

CUG 2009 Proceedings 1 of 5

Large Lustre File System Experiences at NICS

Troy Baer, Victor Hazlewood, Junseong Heo, Rick

Mohr, John Walsh, University of Tennessee, National

Institute for Computational Science (NICS)

ABSTRACT: The University of Tennessee National Center for Computational Sciences

(NICS), located at the Oak Ridge National Laboratory (ORNL), installed a 66,048 core

Cray XT5 in December 2008. A 2.4PB lustre file system was configured as part of the

XT5 system. Experiences at NICS in configuring, building, monitoring, administrating

and maintaining such a large file system will be presented. Topics include, hardware

configuration, Lustre component configuration, purge versus quota policies, performance

tuning and reliability issues.

1. Introduction

NICS

The National Institute for Computational Sciences

(NICS) is funded by the National Science Foundation and

managed by the University of Tennessee (UT). NICS staff

work at the UT Joint Institute for Scientific Computing

building and the NICS computing resources reside in the

main computational and computer science building

computer room both of which are located on campus of

Oak Ridge National Laboratory (ORNL). NICS currently

provides a 66,048 core (8256 dual quad-core AMD

Opteron processors) Cray XT5 system called Kraken

which has 99 terabytes of memory and 2.4 petabytes of

dedicated formatted disk space. 4416 nodes (35328 cores)

have 2 GBytes of memory per core and 3840 nodes

(30720 cores) have 1 GByte of memory per core. NICS

shares a 20 petabyte HPSS archival storage system with

the DOE Leadership Computing Facility at ORNL. The

Kraken system is designed specifically for sustained

application performance, scalability, and reliability, and

will incorporate key elements of the Cray Cascade system

to prepare the user community for sustained, high-

productivity petascale science and engineering.

Photo of NICS Cray XT5 – Kraken

Lustre File System

The Kraken resource at NICS has a 2.4 petabyte

(local) lustre file system configured for use by Kraken

users. The Lustre file system is made up of 12 DataDirect

Networks S2A9900 storage platforms in 6 racks. Each

S2A9900 is configured with 280 one terabyte hard disk

drives for a total of 3360 disk drives. There is 3.36

petabytes of unformatted space and 2.4 petabyes of

formatted space using 8+2p RAID6. There are 48 Object

Storage Servers (OSSs) and 336 Object Storage Targets

(OSTs). See Figure 1 for a configuration of Lustre on

Kraken. The default file stripe is 4 and the Kraken Lustre

file system’s mount point is /lustre/scratch and every user

on the system has a Lustre directory of the name

/lustre/scratch{username}.

Figure 1: NICS Lustre Configuration

CUG 2009 Proceedings 2 of 5

2. Building the Lustre File system

Our goal in configuring this Lustre file system was to

maximize I/O bandwidth by minimizing contention on the

SIO-DDN contoller-contoller port paths. The OST's were

laid out in such a way that writing a file would not hit the

same SIO-DDN contoller-contoller port unless the stripe

size of the file was greater than 48. The Cray

documentation for using InfiniBand with Lustre was non-

existent at the time we began the install. One of the first

problems that we ran into was that many of the rpm's that

IB requires were not installed by default and there was no

list of which rpm’s were required. Thanks to Dave Dillow

at ORNL and Steve Woods at Cray, a complete list of

required rpm's was obtained and the rpm's were

successfully installed. Here is that list of IB rpm's:

ibutils-1.2-1.4.x86_64.rpm

infiniband-diags-1.2.7-2.7.x86_64.rpm

libibcommon-1.0.4-0.2.x86_64.rpm

libibmad-1.0.6-0.2.x86_64.rpm

libibumad-1.0.6-0.2.x86_64.rpm

libibverbs-1.1.1-9.3.x86_64.rpm

libmlx4-0.1-0.4.x86_64.rpm

librdmacm-1.0.2-3.4.x86_64.rpm

mstflint-1.3-0.3.x86_64.rpm

ofed-1.2.5.5-0.3.x86_64.rpm

ofed-kmp-ss-1.2.5.5_2.6.16.54_0.2.8_1.0000.3800.0-

0.3.x86_64.rpm

opensm-3.0.3-2.8.x86_64.rpm

perftest-1.2-1.5.x86_64.rpm

srptools-0.04-1.9.x86_64.rpm

Shortly after the installation of these rpm's we

learned that there was an undocumented parameter,

OFED=yes, that could be inserted into the XTinstall.conf

file that would install the correct IB rpm’s!

