; t~0.9eV; J~0.2eV;  (0.1eV ~ 10° Kelvin)



Hubbard model for the cuprates

llllllllllllllllllllllllllllllllllllllllll

600 |-
©
(&)
 —
K
(&)
(7]
° 400 |-
®
= .
- Zhang & Rice
g
(]
o
= Bednorz & Mdller
S 200}
D
o

6970717273747576 77 7879 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 00 01 02 03 04 05 06 07 08

Publication year

3. Parameter range relevant for superconducting cuprates
U=8t

. . No simple solution!
Finite doping levels (0.05 — 0.25)

Typical values: U~10eV; t~0.9eV; J~0.2eV;  (0.1eV ~ 10° Kelvin)



The challenge: a (quantum) multi-scale problem

Antiferromagnetic
correlations / nano-scale
gap fluctuations
LOZ.xSf;CUO4
50 T 1
'S 40 (1998) | g
c L Thurston et al. (| . N
i _ ke
5 Superconductivity
B 20F (‘ ,
T | (macroscopic)
8 10k 3,
0

N~ 10%

On-site Coulomb
repulsion (~A)

Comp|exity ~ 4N Gomes et al. (2007)



Quantum cluster theories

Maier et al., Rev. Mod. Phys. '05

On-site Coulomb
repulsion (~A)

Explicitly treat
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Systematic solution and analysis of the pairing
mechanism in the 2D Hubbard Model

e First systematic solution demonstrates existence of a superconducting transition in
2D Hubbard model  Maieret al., Phys. Rev. Lett. 95, 237001 (2005)
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® Study the mechanism responsible for
pairing in the model

— Analyze the particle-particle vertex

— Pairing is mediated by spin fluctuations
Maier, et al., Phys. Rev. Lett. 96 47005 (2006)




Moving toward a resolution of the debate over
the pairing mechanism in the 2D Hubbard model

® “We have a mammoth (U) and an elephant (J) in our refrigerator - do we care much if
there is also a mouse?”
- P.W. Anderson, Science 316, 1705 (2007)

- see also www.sciencemag.org/cgi/eletters/316/5832/1705
“Scalapino is not a glue sniffer”

® Relative importance of resonant valence bond
and spin-fluctuation mechanisms
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Green’s functions in quantum many-body theory

Noninteracting Hamiltonian & Ho = [—%VQ + V(F)]
Green'’s function [i% - H()] Go(F,t, T, t') = 6(F — 7)6(t — t)

Fourier transform & analytic continuation: = =w+ic  GE(F,2) = [z — Hy]

Hubbard Hamiltonian 7 =t > ¢l cjo +U anw Nio = ¢l i

<19>,0

Hide symmetry in algebraic properties of field operators  cioCjor + ¢jorCic =0
cchr + cJr = 04050
Green’s function  Go(ri, 7575, 7') = — <T %(T)c}U(T/)>

Spectral representation  Go(k, 2) = [z — (k)] "

G(k,z) = [z — eo(k) — Z(k, 2)] "



Sketch of the Dynamical Cluster Approximation

Size N clusters Reciprocal space
pky Z(Z, ]C)

Bulk lattice ¢ K
FARI RIS P — |
A e
"/""’/ o "/"'"/"' Integrate out remaining l PEA
/"A’/i’ /"A’/ /"A’/ degrees of freedom
LYz
A AL I py
’i”"’ "'"""/ Embedded cluster with
A’//"A’/ /"A’/ i’/" periodic boundary conditions

Solve many-body problem with quantum Monte Carole on cluster
>Essential assumption: Correlations are short ranged



DCA method: self-consistently determine the
“effective” medium

Go(R, 2)

———————————————————————————————————————————————————————————————————————————————

DCA cluster
mapping

________________________________________________________________________________



Structure of DCA++ code: generic programming

DCA++  Category Number Lines of Code
Functions 23 170
Operators 29 562
Generic Classes 171 23,185
Regular Classes 34 2,005
Total 25,922

Symmetry
JSON Package
Parser
PSIMAG

PsiMag Implementation philosophy:
Consider PsiMag as a systematic extension to the C++ Standard Template Library
(STL) using as much as possible the generic programming paradigm




Hirsch-Fye Quantum Monte Carole (HF-QMC) for
the quantum cluster solver ... sre poys rev Lot 56 2501 (1998)

