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Abstract

ADIOS, the adaptable IO system, has demonstrated excellent scalability to 29,000 cores. With

the introduction of the XT5 upgrades to Jaguar, new optimizations are required to successfully reach

140,000+ cores. This paper explains the techniques employed and shows the performance levels attained.

1 Introduction

Many new systems today already exceed 100,000 cores. This order of magnitude expansion of compute
capacity has not always been matched by IO capacity. While the number of IO nodes may proportionally
match the compute expansion, the impact on metadata services and the parallel capacity of the storage
system can be lacking. For example, the Lustre [2] scratch system on Jaguarpf at Oak Ridge National
Laboratory has 672 storage targets, but internally Lustre is limited to 160 storage targets for a single file.
The amount of concurrent access to the storage target can also greatly limit IO performance. With a
100,000 core job running against 160 storage targets, on average, 625 processes will write to each storage
target simultaneously. This assumes that the user has bothered to configure the output directory to use
the maximum stripe count. Otherwise, if it defaults to something small like 4, as many as 25,000 or more
process may attempt to write to a single storage target at the same time. Achieving the advertised IO rates
for these large systems requires considering these facts and managing how IO is performed. ADIOS has
eliminated the need for the user to change application code when selecting different IO methods with great
success [7]. As codes are tested on these new machines, different techniques for IO acknowledging the system
characteristics are required.

Two approaches are possible for addressing these concerns. First, asynchronous data movement to a ‘stag-
ing area’ can offload the time spent performing IO to during non-communication phases of the computation
thereby taking advantage of a relatively quiet network. In addition to simple data movement, ‘data services’
can be performed during the data movement minimally slowing the data extraction and writing operation.
The savings in compute time can be enormous with a small investment of additional compute resources for
the staging nodes. The additional potential cost is continuing execution of the code even though the IO
failed thereby wasting compute time. While the risk is not large compared with the gain in performance, it
is unacceptable in some circumstances. For these cases, highly optimized synchronous data movement can
be employed.

By carefully managing the characteristics of the data, the concurrency required during IO, and how the
underlying parallel file system is configured, high performance synchronous IO can be achieved. Controlling
metadata server impact by serializing ‘open’ calls [9] has proven valuable previously. In this work, controlling
access to storage targets and properly distributing the IO workload has demonstrated a peak of 83 GB/sec
out of a potential of 110 GB/sec.
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Figure 1: ADIOS Architecture

The rest of this paper will discuss related work, an overview of the architecture, discuss the evaluation
system and setup, provide some conclusions, and finally some discussion of future work.

2 Related Work

Using staging areas to accelerate IO performance has been explored recently [11, 3]. While these approaches
work well, they all require some additional resources. Depending on the size of the data, the additional
resource cost in space may outstrip the benefits. Approaches like our DataTap [4, 1] services addresses these
concerns by adopting asynchronous data transport while carefully managing the impact on communication
within the application code.

Many systems have chosen to avoid this issue entirely and hope that a lower level layer will address the
issue. Parallel HDF-5 [5] and Parallel NetCDF [10] build on top of MPI-IO and rely on that layer to properly
manage IO. While it has been successful in the past, now that the storage system capacity is exceeding the
per-file maximum sizes, different techniques are critical to achieving high IO performance.

Our own ADIOS [7, 8, 9] work has demonstrated the importance of a configurable IO layer and changing
the IO technique based on platform, data sizes, and size of the job. While these optimization approaches work
well, by managing the IO more aggressively in concert with the system settings, much better performance
can be achieved.

3 Architecture

The ADIOS architecture 1 is unchanged from our previous work. The only addition is a new transport
method created for the new scheduled IO technique. Two different approaches are considered for this work.

3.1 Scheduled IO

By scheduling when each process can write to the storage target, less concurrency-related inteference will be
induced. This is achieved through three techniques:

• Split files - by splitting the output into more files, the system is better able to use all of the available
storage targets. While this does impose an additional overhead of managing more files, the code does
not see a difference from working with a single output file.