Once the IB rpm’s were installed we were ready to

begin building a Lustre filesystem. Initially, there was

only 1 cabinet of DDN drives configured. Therefore, we

started by building a small lustre file system to test our

build procedures. At this time, we were pausing the

xtbootsys script and manually running the srp_login

scripts on the OSS nodes. The srp_login script creates a

connection between the OSS and the paired controller

allowing the OSS to see the OST's. Once this was done

then we initiated the command to build a 380TB file

system. Strangely, the lustre reformat command had not

completed after 36 hours over a weekend. We contacted

ORNL administrators and they suggested that we change

the lustre scheduling algorithm from noop to deadline.

Once we did this and reran the lustre reformat command it

successfully completed in 2.5 hours. If this is done it is

important to remember to set the lustre scheduling back to

noop.

Now that we had a formatted Lustre file system we

were ready to reboot the system with Lustre mounted. We

automated the srp_login process by creating an

/etc/init.d/srp_login script on each OSS nodes. We also

started using scsi aliasing at this point in order to easily

identify the physical location of OST's. For example,

OST20 is equivalenced to /dev/scsi/r3u2l4, rack 3,

controller u2, lun 4. Once these scripts were in place and

running, the lustre file system would then mount

successfully. After all this was done we now had a

mounted and functioning 380 TB lustre file system.

Afterwards, once all the DDN cabinets were powered

up and cabled, we attempted to build a 2.4PB Lustre file

system. A reformat command was issued and after 2.5

hours the reformat script failed attempting to mount the

OST's. We tried a second time and got the same result.

We thought that the issue might be with the 7 OST's per

OSS (7 OSTs per OSS was new to Cray at the time). We

then reconfigured the system to only use 4 OST's per OSS

and reran the reformat command. This worked and

completed successfully in 2.5 hours. The plan was then to

try 5, 6, and 7 OST's per OSS and see where the limit

was. However, because acceptance testing start time of

the system was looming, we decided to use the 1.3PB file

system for acceptance and rebuild a 2.4PB system after

the acceptance period and before Kraken went into

production.

The 1.3PB file passed all performance related

acceptance tests. We were sure that we could improve the

MDS performance, which at that time had a 5TB raid that

consisted of five 1TB 5400 rpm Engenio LSI drives on

the boot raid. NICS had available a DDN EF2915 5TB

raid that consisted of fifteen 320GB 15000 rpm drives

that we configured as a new MDS. This gave us a big

performance gain as discussed in section 3.

During the acceptance period we learned from ORNL

that 7 OST's per OSS was not a problem. What was

needed to do was run the reformat command in stages, not

all at once, as this overwhelmed the MDS. So we wrote a

script to do this. It first reformatted the new MDS, and

then reformatted 10 OSS's at a time. The script

completed successfully in 12.5 hours and the 2.4PB file

system mounted properly after a reboot.

3. Question of Purging vs. Quotas

With such a large Lustre file system configured as

scratch space, one of the inevitable questions is whether

to purge files from it periodically or to impose quotas. On

Kraken-XT4, which used Lustre 1.4 and where quotas

were not an option, experience had shown that walking

the file system to identify files to purge was prohibitively

CUG 2009 Proceedings 3 of 5

slow and degraded metadata performance on the file

system to an unacceptable degree. Therefore, after

rebuilding the Lustre file system on Kraken-XT5

following acceptance testing, one of the first sets of tests

run was to quantify the performance impact of quotas.