Partition function & Metropolis Monte Carlo 7 = / e~ EXI/keT gy

Acceptance criterion for M-MC move: min{1, Pl =Elxrrln

Partition function & HF-QMC:  Z ~ Z det[GCSSZ', lv)\_l]
S;,10

N. N; ~ 102
matrix of dimensions Ny X IV N; = N. x N; ~ 2000

\
Acceptance:  min{l,det|G.({s;,}x)|/ det|Ge({si,  Frt1)]}

o YA Ve Y.\ o N
{300 O A A Y A M Y N N |

Update of accepted Green's function:
Gc({sia l}k—l—l) — Gc({8i7 l}k) + a X bk



HF-QMC with Delayed updates (or Ed updates)

GC({SZ', l}k_|_1) — GC({SZ', l}k) + ag X btk

222222 2 2N 2 N R A R

N N\ N AT e — N
A Y A e A A A A A |

Gc({sial}k—l—l) — GC({SZ',Z}O) -+ [ao\a1|...\ak] X [bo‘bl“bk]t

Complexity for k updates remains O(kN;)

But we can replace k rank-1 updates with one matrix-matrix multiply plus
some additional bookkeeping.



Performance improvement with delayed updates

N.=16 N; =150 N; = 2400

6000
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2000 ®

time to solution [sec]

0 20 40 60 80 100

delay (k)



MultiCore/GPU/Cell: threaded programming

{ Multi-core processors. OpenMP (or just MPI)

Core 0 Core 1 Core2 Core3

NVIDIA G80 GPU: CUDA, cuBLAS

Shared L3 Cache

Setup / Rstr/ ZCull

rocessors —
pls at 575 MHz & | 5‘5 E% %8
| memory bandwidth [-2-—f-—-—f-— |EREE EEsE s
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GPU Programming Concepts

* “Streaming”

— input and output arrays differ

* Data Parallel (SIMD)

— same code, many times

* Threads to Hide Latency

—~10° threads in flight at once

* Gather Semantics

— Required for good performance

Setup / Rstr / ZCull




System layout for GPU

Speedup of HF-QMC updates (2GHz Opteron vs. NVIDIA 8800GTS GPU):

- 9x for offloading BLAS to GPU & transferring all data
(completely transparent to application code)

- 13x for offloading BLAS to GPU & lazy data transfer
- 19x for full offload HF-updates & full lazy data transfer

“o,,
~
~

GDDR3 DRAM at 2GHz (eff)

....

.........



DCA++ with mixed precision

Run HF-QMC in single precision

solver

—_
o

o
o

Mean Leading Eigenvalue
o o
N o))

Keep the rest of the code, in particular
cluster mapping in double precision

o
N}

o
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Double Precision

—o— Single Precision
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Inverse Temperature




DCA++ with mixed precision

Run HF-QMC in single precision

solver

Multiple runs to compute T¢:

© Double Precision
A CPU Mixed Precision
O GPU Mixed Precision

— Mean
0.021
0.020 -
(&
I
0.018 g A g
Keep the rest of the code, in particular 0.017
cluster mapping in double precision
0.016




Performance improvement with delayed and
mixed precision updates

N.=16 N; =150 N; = 2400

6000
®
@ mixed precision
B |double precision
S 4000 =
D,
-
O
=
B 2000 o " 2 mm =
o
D ® ®
g ® o o o
0
o) 20 40 60 80 100

delay (k)



Disorder and inhomogeneities

Hubbard Model with random disorder (eg. in U) ... need to disorder-average cluster Green function
Ng
v 1
H(V) — —1{ Z Cl-LOCjO + Z Uz( )niTnii GC(XZ — Xj, Z) — ﬁ Z GZ(X@,XJ', Z)
<7;j>70- ( ¢ r=1

(v) : _ _ ol6

communication

Algorithm 1 DCA/QMC Algorithm with QMC cluster solver
(lines 5-10), disorder averaging (lines 4, 11-12), and DCA
cluster mapping (line 3, 13)

/ random walker \

QMC cluster

1: Set initial self-energy solver
2: repeat

3:  Compute the coarse-grained Green Function

4.  for Every disorder configuration (in parallel) do
5 Perform warm-up steps

6: for Every Markov chain (in parallel) do

7

8

9

disorder
configurations

Update auxiliary fields
Measure Green Function and observables
end for

10: Accumulate measurements over Markov chains
11:  end for
12:  Accumulate measurements over disorder configurations.
13:  Re-compute the self-energy
14: until self consistency is reached

