

Scaling Efforts to Reach a PetaFlop

Kevin Peterson

May 6, 2009

PetaScale Software Scaling Agenda

- Software Scaling Motivation & Goals
- HW Configuration & Scale Out
- Software Scaling Efforts
 - System management
 - Operating system
 - Programming environment
- Pre-Acceptance Work
 - HW stabilization & early scaling
- Acceptance Work
 - Functional, Performance, & Stability Tests
 - Application & I/O results
- Software Scaling Summary

Petascale SW Scaling Motivation & Goals

- Execute benchmarks & kernels successfully at scale on a system with at least 100,000 processor cores
- Validate Cray software stack can scale to > 100K cores
 - Cray Programming Environment scales to >150K cores
 - Cray Linux Environment scales to >18K nodes
 - Cray System Management scales to 200 cabinets
- Prepare for scaling to greater number of cores for Cascade

Petascale System Scaling (2008)

Only one quarter to stabilize, scale SW, tune apps, & complete acceptance! (Due in part to the solid XT foundation)

XT5 Blade Scaling – 32 cores/blade Today SeaStar,

...tomorrow Gemini

- Each XT5 has 4 nodes
- Each riser has 4
 NICs
- Each NIC serves 2
 AMD Opterons
 (4 cores each)
 - Gemini risers will replace SeaStar risers
- Each Gemini has 2 NICs

Software Scaling Efforts - SMW

- System Management Workstation
 - Manages the system via the Hardware Supervisory System (HSS)

Hurdles & Strategies

- Single SMW for 200 cabinets
 - Localized some processing on cabinet (L1) controllers
- XT5 double density nodes with quad-core processors
 - Throttled upstream messages at blade (L0) controllers
- HSN 16K node soft limit
 - Increased limit to 32K node (max for SeaStar)

Software Scaling Efforts - CLE

- Cray Linux Environment
 - Operating system for both compute (CNL) and service nodes

Hurdles & Strategies

- Transition from Light-Weight Kernel (Catamount) to CNL
 - Reduced number of services and memory footprint
- Lack of large test system
 - Emulated larger system by under provisioning
 - Ran constraint based testing under stressful loads
- Two socket multi-core support
 - Added ALPS support for 2 socket, 4 core NUMA nodes
 - Modified Portals to handle more cores & distribute interrupts
- Switch from FibreChannel to InfiniBand (IB) for Lustre
 - Tested IB with external Lustre on system in manufacturing
 - Tested IB fabric attached Lustre on site during installation

Software Scaling Efforts - CPE

- Cray Programming Environment
 - Development suite for compilation, debug, tuning, and execution

Hurdles & Strategies

- MPI scaling >100K cores with good performance
 - Increased MPI ranks beyond 64K PE limit
 - Optimized collective operations
 - Employed shared memory ADI (Abstract Device Interface)
- SHMEM scaling >100K cores
 - Increased SHMEM PE max beyond 32K limit
- Global Array scaling >100K cores
 - Removed SHMEM from Global Array stack
 - Ported ARMCI directly to Portals
 - Tuned Portals for better out-of-band communication

Jaguar Pre-acceptance Work

- Hardware Stress & Stability Work
 - Incremental testing as system physically scaled
 - Key diagnostics and stress tests (IMB, HPL, S3D)
- HPL & Autotuning
 - Tiling across system while weeding out weak memory
 - Monitoring performance and power
 - Tuning HPL to run within the MTBF window
- Scientific Application Tuning
 - MPT (Message Passing Toolkit) restructuring for 150K ranks
 - Global Arrays restructuring for 150K PEs

High Performance LINPACK Benchmark₂

- **1.059 PetaFlops** (76.7% of peak)
- Ran on 150,152 cores

Completed only 41 days after delivery of system

T/V N NB	P Q	Time	Gflops	
WR03R3C1 4712799 200		65884.80	1.059e+06	
VVVVVVVVVVVVVV			VVVVVVV-	
Max aggregated wall time rfac	ct :	13.67		
+ Max aggregated wall time p:	fact :	10.99		
+ Max aggregated wall time mx	kswp :	10.84		
Max aggregated wall time pbca	ast :	6131.91		
Max aggregated wall time upda	ate :	63744.72		
+ Max aggregated wall time la	aswp :	7431.52		
Max aggregated wall time up	er sv .:	16.98		
Ax-b _oo/(eps*(A _oo* x _oo+ b _oo)*N) = 0.0006162 PASSED				