Three separate tests were run:

� A threaded file creation and deletion test on a

single compute node.

� A file-per-process bandwidth test, using the

standard IOR benchmark.

� A shared file bandwidth test, also using IOR.

These tests were run in four situations:

� Before the file system rebuild.

� After the file system rebuild with quotas

disabled.

� After the file system rebuild with quotas enabled

but not enforced.

� After the file system rebuild with quotas

enforced.

The threaded file creation/deletion test showed a

substantial improvement in MDS performance of the

DDN EF2915 array relative to the LSI RAID boot array

used before the rebuild. The sustained rate of file creation

increased by 59%, while the sustained rate of file deletion

increased by a surprising 718%. After enabling quotas,

these rates did drop slightly, by 12% in the case of file

creation and 10% in the case of file deletion.

The file-per-process I/O bandwidth on the system

also saw a significant improvement due to the increased

number of OSTs (and therefore disk spindles) in the file

system. Surprisingly, a further increase in performance

was observed after enabling quotas on the file system, and

also the writes after enforcing quotas as well. There is no

immediately obvious reason why this should be so,

although it has been theorized that some OST devices

were in the process of rebuilding during the first two post-

rebuild sets of tests. In any case, there was no measured

performance impact on file-per-process I/O by enabling

quotas.

However, shared-file I/O performance was another

matter. Write and read performance to a shared file

dropped by 6% and 1% respectively after the rebuild;

since the maximum number of OSTs a file can be striped

across on Lustre is fixed at 160, adding more OSTs did

not improve performance, and since the number of

Infiniband paths to to the DDN 9900 controllers remained

fixed, there was actually slightly increased contention

across these links. Enabling quotas actually improved

write performance by 5% but also decreased read

performance by 5%, while enforcing quotas effectively

reversed the situation. The maximum impact of quotas

observed on shared-file I/O performance was 6%.

With a metadata performance penalty of 10-12% and

a maximum bandwidth impact of 6%, NICS chose to

move forward with quotas being enabled but not enforced

on the Kraken-XT5 Lustre file system. We suggest that

this small performance penalty will be largely offset by

not having to traverse the Lustre file system periodically

in order to generate a file purge list and, thereby,

impacting file system performance significantly as the

purge program runs. Our purge policy was developed

create delete

0.00

500.00

1000.00

1500.00

2000.00

2500.00

3000.00

3500.00

4000.00

4500.00

5000.00

Lustre Metadata Performance on Kraken-XT5

Pre-Rebuild

Rebuild (quotas off)

Rebuild (quotas on)

Rebuild (quotas en-
forced)

A
g
g
re

g
a
te

 r
a
te

 (
o

p
s
/s

e
c)

write read

0.00

5000.00

10000.00

15000.00

20000.00

25000.00

30000.00

35000.00

Lustre File-per-Process Performance on Kraken-XT5

Pre-Rebuild

Rebuild (quotas off)

Rebuild (quotas on)

Rebuild (quotas en-
forced)

T
ra

n
s
fe

r
ra

te
 (

M
B

/s
)

write read

0.00

2000.00

4000.00

6000.00

8000.00

10000.00

12000.00

14000.00

16000.00

18000.00

Lustre Shared File Performance on Kraken-XT5

Pre-Rebuild

Rebuild (quotas off)

Rebuild (quotas on)

Rebuild (quotas en-
forced)

T
ra

n
s

fe
r

ra
te

 (
M

B
/s

)

CUG 2009 Proceedings 4 of 5

with this in mind and requires that the top Lustre file

system users be notified to purge files as a file system

usage threshold is reached. To date file system usage is

below 50% and no file system purging has been required.

We expect this to change over the next few months.

4. Configuration and Performance

Budget constraints limited our configuration to a

minimum number of controllers, a high number of OSTs

per OSS and with such a large system there are a large

number of Lustre clients (O8300) which led to some

interesting tradeoffs in performance and capability.