DCA cluster
mapping




DCA++ code from a concurrency point of view

Shared memory or data parallel model

lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll
*

T pthread / CUDA
NS N/ [up to 103 Markov
78 78 chains
[~
QMC cluster : MPI AllReduce
solver MPI Broadcast
disorder / / .
configurations / Problem of interest:
~102 - 10° disorder :
configurations :
DCA cluster :

mapping

*
llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll

Distributed memory model



DCA++: strong scaling on HF-QMC

Speedup

4000

3000 -

2000 -

1000 -

Updates > cgemm

Gl /l - Measurement = zgemm

Warm up ' Sample QMC time

® Speedup
—— |deal
?
0 1000 2000 3000 4000

Nproc

/ random walker. \

QMC cluster
solver

DCA cluster
mapping



Weak scaling on Cray XT4

o HF-QMC: 122 Markov chains on 122 cores oo
e \Veak scaling over disorder configurations 1
1 478§ 16 32 64| 128 404

1200 1712 cores @ 23 G
'3' \ : cores . Z=
0, cores @ 2.1 GHZ. o © 49,044-core chimera
ﬂn ® o ® ®
S
E’ 1100 146
@
7))
o 17,812 cores @ 2.3 GHz =
D 1000
k=

100 1000 10000

Number of Cores



Cray XT5 portion of Jaguar @ NCCS
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Weak scaling on Cray XT4/XT5
(with buggy use of MPI AllReduce

e HF-QMC: 122 Markov chains on 122 cores

e \Veak scaling over disorder configurations
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100000
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DCA++ code from a concurrency point of view

/ random walker: \

cluster
solver

disorder
configurations

DCA cluster
mapping

\

/ e
A

update completing
sub-communicator

~over disorder ...

MPI AllReduce

/
/
/

\~
N\ ~J
D0 4

pthread / CUDA

up to 10° Markov
chains

MPI AllReduce
MPI Broadcast

Problem of interest:

~102 - 10° disorder
configurations



Sustained performance of DCA++ on Cray XT5

Weak scaling with number disorder configurations, each running on 128 Markov chains on

128 cores (16 nodes) - 16 site cluster and 150 time slides
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Enhancement of simulation capability since 2003
10

Cray XT5
8-core, dual-socket
Cray XT3 T W 2018
Single-core | 1.4 PF
26 TF 300 TB, 10 PB
I [ 2011
-
- I 2008 \ Effects of disorder in Hubbard model
Cray X1
ply sy 2007 DCA++ (mix.) sustains 1,350 TF
At 2006
| 2005 . .
GPU work motivates mixed
2004 \ precision QMC/DCA
QMC/DCA Pairing mechanism in 2D Hubbard model
~6 TF _
QMC/DCA HF-QMC with Delayed updates
~1TF

“Discover” Bets-clusters - Hubbard model has superconducting transition



From sustained gigaflop/s to teraflop/s to
petaflop/s and beyond

Evolution of the fastest sustained performance

in real simulations ~1 Exaflop/s
Shuttle SRB Analysis ray Gigaflop Award ~1 07 prOCGSSing UnitS
'ﬁ 1.35 Petaflop/s ?
Cray XT5 {
, 1.5 10° processor cores
1.02 Teraflop/s e o

Cray Tse \
1.5 103 processors B

1.3 Gigaflop/s
Cray YMP
8 processors

..\
=
A

One of seven Gigaflop First sustained TFlop/s  First sustained PFlop/s
Award winners in 1989 Gordon Bell Prize 1998 Gordon Bell Prize 2008

Eidgendssische Technische Hochschule Ziirich \%@

Swiss Federal Institute of Technology Zurich SWISS National Supercomputlng Centre
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DCA++ Story: team*, collaborators,
___. resources, and fundmg

, Thomas Maier 1| o i D. Scalapino
2 Paul Kent ! M. Jarrell
. TSchulthess |1 J. Vetter

Application software Trey White
ngzalo Alvarez v staff at NCCS & Cray
Ién(;k[e) iummgrs v1 Comp. mathematics & many others

'Azevedo

: Computing resources:

Jeremy M.eredlth VI Computer Science NCCS @ ORNL
Markus Eisenbach v¥1 Funding:
Don Maxwell Computer Center '
RNL-LDRD

Jeff Larkin * 1 Hardware venor ODOE-ASCR:
John Levesque ) DOE-BES

*names order according to background




Questions / Comments?



