
Managed by UT-Battelle
for the Department of Energy

lofstead@cc.gatech.edu, Michael.Booth@Sun.COM, hasan@gatech.edu,

fang.zheng@gatech.edu,, mwolf@cc.gatech.edu, schwan@cc.gatech.edu

CUG 2009

5/6/2009

Scott A. Klasky
klasky@ornl.gov

Jay Lofstead

Hasan Abbasi

Michael Booth

Fang Zheng

Karsten Schwan

Matthew Wolf

mailto:klasky@ornl.gov

Managed by UT-Battelle
for the Department of Energy

lofstead@cc.gatech.edu, Michael.Booth@Sun.COM, hasan@gatech.edu,

fang.zheng@gatech.edu,, mwolf@cc.gatech.edu, schwan@cc.gatech.edu

Overview

• New challenges from Jaguar upgrade

• Solution architecture

• Scheduled IO

• Aggregation IO

• Conclusion

2

Managed by UT-Battelle
for the Department of Energy

lofstead@cc.gatech.edu, Michael.Booth@Sun.COM, hasan@gatech.edu,

fang.zheng@gatech.edu,, mwolf@cc.gatech.edu, schwan@cc.gatech.edu

New Challenges

• Jaguar (petascale partition) is BIG

• 149,736 cores (8 cores per node)

• 672 Lustre storage targets (10 PB storage)

• 2 GB per core (300+ TB RAM)

• Issues

• Compute-to-storage ratio large

• Lustre limitations being exposed

• 160 OSTs per file maximum

• Rotational media sharing performance penalties

3

Managed by UT-Battelle
for the Department of Energy

lofstead@cc.gatech.edu, Michael.Booth@Sun.COM, hasan@gatech.edu,

fang.zheng@gatech.edu,, mwolf@cc.gatech.edu, schwan@cc.gatech.edu

Solution architecture: Adaptable I/O System
• Overview

• Allows plug-ins for different I/O implementations

• Abstracts the API from the method used for I/O

• Simple API, almost as easy as F90 write statement

• Synchronous and asynchronous transports supported
with no code changes

• Componentization

• No need to worry about I/O implementation

• Components for I/O transport methods, buffering,
scheduling, and eventually feedback mechanisms

• Change I/O method by changing XML file only.

• ADIOS buffers data.

• ADIOS allows multiple transport methods per group

• ADIOS contains a new file format (BP) for “optimal” performance

• Make custom transport for new machine!

External

metadata

(XML file) Scientific codes

ADIOS API

D
A

R
T

L
IV

E
/d

a
ta

T
a

p

M
P

I-IO

P
O

S
IX

 I/O

H
D

F
-5

P
-N

e
tC

D
F

V
iz

e
n

g
in

e
s

O
th

e
rs

 (p
lu

g
-in

)

Buffering Schedule Feedback

M
D

S
+

Managed by UT-Battelle
for the Department of Energy

lofstead@cc.gatech.edu, Michael.Booth@Sun.COM, hasan@gatech.edu,

fang.zheng@gatech.edu,, mwolf@cc.gatech.edu, schwan@cc.gatech.edu

Collective MPI-IO

performance drops

Previous results with ‘old’ methods

0

2

4

6

8

10

12

14

16

18

0 10000 20000 30000 40000 50000 60000 70000

G
B

/s

cores

XGC1 Performance

Total I/O Time per Restart Dump

0.001

0.01

0.1

1

10

100

1000

512 1024 2048 4096 8192

Number of Cores

T
im

e

DATATAP per Restart Dump

pHDF5

Linear Scaling

Datatap Finalize

Managed by UT-Battelle
for the Department of Energy

lofstead@cc.gatech.edu, Michael.Booth@Sun.COM, hasan@gatech.edu,

fang.zheng@gatech.edu,, mwolf@cc.gatech.edu, schwan@cc.gatech.edu

Staging Area

 Additional resources for buffering before

storage

 Simple operations like aggregation

 Complex analysis and compression operations

 Domain specific services

 Combination of extraction, processing and

storage

 Placement to optimize performance

Managed by UT-Battelle
for the Department of Energy

lofstead@cc.gatech.edu, Michael.Booth@Sun.COM, hasan@gatech.edu,

fang.zheng@gatech.edu,, mwolf@cc.gatech.edu, schwan@cc.gatech.edu

Asynchronous I/O effects code performance

• Null = no io

• px = posix

• saXcY = state aware with X number
of staging nodes,Y level of
concurrency for requests.

