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Overview

• New challenges from Jaguar upgrade

• Solution architecture

• Scheduled IO

• Aggregation IO

• Conclusion
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New Challenges

• Jaguar (petascale partition) is BIG

• 149,736 cores (8 cores per node)

• 672 Lustre storage targets (10 PB storage)

• 2 GB per core (300+ TB RAM)

• Issues

• Compute-to-storage ratio large

• Lustre limitations being exposed

• 160 OSTs per file maximum

• Rotational media sharing performance penalties
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Solution architecture: Adaptable I/O System
• Overview

• Allows plug-ins for different I/O implementations

• Abstracts the API from the method used for I/O

• Simple API, almost as easy as F90 write statement

• Synchronous and asynchronous transports supported
with no code changes 

• Componentization

• No need to worry about I/O implementation

• Components for I/O transport methods, buffering, 
scheduling, and eventually feedback mechanisms

• Change I/O method by changing XML file only.

• ADIOS buffers data.

• ADIOS allows multiple transport methods per group

• ADIOS contains a new file format (BP) for  “optimal” performance

• Make custom transport for  new machine!

External

metadata

(XML file) Scientific codes

ADIOS API

D
A

R
T

L
IV

E
/d

a
ta

T
a

p

M
P

I-IO

P
O

S
IX

 I/O

H
D

F
-5

P
-N

e
tC

D
F

V
iz

e
n

g
in

e
s

O
th

e
rs

 (p
lu

g
-in

)

Buffering Schedule Feedback

M
D

S
+



Managed by UT-Battelle
for the Department of Energy

lofstead@cc.gatech.edu, Michael.Booth@Sun.COM,  hasan@gatech.edu, 

fang.zheng@gatech.edu,, mwolf@cc.gatech.edu, schwan@cc.gatech.edu 

Collective MPI-IO 

performance drops

Previous results with ‘old’ methods
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Staging Area

 Additional resources for buffering before 

storage

 Simple operations like aggregation

 Complex analysis and compression operations

 Domain specific services 

 Combination of extraction, processing and 

storage

 Placement to optimize performance
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Asynchronous I/O effects code performance

• Null = no io

• px = posix

• saXcY = state aware with X number 
of staging nodes,Y level of 
concurrency for requests.

• fsXcY = continuous drain: with X 
number of staging nodes,Y level of 
concurrency for requests.
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• Interesting result: 
Synchronous I/O is also 
effected.

• Function for smooth1 
(lots of all to 1) is greatly 
effected.

• Why? Lustre dirty cache
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Total Runtime 

(s)

Total

Performance 

Penalty (%)

No IO 1547.34 0

Fortran Binary Write 1722.25 11.3

Unmanaged Stream 1703.60 10.1

Managed Stream 1646.09 6.4
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Scheduled IO

• Goals:

• Reduce concurrent access to storage

• Minimize data movement

• Increase use of storage system

• Approach:

• Split output – use as many of the 672 storage targets as makes 
sense

• Schedule metadata – partially serialize open calls to reduce 
metadata contention

• Schedule IO – use ‘token passing’ approach for triggering IO for a 
process

• Examine both staging and direct IO
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Scheduled IO (staging small)

• DataTap asynchronous transport method (< 1% node 
overhead)

• Generally 512 cores or less additional

• 128 MB per process (weak scaling)
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Scheduled IO (staging small)

• A few ‘bad egg’ processes spoil performance

• Stripe count of 1 best overall, 3 best on average

• Lots of files generated based on stripe count
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Scheduled IO (staging large)

• DataTap asynchronous transport method (< 1% node 
overhead)

• Generally 512 cores or less additional

• 768 MB per process (weak scaling)
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Scheduled IO (staging large)

• Fewer ‘bad egg’ processes

• Stripe count 1 best overall, average

• Lots of files still

• Staging is not the best approach for fast writes!
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Scheduled IO (direct IO)

• MPI-IO Independent

• Serialized MPI_Open calls

• Stripe size set to maximum written from a process

• Writer offset set to stripe boundaries
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Scheduled IO (direct IO)

• No additional node overhead (weak scaling)

• Using MPI_File_write

• Performance includes open, close, index
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Scheduled IO (direct IO)

• 32K cores (32768) yielded best overall performance

• 24 TB total data, < 3 minutes

• 64K cores seems to be slightly slower

• Lots of writers taking turns yields excellent performance (75% of 
peak)!
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Aggregation IO

• Using the same network paths may gain advantage from fewer 
connection creations

• Do ‘simple’ and ‘brigade’ aggregation (explained shortly)

• Additional potential impact from lots of data movement not directly 
to storage
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Aggregation (simple)

• Split procs into groups for 
OSTs

• Each sends data to master 
for that file

• Only root for file writes

17



Managed by UT-Battelle
for the Department of Energy

lofstead@cc.gatech.edu, Michael.Booth@Sun.COM,  hasan@gatech.edu, 

fang.zheng@gatech.edu,, mwolf@cc.gatech.edu, schwan@cc.gatech.edu 

Aggregation (brigade)

• Split procs into groups for 
OSTs

• Each sends to previous rank 
until all data makes it to 
root for file

• Only root for file writes
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Aggregation (evaluation)

• 8 MB per process; 10,000 processes

• Stripe count of 1 better than 3

• Simple & Brigade
about equivalent
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Aggregation (evaluation)

• 8 MB per process; 30,000 processes; stripe count 1

• Brigade more consistent

• not necessarily better
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Conclusion

• Scheduled IO and Aggregation IO both good approaches

• Both are FAR better than default, single file IO

• Reducing OST contention yields performance gains

• Achieving large percentage of IO peak realistic (75% peak attained)
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Questions?

• Funding provided by

• ORNL

• Sandia Labs LDRD

• Lustre Center of Excellence

• SciDAC GPSC

• SciDAC CPES

• SciDAC SDM

• SciDAC GSEP

• SciDAC SAPP SDM for Fusion.
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