
Debugging Scalable Applications on the XT

Chris Gottbrath TotalView Technologies

May 1, 2009

Abstract

Debugging at large scale on the Cray XT can involve a combination of interactive and non-interactive

debugging; the paper will review subset attach and provide some recommendations for interactive de-

bugging at large scale, and will introduce the TVScript feature of TotalView which provides for non-

interactive debugging. Because many users of Cray XT systems are not physically co-located with the

HPC centers on which they develop and run their applications, the paper will also cover the new To-

talView Remote Display Client, which allows remote scientists and computer scientists to easily create a

connection over which they can use TotalView interactively. The paper will conclude with a brief update

on two topics presented at the previous two CUG meetings: memory debugging on the Cray XT and

Record and Replay Debugging.

Keywords: Troubleshooting, Debugging, Scalable Debugging, Batch Debugging, Remote Debugging,

Memory Debugging, Reverse Debugging

1 Introduction

1.1 The challenges of HPC debugging

Debugging isn’t something that most scientists and
developers find enjoyable. We generally feel better
if, after a day’s worth of work, we can say that we
added some new functionality to our programs or
were able to make progress towards using our codes
to accomplish scientific or engineering goals. While
it can occasionally be satisfying to put a particularly
vexing bug to rest, it is hard not to find debugging
an unpleasant though necessary stage in the devel-
opment and maintenance of the software we develop
and use.

Developers working in the domain of High Per-
formance Computing (HPC) have it especially hard.
They have some of the most complex applications
and they run in some of the most challenging en-
vironments for debugging that one can find. Ap-
plications written for modern HPC systems such as
the Cray XT are fundamentally concurrent and dis-
tributed because modern HPC systems are essen-
tially distributed memory clusters with fast inter-
node network connections and great parallel stor-
age. The distributed nature of the computation
means that the developers need to tackle numer-
ous challenges beyond simply getting their applica-

tion to run. Distributed data must be kept in sync
without incurring unnecessary communication so ap-
plications typically have non-trivial communication
back and forth between processes. Calculations on
the entire “problem dataset” often proceed only as
fast as the slowest node (an oversimplification, but
generally true) so care has to be taken to either dis-
tribute work opportunistically or constantly monitor
and manage the amount of work being performed on
each node of the cluster – load balancing the system
so that none of the nodes are left idle while other
parts of the system catch up. As the “main loop” of
the code is parallelized any remaining serial routines
may come to dominate the runtime, an effect called
Amdahl’s law, so even seemingly simple tasks like
loading and storing data may become the subject
of scrutiny and require some kind of optimization.
[1, 5]

The Message Passing Interface (MPI) library in-
terface standard that is nearly ubiquitous in HPC
is extremely powerful and flexible, giving develop-
ers access to multiple types of communication and
a great degree of freedom to optimize. [6, 2] MPI
developers have access to both blocking and non-
blocking point-to-point communication, one-sided
communication (though this capability is rarely
used), and highly optimized collective operations. A
wide range of applications using MPI have been able

1

Cray User Group 2009 Proceedings



to achieve levels of scalability that are quite remark-
able, running efficiently across tens of thousands of
processors in large terra- and peta-scale systems.
However the richness of the interface means that
it is possible for both straightforwad and very sub-
tle defects to be introduced. These errors can lead
to numerical errors, crashes, communication dead-
locks, hangs, and race conditions. Sometimes these
kinds of errors manifest at any scale, so the scien-
tist or developer can troubleshoot the program at
a small scale in a “corner” of the machine. More
rarely the defect may only manifest when the pro-
gram is run at a large scale across a significant por-
tion of the machine. How does one perform effective
troubleshooting and problem solving on applications
that are spread across hundreds or thousands of pro-
cesses?