• fsXcY = continuous drain: with X
number of staging nodes,Y level of
concurrency for requests.

0

200

400

600

800

1000

1200

1400

1600

charge

field

shifti

pushi

smooth2

smooth1

restart

• Interesting result:
Synchronous I/O is also
effected.

• Function for smooth1
(lots of all to 1) is greatly
effected.

• Why? Lustre dirty cache

s
m

o
o

th
1

s
m

o
o

th
1

re
s
ta

rt

re
s
ta

rt

Output Method
Total Runtime

(s)

Total

Performance

Penalty (%)

No IO 1547.34 0

Fortran Binary Write 1722.25 11.3

Unmanaged Stream 1703.60 10.1

Managed Stream 1646.09 6.4

Managed by UT-Battelle
for the Department of Energy

lofstead@cc.gatech.edu, Michael.Booth@Sun.COM, hasan@gatech.edu,

fang.zheng@gatech.edu,, mwolf@cc.gatech.edu, schwan@cc.gatech.edu

Scheduled IO

• Goals:

• Reduce concurrent access to storage

• Minimize data movement

• Increase use of storage system

• Approach:

• Split output – use as many of the 672 storage targets as makes
sense

• Schedule metadata – partially serialize open calls to reduce
metadata contention

• Schedule IO – use ‘token passing’ approach for triggering IO for a
process

• Examine both staging and direct IO

8

Managed by UT-Battelle
for the Department of Energy

lofstead@cc.gatech.edu, Michael.Booth@Sun.COM, hasan@gatech.edu,

fang.zheng@gatech.edu,, mwolf@cc.gatech.edu, schwan@cc.gatech.edu

Scheduled IO (staging small)

• DataTap asynchronous transport method (< 1% node
overhead)

• Generally 512 cores or less additional

• 128 MB per process (weak scaling)

9

Managed by UT-Battelle
for the Department of Energy

lofstead@cc.gatech.edu, Michael.Booth@Sun.COM, hasan@gatech.edu,

fang.zheng@gatech.edu,, mwolf@cc.gatech.edu, schwan@cc.gatech.edu

Scheduled IO (staging small)

• A few ‘bad egg’ processes spoil performance

• Stripe count of 1 best overall, 3 best on average

• Lots of files generated based on stripe count

10

Managed by UT-Battelle
for the Department of Energy

lofstead@cc.gatech.edu, Michael.Booth@Sun.COM, hasan@gatech.edu,

fang.zheng@gatech.edu,, mwolf@cc.gatech.edu, schwan@cc.gatech.edu

Scheduled IO (staging large)

• DataTap asynchronous transport method (< 1% node
overhead)

• Generally 512 cores or less additional

• 768 MB per process (weak scaling)

11

Managed by UT-Battelle
for the Department of Energy

lofstead@cc.gatech.edu, Michael.Booth@Sun.COM, hasan@gatech.edu,

fang.zheng@gatech.edu,, mwolf@cc.gatech.edu, schwan@cc.gatech.edu

Scheduled IO (staging large)

• Fewer ‘bad egg’ processes

• Stripe count 1 best overall, average

• Lots of files still

• Staging is not the best approach for fast writes!