Four "Class 1" benchmarks after little tuning:

HPL	902 TFLOPS		#1
G-Streams	330	#1	
G-Random Access	16.6 GUPS	#1	
G-FFTE	2773	#3	

- Still headroom for further software optimization
- These HPCC results demonstrate balance,

high-performance,

& Petascale!

Early Science Application Runs₂

Science Area	Code	Contact	Cores	% of Peak	Total Perf	Noteable
Materials	DCA++	Schulthess	150,144	97%	1.3 PF*	
Materials	LSMS/WL	ORNL	149,580	76.40%	1.05 PF	64 bit
Seismology	SPECFEM3D	UCSD	149,784	12.60%	165 TF	
Weather	WRF	Michalakes	150,000	5.60%	50 TF	Size of Data
Climate	POP	Jones	18,000		20 sim yrs/ CPU day	Size of Data
Combustion	S3D	Chen	144,000	6.00%	83 TF	
Fusion	GTC	PPPL	102,000		20 billion Particles / sec	Code Limit
Materials	LS3DF	Lin-Wang Wang	147,456	32%	442 TF	Gordon Bell Winner

These applications were ported, tuned, and run successfully, only 1 week after the system was available to users!

System Scaling Criteria – The JAT₁

- Jaguar Acceptance Test (JAT)
 - Defined acceptance criteria for the system
- HW Acceptance Test
 - Diagnostics run in stages as chunks of the system arrived
 - Completed once all 200 cabinets were fully integrated
- Functionality Test
 - 12 hour basic operational tests
 - Reboots, Lustre files system
- Performance Test
 - 12 hour of basic application runs
 - Tested both applications and I/O
- Stability Test
 - 168 hour production-like environment
 - Applications run over variety of data sizes and number of PEs

Performance Test – I/O

Metric	Description	Goal	Actual
InfiniBand Performance	Send BW Test	1.25 GB/sec	1.54 GB/sec
Aggregate Bandwidth	Sequential Write Sequential Read	100 GB/sec	173 GB/sec 112 GB/sec
	Parallel Write Parallel Read	100 GB/sec	165 GB/sec 123 GB/sec
	Flash I/O	8.5 GB/sec	12.71GB/sec

PetaScale SW Scaling Summary

- Execute benchmarks & kernels successfully at scale on a system with at least 100,000 processor cores
 - Cray Linux Environment scaled to >18K nodes
 - Cray Programming Environment scaled to >150K PEs
 - Cray System Management scaled to 200 cabinets
- Demonstrated productivity
 - Performance: greater than 1 PetaFlop
 - Programmability: MPI, Global Arrays, and OpenMP
 - Portability: variety of "real" science apps ported in 1 week
 - Robustness: Completed Jaguar Stability Test

Acknowledgements & References

1. NLCF Acceptance Test Plans (50T, 100T, 250T, 1000T-CS) and (1000T-G)

- DOE Leadership Computing Facility
- Center for Computational Sciences
- Computing and Computational Sciences Directorate
- December 10, 2008

2. Jaguar & Kraken – The world's most powerful computing complex (Presentation)

- Arthur S. (Buddy) Bland
- Leadership Computing Facility Project Director National Center for Computational Sciences
- November 20, 2008

3. ORNL 1PF Acceptance Peer Review (Presentation)

- ORNL Leadership Computing Facility
- Center for Computational Sciences
- December 29, 2008

4. Acceptance Status (Presentation)

- Ricky A. Kendall
- Scientific Computing
- National Center for Computational Sciences
- October 30, 2008

5. SC08 Awards Website

- http://sc08.supercomputing.org/html/AwardsPresented.html
- November 21, 2008

6. Cray XT Manufacturing Plan

- William Childs
- Cray Inc., Chippewa Falls, Wisconsin
- October 2008

Thank you!

kpeterso@cray.com