As systems grow one of the current trends is that
the amount of memory available per processor core is
either not increasing or is actually decreasing. This
puts additional pressure on developers and scientists
who are developing new applications, maintaining
and extending existing applications or porting ap-
plications to new architectures. This pressure is to
make sure that as the program runs it does not get
itself into a position where it makes a request for
memory that exceeds the memory that is physically
available on the system. This means that develop-
ers need to be very aware of any possible defects in
memory management within their programs. Lan-
guages such as C, C++ and Fortran 90 place the
management of certain types of memory explicitly in
the hands of developers, making it possible for appli-
cations to lose track of, or leak, allocated memory.
Even a slow leak can cause the program to gobble
up precious memory and lead to a fault, often in an
unrelated portion of the code later as the program
executes. Even in programs that don’t leak devel-
opers are under pressure to make sure that they un-
derstand memory usage patterns so that they know
where they might look within their program to make
optimizations and trade-offs that can make more ef-
ficient use of the limited memory available to them.

HPC systems are managed by the centers and
organizations that run them to make sure that they
aren’t wasted and that they are available to their
users. This typically means that they are made
available to the user community via some form
of batch queue-based job management framework.
This is generally set up to allow a mix of different
sized jobs to run in such a way that the utilization

fraction of the machine is high and that users get
fair access to the machine. No one who should have
access gets blocked out of the system. Jobs that are
submitted are generally non-interactive with a pro-
gram file, some sort of configuration file, and then
some set of input data files to process. One of the
side effects of the fact that the system is based on a
queue of work is that there is a delay between sub-
mitting a job and having resources allocated to run
that job. This delay isn’t that big a deal with a
non-interactive job but can be frustrating when the
developer needs to actually interact with the appli-
cation.

HPC applications are very rarely, if ever, devel-
oped by a single individual. Instead they are the
result of collaborative effort by teams, sometimes
large, teams of individuals with different specializa-
tions. Many of them make extensive use of external
libraries and have a modular structure that allows
scientists to concentrate on contributing according
to their area of expertise without having to become
specialists in parallel programming. Defects in any
one bit of code can potentially cause failures in other
sections of the application. Troubleshooting the re-
sulting error will take the developer into code that
may be unfamiliar to them. In some cases the debug-
ging process will get to the point of narrowing down
the potential location of a defect to a specific area
of code. Scientists and developers need to clearly
communicate this diagnosis to their collaborators in
a way that the collaborator can take action without
having to repeat the entire troubleshooting process.

It is sometimes true that the entire development
and use of an HPC application happens “under one
roof” in the same geographic location, in other cases
it is likely that some or even all of the developers
collaborating together to develop and maintain an
HPC code are widely scattered in terms of geogra-
phy. Logging in and getting a command line prompt
via the secure shell (SSH) application is straight-
forward for many users. Establishing a graphical
connection that performs well enough to enable in-
teractive use of a tool like a debugger is an entirely
different matter. Many users report that they’ve
tried to use the “X forwarding” capability within the
SSH package across wide area networks. X traffic is
highly sensitive to latency because a lot of the opera-
tions require many round trips of “small” packets of
information. Most users report that regardless of the
bandwidth of their connection long distance X for-
warding is slow to the point of being unusable. This

2

Cray User Group 2009 Proceedings



makes interactive debugging over long distances a
serious practical challenge for many users.

1.1.1 What is TotalView?

TotalView is a source code debugger that is specif-
ically designed to help HPC developers address
the technical and organizational challenges outlined
above. [9]It supports both interactive and batch de-
bugging of distributed parallel applications on HPC
systems including Cray’s XT series of supercomput-
ers. As an interactive debugger it allows users to
control and examine the behavior of their parallel
application, providing them with the kind of infor-
mation that they need to troubleshoot and resolve
a wide range of defects. As a batch debugger it can
provide automated detection of certain classes of er-
rors and support a trace-style troubleshooting model
where the developer chooses points and variables of
interest and generates a file that gives detailed infor-
mation about the execution of the program, specifi-
cally tracing the variables and locations of interest.
It works with the languages, libraries, and environ-
ments that are important to scientists and devel-
opers in HPC and provides specific capabilities to
simplify troubleshooting MPI applications. It in-
cludes a mechanism for easily establishing secure
and fast graphical connections that widely scattered
users and collaborators can use to interactively de-
bug on supercomputer resources that are located at
major HPC centers. Users can store detailed data
from within the program to enable later compari-
son and to share with collaborators who may be in
a better position to respond to the errors that are
identified.