The DDN configuration has 6 cabinets with two

S2A9900s each with four port controllers. The theoretical

peak burst rate for Lustre is approximately 76.8 GB/s (1.6

per port * 4ports * 2controllers per cabinet * 6 cabinets).

The estimated sustained performance is approximately

38.4 GB/s (.8 GB/s port * 4 ports * 2 controllers per

cabinet * 6 cabinets). During our acceptance testing we

were able to demonstrate about 5GB/s per cabinet as we

obtained 30GB/s on portions of the IOR benchmark

application. No redundant controller paths exist in our

current configuration. This means no failover is possible

for this configuration. Therefore, it is very important to

handle controller errors with the upmost care in order to

prevent loss of data. Our process for dealing with

controller errors, of which we have had two, is to contact

Cray that there is an issue and immediately contact DDN

support. We let DDN support guide our response to any

controller error in order to prevent unnecessary controller

reboots which could lead to loss of data. SEC errors that

indicated possible drive or controller errors usually have

“Hard SCSI Error” in the error message.

Our initial OSS/OST configuration was to have 14

OSTs per OSS due to a configuration of 24 OSS service

nodes. Cray told us this was not going to be supported

and we eventually had to trade some compute nodes for

service nodes to come up with 48 OSS service nodes and

a supported configuration of 7 OSTs per OSS. This led to

some interesting Lustre file system build problems

discussed earlier. Eventually, the production Lustre file

system was configured and preliminary tests showed we

would be able to get near the maximum sustained transfer

rates advertised at approximately 30GB/s. We are still

limited in the number of transactions to the MDS and

OSS servers which has been problematic when the portal

LND layer wait queue is full due to a large job writing

checkpoint files beyond the physical limit. Other users

can notice the backlog in the wait queue and can notice

significant slowdowns in response time to the execution

of “ls” commands for example. Use of “lfs find”

commands can help with this situation but is not a normal

command used by users and requires user education.

Also, because of the size of the system and number of

clients, Cray recommended that we increase the credit

values for portals for compute nodes, OSS nodes and

MDS node. The tuneable parameters were 2048 credits

value on the MDS node, credits value of 512 for compute

nodes and credits value of 1024 for the OSS nodes. Also

the Lustre ldlm_timeout value was increased to 250 so

that the 8000+ clients can avoid the timeout, eviction and

reconnect loop. Our default strip count is 4 and the default

stripe size of 1MB. Investigation on the prior XT4 Lustre

filesystem showed that only two users had changed their

stripe count from the default on the XT4. This indicates

that more user education is needed to effectively use the

Lustre filesystem.

5. Canary in the Coal Mine

While Lustre tends to provide a lot of warning

messages and Error codes, it does only when a set of

clearly defined conditions are met. Hardware issues

affecting the portals network are not always noticed until

Lustre generates errors - Lustre being the equivalent of

the canary in the coal mine - followed by user complaints

on a file system hang. Users are justified for deploring

over the poor performance of the file system because that

is the only place they notice the hidden problems. Lustre

on the other hand assumes solid network hardware

reliability and keeps trying to recover from hardware

caused errors. Endless sequence of Lustre errors

continues unless the hardware issues are resolved, mostly

by a system reboot. We typically get half million to seven

million lines of Lustre error messages a week. Once we

separate the interconnect failure caused error messages,

Lustre messages are predictable and consistent: Failed

nodes are identified by the timeout and eviction sequence,

heavy concurrent I/O patterns beyond the current

bandwidth limits manifest themselves as a global delay.

By focusing on the onset point of volumes of Lustre

errors and correlating the netwatch log messages on the

mesh link states of the HSN, we identified that a

cascading chain of deadlock timeouts, also known as

router error precedes the HSN collapse. The sequence of

events starts with a sudden appearance of a router error on

the event log file, propagation of the router error to other

links, Lustre servers severed from network, nfs server

boot node not responding, and stream of beer messages.