• Scheduled metadata operations - rather than bombarding the metadata server with all processes si-
multaneously to open the output file(s), the system explicitly serializes the ‘open’ calls for each file
resulting in faster overall open times. Relying on the metadata server to manage the serialization
results in overloading of the metadata server and all processes receiving worse service.

• Schedule IO - by reducing the concurrency to the rotational media in the storage targets, performance
more closely related to streaming can be achieved.
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Figure 2: Simple Aggregation

The base method shown in the figures employs an independent MPI-IO approach using scheduled meta-
data operations with a few other adjustments. First, the stripe size for each file created is set to be the
rounded up size of the largest data written for any process writing to that file. Second, the write offset for
each process is set to stripe boundaries. This does introduce some empty space in the file, but it reduces
false sharing and OST spanning of any write operation.

3.2 Aggregation

A second configuration consists of using aggregation through a single node to leverage repeated use of the
same network paths. This approach uses a different file split algorithm and currently does not schedule the
metadata operations. Specifically, this approach splits the processes into per-file groups, like the scheduled
IO transport, but writes all of the data for each file from only one process assigned to that file. The unique
characteristic of this aggregation approach is that no additional memory is required for the aggregation.
Current MPI-IO aggregation methods generally require the aggregation node have enough memory to collect
all the buffers from the other processes before writing. Using this setup, two different approaches for
aggregation are considered.

3.2.1 Simple Aggregation

For simple aggregation illustrated in figure 2, all of the processes for a file send data to a master process
that writes the data.

For this approach, more of the network is likely traversed between any node and the master writer. This
may cause network inteference that could slow performance.

3.2.2 Brigade Aggregation

For brigade aggregation, illustrated in figure 3, each process writes to its predecessor marching the data
towards the master that writes the data.

This avoids this potential interference by localizing all of the data transfers at a cost of moving the data
potentially multiple times before it is written.

4 Evaluation

The evaluation is performed on the petaflop partition of the Jaguar machine at Oak Ridge National Lab-
oratory. It is a Cray XT5 machine with 18,680 nodes each with dual, quad-core AMD Opteron processors
(149,376 cores) and 2 GB of RAM per core. The scratch filesystem is a 672 storage target Lustre 1.6 system
with 10 PB of storage.
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Figure 3: Brigade Aggregation

Figure 4: 128 MB per Writer

4.1 Staging Performance

This evaluation is performed on a variety of core counts from 64 to 65536 with a file stripe count of 1 through
5. As a base comparison, a system default file is created for most of the process counts. This has a stripe
count of 4 used for a single file across all processes.

The evaluation application is a simple ADIOS code carefully configured to avoid local node caching. All
data size measurements only include the raw application data. The time measurements include the file open,
writes, index collection, and close operations. With all of these operations included as part of the time
measurement, the raw write performance is underrepresented in these results. More detailed timing results
are in development. All combinations except for the larger stripe counts at 64K cores are run at least 3
times. All of the small scale results are run in three sets of 5 iterations each. The larger scale results are run
3 times. The time to complete IO used is the longest time used for any process from just before the open
call to just after the close completes. The data sizes are solely the application data and does not include
the additional annotation nor the index areas of the BP [8] file format. Removing the open and close times
and including the additional data overhead would improve these results. Additional testing is in progress to
better isolate the raw IO performance achieved using these techniques.