1.2 This paper

The remainder of this paper is organized as follows.
I’ll first give a functional and architectural overview
of TotalView as a debugger and as a memory debug-
ger. Then I’ll discuss three specific enhancements
that have been added to TotalView specifically to
address the major challenges outlined above; inter-
active subset debugging, batch debugging, and re-
mote debugging. I’ll close with a brief update on
some upcoming developments for memory debugging
and reverse debugging on the Cray XT.

2 TotalView on the Cray XT

2.1 TotalView as a Parallel Debugger

TotalView provides a powerful environment for de-
bugging parallel programs. It allows users to easily
control and inspect applications that are composed
of not just a single process but sets of thousands of
processes running across the many compute nodes of
a supercomputer. At any time during a debugging
session the user can choose to focus on any specific
process – inspecting individual variables; looking at
the call stack; setting breakpoints, watchpoints, and
controlling that process; calling functions; and eval-
uating expressions within the context of that pro-
cess. The user might choose instead to look at the
parallel application as a whole – looking at the call
tree graph which represents the function call stacks
of all the processes in a compact and graphical form;
looking at variables across all the processes (scalar
variables are represented as arrays indexed across
the set of processes, 1-d arrays as 2-d arrays, etc..);
setting breakpoints, barrier points, and watchpoints
across the whole application; running, synchroniz-
ing, and controlling the application as a whole; or
looking at characteristics that are specific to parallel
applications, such as the state of the MPI message
queues. Alternately the user can choose to define,
examine and control various sets of related processes
through TotalView’s dynamic process and thread set
mechanism.

TotalView supports debugging applications writ-
ten in C, C++, Fortran 77 or Fortran 90 and is
compatible with a number of compilers. It supports
applications that make use of MPI[6] and interoper-
ates with the yod launcher mechanism on the Cray
XT Series.

2.1.1 TotalView Parallel Debugger Archi-

tecture

TotalView debugger provides for parallel debugging
by itself becoming a parallel application – a single
front-end process provides the user with a point of
interaction with a graphical or command line inter-
face while a set of lightweight debugging agents are
created in the cluster to interact directly with the
many processes that constitute the parallel program
being debugged.

On an XT cluster running Linux on the compute
nodes TotalView creates a set of debugging agents
(called tvdsvr processes) alongside the users target

3

Cray User Group 2009 Proceedings



program. On Cray XT systems that run Catamount
a variation of this architecture where the tvdsvr pro-
cesses run on service nodes is used to provide the
same debugging capabilities.

3 TotalView as a Memory De-

bugger

TotalView debugger implements an integrated mem-
ory debugging tool that provides vital information
about the state of memory. It reports some er-
rors directly as they occur, provides graphical and
interactive maps of the heap memory within indi-
vidual processes and makes information like the set
of leaked blocks easy to obtain. TotalView’s mem-
ory debugging is designed to be used with parallel
and multiprocess target applications – it provides
detailed information about individual processes as
well as high level memory usage statistics across all
the processes that make up a large parallel applica-
tion. TotalView’s memory debugging is lightweight
and has a very low runtime performance cost.

The memory debugging capabilities are also
available to users in stand alone form as a product
called ReplayEngine. [7]

3.0.2 TotalView Memory Debugging Archi-

tecture

TotalView accomplishes memory debugging on the
Cray XT through the use of a technique called inter-
position. [4]TotalView provides a library called the
Heap Interposition Agent (HIA) that is inserted be-
tween the user’s application code and the malloc()
subsystem. This library defines functions for each of
the memory allocation API functions and it is these
functions that are initially called by the program
whenever it allocates, reallocates, or frees a block of
memory. Interposition differs from simply replacing
the malloc library with a debug malloc in that the
interposition library does not actually fulfill any of
the operations itself – it arranges for the program’s
malloc API function calls to be forwarded to the un-
derlying heap manager that would have been called
in the absence of the HIA. The effect of interposing
with the HIA is that the program behaves the same
way it would without the HIA except that the HIA
is able to intercept all of the memory calls and per-
form bookkeeping and sanity checks before and after
the underlying function is called.