By the time we see the beer (basic end-to-end reliability)

messages, it is beyond the point of no return for the HSN.

The HSN sometimes recovers by itself eventually

ingesting all the portal traffic. We did see the self

recovery twice during last three months. But it tends to

have lingering effects and job performances become

unpredictable after such recovery.

CUG 2009 Proceedings 5 of 5

5.1 RAID rebuild failure

On 2 April 2009, we observed several errors with error

number -30 (EROFS) from Lustre logs on an OSS server

occurring on 2 of its OSTs.We went to the machine room

and noticed the LEDs on top two cages indicate error.

Reporting it to the DDN support, we learned that there

were hardware rebuild errors earlier on two of the 56

LUNs possibly due to interrupts on rebuilds while write-

cache enabled. Lustre on the other hand did the right

thing to detect it as a SCSI device error on its back end

disk device and immediately remounted the affected

OSTs read-only.

After warnings from DDN that we might need to

reformat the two OSTs and a quick estimate on the

number of files to be lost with reformat close to a million,

we decided to force the rebuild option on two LUNs while

performing the fsck on two OSTs. Both were successful.

File system checks on the OST took about 90 minutes in

parallel, and the RAID rebuild successfully completed in

a day.

Guided by job schedule records, we narrowed the

time windows and obtained the possibly affected user list.

Extensive lfs find, debugfs stats on candidates confirmed

that we avoided a massive data loss. In the end, no

corrupted files were found or reported by users. Lustre

prevented a massive file system corruption, and we

confirmed that the Lustre did its job as it was supposed to.

5.2 Monitoring

We keep track of the following three:

� Lustre error counter: monitors the Lustre

warnings, Errors, and ratio of the two. It

generates the data for weekly snapshot graph,

and it alerts the global system event when it

happens. Thank to a large number of clients, we

can tell the difference whether it is a global scale

or a localized timeout-eviction sequence. It

complements the SEC-rule set based warning

system.

� Lustre hang sampling: random interval checks on

Lustre response time and is logged continuously

during production. Combined with Lustre

warning message, it enabled us to identify heavy

I/O jobs causing file system response hangs.

� Lustre File system state: number of files

generated and total disk space used are recorded

hourly. It not only provides the file usage trends

but also gives extra clues to unusual Lustre

warning messages.

Conclusion

Lustre is the only currently supported high

performance parallel file system available for the Cray

XT5 system that can be used by the compute nodes and

having this distinction NICS has to take advantage of all

Lustre features applicable to the NICS environment and

try to manage and minimize all of Lustre’s disadvantages.

NICS has observed that Lustre seems to provide early

warning of system failures both detected and undetected

and is affectionately known as our “canary in a coal

mine”. Enabling but not using Lustre quotas seems to

provide a decent trade-off between automated system

purging and full quotas based on performance testing with

and without quotas and the known performance impact of

file system traversal with a script that identifies file purge

targets. However, NICS purge policy will still depend on

end users to take action which experience has shown can

be unpredictable. NICS is iteratively improving our

Lustre monitoring with a combination of log watching,

Lustre file system response time and file system state

Acknowledgments

We would like to acknowledge Art Funk, the Cray

support staff and the staff at ORNL’s NCCS for their help

with the NICS Cray XT5 install and configuration.

About the Authors

Troy Baer is an HPC systems administrator for the

University of Tennessee's National Institute for

Computational Sciences (NICS) at Oak Ridge National

Laboratory. He can be reached by emailing

<tbaer@utk.edu>.

Victor Hazlewood is a Senior HPC Systems Analyst

at NICS and can be reached by email at victor@utk.edu.

Junseong Heo is a at NICS and can be reached by

email at jheo6@utk.edu.

Rick Mohr is an HPC systems administrator at NICS

and can be reached by email at rmohr@utk.edu

John Walsh is a Senior HPC systems administrator at

NICS and can be reached by email at jwalsh3@utk.edu