Data staging is performed using a collection of cores no larger than a small fraction of the total compu-
tational space employed. To represent this case, process counts from 64 to 512 are evaluated. To further
refine the idea, two cases are tested. First, a data size of 128 MB is tested representing a data size typical
for the GTC [6] plasma physics code. Second, a data size of 768 MB is tested representing a caching data
staging setup. For these tests, MPI File write is used to write data to storage. In Figure 4, four important
results are evident. First, the anecdotal report of using 3 storage targets per file is proven to work best on
average. Second, the overall best performance is achieved using a single storage target per file. Third, as
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Figure 5: 768 MB per Writer

Figure 6: 768 MB per Writer

the number of storage targets per file increases, the performance steadily decreases. Fourth, the base stripe
count of 4 with a single file is dramatically worse performance than any of the special tested configurations.
In Figure 5, three important results are evident. First, unlike the 128 MB test above, both the average and
best overall performance is with a stripe count of 1. Second, larger writes even out the average performance
across different stripe counts and all at least match the 128 MB best average performance case. Third, the
base case is actually slightly worse than the 128 MB case.

For both of these cases, the per-process performance is not excellent. The raw data reveals the issue. In
all of these cases, the IO usually takes only 2-3 seconds. For a very small number of processes of generally
1% or fewer, the IO takes anywhere from 11 to 70 seconds to complete, skewing the results tremendously.
Additional detailed measurements are required to isolate the sources of these anomalies.

4.2 Direct IO Performance

For cases where staging is not appropriate, writing directly from the compute nodes must be performed
quickly. To demonstrate the efficiency of this case, various process counts from 1K (1024) to 64K (65536)
are evaluated. A data size of 768 MB is used for each process. For 32K processes, this yields 24 TB of data
written per output. In Figure 6, the performance picture mirrors the smaller scale 768 MB per process case.
However, the top performance is 83.7 GB/sec on 32K processes, a vast improvement in data rate over the
smaller scale tests. The 64K processes rates are slightly worse than the 32K results. This would suggest the
system is saturated at this level with a potential reduction in performance for larger sizes. It is important to
recall that the 64K processes case writes 48 TB of data at once in about 6 minutes. This is nearly the entire
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Figure 7: Aggregation Varying Stripe Count

Figure 8: Aggregation 30K Cores

24 hour output of the GTC run [7], which took close to 1 hour of IO time. While the numbers are excellent
and show promise, the relatively small number of runs for these cases suggests further testing is warranted
to more strongly validate the results.

4.3 Aggregation

The aggregation tests consist of two sets of results. The first tests measures the prefered stripe count to
use for an aggregation configuration. For the OST counts beyond 672 in figure 7, the OST selected for the
writer wrapped back to the storage target 0 introducing sharing. These timings include file creation, close
and fsync as part of the performance measurement. For these tests, the POSIX write call is used.

Figure 7 shows that like the scheduled IO, a stripe count of 1 performs better than the anecdotal suggested
choice of 3.

Figure 8 shows the performance for a series of 30,000 core runs using both the simple and the brigade
aggregation approaches. Each process has 8 megabytes to write for a total of 240 GB per run. In the routine,
442 writers are self selected to receive data as the writer. In this case there are 442 writers, which is about
65% of the OSTs on the machine. There are 29,558 processes that just pass data to a writer, or 67 passers
per writer for the first 441 writers, and 11 for the 442nd writer. While the simple aggregation approach
occasionally showed much greater performance than the brigade approach, the brigade approach was more
consistent and frequently had better performance. This suggests that both approaches should be considered
depending on the network topology employed.
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5 Conclusion and Future Work

By carefully managing the use of the parallel storage system and more actively managing the data output
from the application, much greater performance can be achieved. In this case, 83.7 GB/sec out of a max-
imum of 110 GB/sec data rates are achieved when writing from 32,768 cores in parallel. These results are
demonstrated during normal machine operation with other jobs running on other parts of the machine. With
these changes, the ADIOS API and this new transport method demonstrate scalability and achieve greater
than 75% of peak IO performance.

For future work, the timing measurements must be made more granular to isolate the sources of variation
in the timing results. Additional tests at scale must also be performed to give a better picture beyond the
2 or 3 iterations we were capable of getting so far. Varying storage target counts and data sizes is required
to better understand the key factors affecting IO performance in these petascale machines.
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