The bookkeeping that the HIA library does is
to build up and maintain a record of all of the ac-
tive allocations on the heap as the program runs.
For each allocation in the heap it records not just
the position and size of the block but also a full
function call stack representing what the program
was doing when the block was allocated. The san-
ity checks that the HIA performs are the kinds of
things that allow the HIA to detect malloc() errors
such as freeing the same block of memory twice or
trying to reallocate a pointer that points to a stack
address. Depending on how it has been configured,
the HIA can also detect whether some bounds errors
have occurred. The information that the HIA col-
lects is used by the TotalView debugger to provide
the user with an accurate picture of the state of the
heap that can be inspected just like any other part
of the program’s state during the debugging session.

The interposition technique used by TotalView
was chosen in part because it provides for lightweight
memory debuggging. For most programs that users
will encounter the run time performance of the pro-
gram being debugged is very similar to the perfor-
mance that would be encountered without the HIA
being interposed. This is absolutely critical for HPC
applications where a heavyweight approach that sig-
nificantly slowed the target program down might
well make the run time of programs exceed the pa-
tience of developers, administrators and job sched-
ulers.

4 Interactive Subset Debug-

ging

Many programs that are important to HPC have a
degree of regularity. Every process may not behave
exactly the same way but there are often patterns
or relationships between processes that behave sim-
ilarly. This presents the possibility that when trou-
bleshooting developers may be able to make progress
without attaching a debugger to every single process
that makes up the job. Instead in some cases it is
sufficient to attach the debugger to a representative
sample of the processes that make up the job. This
is a very compelling idea when the overall job size is
in the thousands or even tens of thousands of pro-
cesses.

TotalView provides a mechanism to focus on an
arbitrary subset of the program. The subset at-
tach mechanism can be engaged either when the user

4

Cray User Group 2009 Proceedings



launches the parallel job or at any point after the de-
bugger is already attached to the parallel program.
If it is used during start up the whole job will launch
but those processes that are not selected will run
freely without any debugger intervention. The de-
bugger, which is typically licensed by users based
on the number of processes they intend to debug,
will count for licensing purposes only those processes
that it is attached to. At any later point the user can
reopen the subset attach dialog and select a smaller,
larger or simply different subset. The debugger will
attach to new processes that are selected and detach
from processes that are deselected.

The basic mechanism of the subset attach GUI
is a list of processes from which users can select the
ones they want to attach to. Filters are also available
to make it easy to specify subsets based on communi-
cation patterns observed within the program. When
working with a subset of processes it is possible that
one of those processes is communicating, perhaps re-
ceiving a message from, a process that is part of the
job but not part of the subset. This makes it easy to
expand the set of processes based on this relation-
ship.

Debugger operations after launch have a runtime
performance and responsiveness that scales with the
number of attached processes, rather than the whole
job size. Certain debugger operations involve coor-
dinating all the processes, which can take more than
a few seconds if the user is asking for that coordina-
tion to go on across thousands of processes.

Processess that are not attached are not under
the control of the debugger, and will run without
interruption. The MPI communication mechanisms
don’t time out so any detached process will simply
wait when it gets to the point at which it needs in-
formation from an attached process that might be
paused. If a detached process encounters a fatal er-
ror the debugger will not be in a position to “catch”
it for analysis and the error will cause the process to
exit. Generally the MPI runtime will detect the exit
and terminate the session as a whole. This behavior
means that if a different process is failing each time
that a program is run the best strategy is to attach
to all the processes.