12

Managed by UT-Battelle
for the Department of Energy

lofstead@cc.gatech.edu, Michael.Booth@Sun.COM, hasan@gatech.edu,

fang.zheng@gatech.edu,, mwolf@cc.gatech.edu, schwan@cc.gatech.edu

Scheduled IO (direct IO)

• MPI-IO Independent

• Serialized MPI_Open calls

• Stripe size set to maximum written from a process

• Writer offset set to stripe boundaries

13

Managed by UT-Battelle
for the Department of Energy

lofstead@cc.gatech.edu, Michael.Booth@Sun.COM, hasan@gatech.edu,

fang.zheng@gatech.edu,, mwolf@cc.gatech.edu, schwan@cc.gatech.edu

Scheduled IO (direct IO)

• No additional node overhead (weak scaling)

• Using MPI_File_write

• Performance includes open, close, index

14

Managed by UT-Battelle
for the Department of Energy

lofstead@cc.gatech.edu, Michael.Booth@Sun.COM, hasan@gatech.edu,

fang.zheng@gatech.edu,, mwolf@cc.gatech.edu, schwan@cc.gatech.edu

Scheduled IO (direct IO)

• 32K cores (32768) yielded best overall performance

• 24 TB total data, < 3 minutes

• 64K cores seems to be slightly slower

• Lots of writers taking turns yields excellent performance (75% of
peak)!

15

Managed by UT-Battelle
for the Department of Energy

lofstead@cc.gatech.edu, Michael.Booth@Sun.COM, hasan@gatech.edu,

fang.zheng@gatech.edu,, mwolf@cc.gatech.edu, schwan@cc.gatech.edu

Aggregation IO

• Using the same network paths may gain advantage from fewer
connection creations

• Do ‘simple’ and ‘brigade’ aggregation (explained shortly)

• Additional potential impact from lots of data movement not directly
to storage

16

Managed by UT-Battelle
for the Department of Energy

lofstead@cc.gatech.edu, Michael.Booth@Sun.COM, hasan@gatech.edu,

fang.zheng@gatech.edu,, mwolf@cc.gatech.edu, schwan@cc.gatech.edu

Aggregation (simple)

• Split procs into groups for
OSTs

• Each sends data to master
for that file

• Only root for file writes

17

Managed by UT-Battelle
for the Department of Energy

lofstead@cc.gatech.edu, Michael.Booth@Sun.COM, hasan@gatech.edu,

fang.zheng@gatech.edu,, mwolf@cc.gatech.edu, schwan@cc.gatech.edu

Aggregation (brigade)

• Split procs into groups for
OSTs

• Each sends to previous rank
until all data makes it to
root for file

• Only root for file writes

18

Managed by UT-Battelle
for the Department of Energy

lofstead@cc.gatech.edu, Michael.Booth@Sun.COM, hasan@gatech.edu,

fang.zheng@gatech.edu,, mwolf@cc.gatech.edu, schwan@cc.gatech.edu

Aggregation (evaluation)

• 8 MB per process; 10,000 processes

• Stripe count of 1 better than 3

• Simple & Brigade
about equivalent

19

Managed by UT-Battelle
for the Department of Energy

lofstead@cc.gatech.edu, Michael.Booth@Sun.COM, hasan@gatech.edu,

fang.zheng@gatech.edu,, mwolf@cc.gatech.edu, schwan@cc.gatech.edu

Aggregation (evaluation)

• 8 MB per process; 30,000 processes; stripe count 1

• Brigade more consistent

• not necessarily better

20Jay

Lofstead

Managed by UT-Battelle
for the Department of Energy

lofstead@cc.gatech.edu, Michael.Booth@Sun.COM, hasan@gatech.edu,

fang.zheng@gatech.edu,, mwolf@cc.gatech.edu, schwan@cc.gatech.edu

Conclusion

• Scheduled IO and Aggregation IO both good approaches

• Both are FAR better than default, single file IO

• Reducing OST contention yields performance gains

• Achieving large percentage of IO peak realistic (75% peak attained)

21

Managed by UT-Battelle
for the Department of Energy

lofstead@cc.gatech.edu, Michael.Booth@Sun.COM, hasan@gatech.edu,

fang.zheng@gatech.edu,, mwolf@cc.gatech.edu, schwan@cc.gatech.edu

Questions?

• Funding provided by

• ORNL

• Sandia Labs LDRD

• Lustre Center of Excellence

• SciDAC GPSC

• SciDAC CPES

• SciDAC SDM

• SciDAC GSEP

• SciDAC SAPP SDM for Fusion.

22