5 Using TVScript in Batch

The traditional use of a debugger involves the de-
veloper actively interacting with the debugging tool
while the program is running. While that is a great

way to explore program behavior there are a num-
ber of reasons developers might prefer a different
approach. First, they are often used to batch sub-
missions when working with the supercomputer and
they may wish to fit their debugging into that mode
rather than work out how to do an interactive ses-
sion. Second, at some sites there is either no pro-
vision for an interactive session or if provisions only
for small-scale runs. Third, they may want to survey
the behavior of a slice of their program over time.
Finally, they may want to do a parametric study of
the defect, running the program while varying a spe-
cific input parameter to try to understand how the
program behaves differently.

TotalView supports non-interactive debugging
with a feature called TVScript. TVScript allows the
developer to define a set of points of interest within
the program, perhaps functions or lines within a
function. Each time any process or thread within
the program reaches these points an event is gen-
erated. Events can also be generated in response
to other program behavior such as segementation
faults and memory errors. For each event the devel-
oper can define an action to be taken. The action
typically logs some information of interest such as
the backtrace or the value of a variable. A log file
is generated with all the information from all the
events. The developer can then submit all of this
as a batch queue submission and examine the logfile
that is generated when it is complete.

Here is a usage example which will generate a log-
file with a backtrace each time a.out enters funcA()
or line 187 of funcB().

tvscript \
-create actionpoint "funcA" \
-create actionpoint "funcB#187" \
-event action "any event=display backtrace" \

./a.out
Use the command tvscript without any argu-

ments on any recent installation of TotalView for
a detailed list of all the arguments and options that
it provides.

TVScript is especially useful if you want to de-
tect memory type errors. You can enable memory
debugging functionality such as guard blocks and
then have the debugger trigger events when it de-
tects that a chunk of memory is being freed that has
had its guard blocks violated. At that point you can
both print out information about the event, such
as the time and location within the program and
also store detailed heap memory information files for
later analysis.

5

Cray User Group 2009 Proceedings



6 Remote Debugging with To-

talView

If scientists or developers who needs to debug a prob-
lem on an HPC cluster are not co-located geograph-
ically with computer they may face a hurdle before
even being able to consider debugging. Many sites
provide either direct or indirect (via some intermedi-
ate host) SSH access to their authorized users. This
kind of access is great for working at the level of the
Unix shell. As mentioned previously, with the batch
resource management systems most users interacting
with supercomputers must upload a program, com-
pile it, upload some data, set up a batch job that
specifies running the program on the data, submit
it, wait for some period of time, and then download
the results. But interactive troubleshooting in the
debugger with its graphical display of datasets and
program state, doesn’t fit well into this simple com-
mand line usage model. TotalView has a feature
that automates and simplifies setting up a graphi-
cal connection between the users’ local workstations
and any remote supercomputer site that they have
SSH access to.

In order to do this users first need the free To-
talView Remote Display Client. It is included within
recent (beginning with 8.6) versions of TotalView,
so site administrators can post it to their users, or
users can simply download it from the site they plan
to log into. It can also be obtained directly from
TotalView Tech’s website.

The client is a simple executable that can be run
on Linux or Windows. It launches a GUI with in-
tuitive fields such as “username” and “hostname”
and a Connect button. If users aren’t using SSH’s
public-key infrastructure they will be prompted by
the underlying SSH mechanism for their login pass-
word. The client takes care of the rest, setting up a
secure graphical connection between the HPC server
and the users desktop.[10]

In some cases the user isn’t permitted to log di-
rectly into the HPC machine but must instead con-
nect to one or more intermediate hosts. The client
can handle that situation as well. The user speci-
fies the sequence and the client connects to the first
host and then connects to the second host via the
first. The system doesn’t store or even directly han-
dle passwords and can work with cryptographic to-
ken technologies like SecureID.

Once the user has configured a connection they
can store that connection as a profile for easy reuse.

Individual users may have multiple profiles if they
log into different supercomputers and profiles can
be shared between users or distributed by site ad-
ministrators, simplifying setup even further.

The remote display feature is architected to pre-
serve the network security of the HPC resource. In
particular it does not create listening ports of any
kind on the HPC system. The graphical connection
is established via a single outgoing connection from
the HPC center machine where TotalView is running
back through SSH to a non-privileged listening port
on the users workstation.

7 Conclusion

There are a number of practical concerns that come
into play when HPC users sit down to use debug-
ging tools. We’ve found that it is necessary but not
sufficient for a tool to have the technical character-
istics such as supporting MPI and the latest com-
pilers. We are now looking at the debugging and
troubleshooting process from end to end and are
identifying the places where there may be challenges
and impediments for users. Debugging and trou-
bleshooting isn’t likely to ever be fun, but perhaps
it can involve more satisfaction and less frustration.
This paper highlights three solutions to such imped-
iments. It has shown how users can focus on just
a few processes drawn from the very largest scale
jobs using the subset attach feature. The TVScript
feature makes it easier for developers to work within
the constraints of the batch queue workflow. Finally,
geographically distributed users can use the Remote
Display Client to connect into centralized HPC cen-
ters with just a few clicks.

Presentations at previous CUG meetings have
highlighted two other important technologies. In
2007 we presented an overview of our work on Mem-
ory Debugging on the Cray XT.[4] Working with
memory when porting and scaling applications was
then and continues to be an important challenge. At
CUG in 2008 we introduced a radically new technol-
ogy to enable reverse debugging through recording
and deterministically replaying program execution
history. [3]I’ll end with a few words to update read-
ers on recent developments in these areas.

7.1 Memory Debugging

TotalView Technologies is currently completing de-
velopment on a major improvement to the mem-

6

Cray User Group 2009 Proceedings



ory debugging features discussed in the 2007 pa-
per. TotalView memory debugging supports error
detection, leak detection, and the detection of heap
array bounds errors. The guard block mechanism
currently provided for detecting array bounds errors
is very lightweight but provides detection only after
the fact. It detects that the bounds of an array have
been violated only when the block is freed or if the
user specifically stops the application and asks the
tool to perform a guard blocks check. Users have re-
quested support for a more immediate detection of
heap allocation bounds. We understand that they
want a way for the tool to tell them about an array
bounds violation as it occurs, not after the fact.

The next version of the TotalView and Memo-
ryScape products for the Cray XT Linux Environ-
ment (CLE) platform will include a new capability
based on the idea of allocating a memory-protected
“red zone” before or after heap memory allocations
within the user’s program. The tool uses the page
protection mechanism to obtain notification of array
bounds violations as they happen. One significant
benefit of this approach is that there is very little
direct runtime overhead. If the program never tries
to write to or read from the Red Zone the program
runs at full speed. The first time that it does read or
write to the zone the program comes to a halt and
the user is notified.

The Red Zone page protection mechanism com-
plements but does not completely supersede the
guard block mechanism within TotalView and Mem-
oryScape because they have different tradeoffs.
Guard blocks can be as small as a single word (a
few bytes) which makes it often quite reasonable to
use them across all the heap allocations in the pro-
gram. Red Zones have a fixed size of an entire page
(several kilobytes). If the average size of an alloca-
tion in the heap is many kilo- or mega-bytes that
overhead too is likely to be acceptable. However
if the program makes many small heap allocations
then the overhead of using Red Zones can become
prohibitive.

TotalView provides two ways for users to obtain
notification of bounds errors within programs that
have many small allocations. Red Zones can be se-
lectively enabled and disabled as the program runs.
Users can run to a point of interest, enable Red

Zones, step through the allocation of the data struc-
tures they are interested in analyzing, and then dis-
able Red Zones. Alternately, they can define a size
range of allocations that they are interested in hav-
ing instrumented with Red Zones. Other allocations
outside this range will not be instrumented with Red
Zones. Both of these ways allow the user to focus
the Red Zone capability on only those allocations
that they are interested in. This has the potential
to greatly reduce memory overhead and make Red
Zones widely applicable.

7.2 Reverse Debugging

TotalView Technologies is also actively working with
the help of Cray to enable the ReplayEngine prod-
uct on Cray XT machines running CLE. [8] Several
major technical issues have been addressed, though
a few remain. Since the 2008 paper was presented,
we have added MPI support to ReplayEngine. A
version of ReplayEngine will be released soon with
the ability to support the use of shared memory and
Direct Memory Addressing (DMA) technology and
long-running applications. All of these hurdles for
supporting the Cray XT were identified in that ear-
lier paper. A few smaller technical hurdles remain
but we are optimistic we will be able to overcome
them.

The enthusiastic interest that was expressed in
Helsinki for the idea of reverse debugging has in-
spired us and we look forward to offering all devel-
opers on Cray XT CLE systems a radically simpli-
fied way to approach complex troubleshooting and
debugging.

Acknowledgements

Thanks to Gayle Procopio and the TotalView Tech-
nologies staff.

About the Author

Chris Gottbrath is Director of Product Manage-
ment at TotalView Technologies. He can be reached
at 24 Prime Parkway, Natick, MA 01760. Email:
Chris.Gottbrath@totalviewtech.com.

7

Cray User Group 2009 Proceedings



References

[1] G. M. Amdahl. Validity of the single processor approach to achieving large scale computing capabilities.
Proc. AFIPS, 30, 1967.

[2] A. Geist, W. Gropp, S. Huss-Lederman, A. Lumsdaine, E. Lusk, W. Saphir, T. Skjellum, and M. Snir.
MPI-2: Extending the Message-Passing Interface. In Euro-Par ’96 Parallel Processing, pages 128–135.
Springer Verlag, 1996.

[3] Chris Gottbrath. Reverse debugging with the totalview debugger. Proc. Cray Users Group, 30, 2008.

[4] Chris Gottbrath, Ariel Burton, Robert Moench, and Luiz DeRose. Debugging memory problems on
cray xt supercomputers with totalview debugger. Proc. Cray Users Group, 2007.

[5] John L. Gustafson. Reevaluating amdahl’s law. Communications of the ACM, 31:532–533, 1988.

[6] Message Passing Interface Forum. MPI: A Message Passing Interface. In Proc. of Supercomputing ’93,
pages 878–883. IEEE Computer Society Press, November 1993.

[7] TotalView Technologies. MemoryScape. http://www.totalviewtech.com/products/memoryscape.

html, 2009.

[8] TotalView Technologies. ReplayEngine. http://www.totalviewtech.com/products/replayengine.

html, 2009.

[9] TotalView Technologies. TotalView Debugger. http://www.totalviewtech.com/products/

totalview.html, 2009.

[10] TotalView Technologies. Using the Remote Display Client. http://www.totalviewtech.com/support/
documentation/totalview/remote_display.pdf, 2009.

8

Cray User Group 2009 Proceedings

http://www.totalviewtech.com/products/memoryscape.html
http://www.totalviewtech.com/products/memoryscape.html
http://www.totalviewtech.com/products/replayengine.html
http://www.totalviewtech.com/products/replayengine.html
http://www.totalviewtech.com/products/totalview.html
http://www.totalviewtech.com/products/totalview.html
http://www.totalviewtech.com/support/documentation/totalview/remote_display.pdf
http://www.totalviewtech.com/support/documentation/totalview/remote_display.pdf

	Introduction
	The challenges of HPC debugging
	What is TotalView?

	This paper

	TotalView on the Cray XT
	TotalView as a Parallel Debugger
	TotalView Parallel Debugger Architecture


	TotalView as a Memory Debugger
	TotalView Memory Debugging Architecture

	Interactive Subset Debugging
	Using TVScript in Batch
	Remote Debugging with TotalView
	Conclusion
	Memory Debugging
	Reverse Debugging




