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Troy Baer, Victor Hazlewood, Junseong Heo, Rick 
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ABSTRACT: The University of Tennessee National Center for Computational Sciences 

(NICS), located at the Oak Ridge National Laboratory (ORNL), installed a 66,048 core 

Cray XT5 in December 2008. A 2.4PB lustre file system was configured as part of the 

XT5 system. Experiences at NICS in configuring, building, monitoring, administrating 

and maintaining such a large file system will be presented. Topics include, hardware 

configuration, Lustre component configuration, purge versus quota policies, performance 

tuning and reliability issues. 

 

1. Introduction 

NICS 

The National Institute for Computational Sciences 

(NICS) is funded by the National Science Foundation and 

managed by the University of Tennessee (UT). NICS staff 

work at the UT Joint Institute for Scientific Computing 

building and the NICS computing resources reside in the 

main computational and computer science building 

computer room both of which are located on campus of 

Oak Ridge National Laboratory (ORNL). NICS currently 

provides a 66,048 core (8256 dual quad-core AMD 

Opteron processors) Cray XT5 system called Kraken 

which has 99 terabytes of memory and 2.4 petabytes of 

dedicated formatted disk space. 4416 nodes (35328 cores) 

have 2 GBytes of memory per core and 3840 nodes 

(30720 cores) have 1 GByte of memory per core. NICS 

shares a 20 petabyte HPSS archival storage system with 

the DOE Leadership Computing Facility at ORNL. The 

Kraken system is designed specifically for sustained 

application performance, scalability, and reliability, and 

will incorporate key elements of the Cray Cascade system 

to prepare the user community for sustained, high-

productivity petascale science and engineering. 

 

 
Photo of NICS Cray XT5 – Kraken 

Lustre File System 

The Kraken resource at NICS has a 2.4 petabyte 

(local) lustre file system configured for use by Kraken 

users.  The Lustre file system is made up of 12 DataDirect 

Networks S2A9900 storage platforms in 6 racks. Each 

S2A9900 is configured with 280 one terabyte hard disk 

drives for a total of 3360 disk drives.  There is 3.36 

petabytes of unformatted space and 2.4 petabyes of 

formatted space using 8+2p RAID6.  There are 48 Object 

Storage Servers (OSSs) and 336 Object Storage Targets 

(OSTs). See Figure 1 for a configuration of Lustre on 

Kraken.  The default file stripe is 4 and the Kraken Lustre 

file system’s mount point is /lustre/scratch and every user 

on the system has a Lustre directory of the name 

/lustre/scratch{username}. 

 

 
Figure 1: NICS Lustre Configuration 
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2.  Building the Lustre File system 

Our goal in configuring this Lustre file system was to 

maximize I/O bandwidth by minimizing contention on the 

SIO-DDN contoller-contoller port paths. The OST's were 

laid out in such a way that writing a file would not hit the 

same SIO-DDN contoller-contoller port unless the stripe 

size of the file was greater than 48. The Cray 

documentation for using InfiniBand with Lustre was non-

existent at the time we began the install. One of the first 

problems that we ran into was that many of the rpm's that 

IB requires were not installed by default and there was no 

list of which rpm’s were required. Thanks to Dave Dillow 

at ORNL and Steve Woods at Cray, a complete list of 

required rpm's was obtained and the rpm's were 

successfully installed. Here is that list of IB rpm's: 

 

ibutils-1.2-1.4.x86_64.rpm 

infiniband-diags-1.2.7-2.7.x86_64.rpm 

libibcommon-1.0.4-0.2.x86_64.rpm 

libibmad-1.0.6-0.2.x86_64.rpm 

libibumad-1.0.6-0.2.x86_64.rpm 

libibverbs-1.1.1-9.3.x86_64.rpm 

libmlx4-0.1-0.4.x86_64.rpm 

librdmacm-1.0.2-3.4.x86_64.rpm 

mstflint-1.3-0.3.x86_64.rpm 

ofed-1.2.5.5-0.3.x86_64.rpm 

ofed-kmp-ss-1.2.5.5_2.6.16.54_0.2.8_1.0000.3800.0-

0.3.x86_64.rpm 

opensm-3.0.3-2.8.x86_64.rpm 

perftest-1.2-1.5.x86_64.rpm 

srptools-0.04-1.9.x86_64.rpm 

 

Shortly after the installation of these rpm's we 

learned that there was an undocumented parameter, 

OFED=yes, that could be inserted into the XTinstall.conf 

file that would install the correct IB rpm’s! 

Once the IB rpm’s were installed we were ready to 

begin building a Lustre filesystem. Initially, there was 

only 1 cabinet of DDN drives configured. Therefore, we 

started by building a small lustre file system to test our 

build procedures. At this time, we were pausing the 

xtbootsys script and manually running the srp_login 

scripts on the OSS nodes. The srp_login script creates a 

connection between the OSS and the paired controller 

allowing the OSS to see the OST's. Once this was done 

then we initiated the command to build a 380TB file 

system. Strangely, the lustre reformat command had not 

completed after 36 hours over a weekend. We contacted 

ORNL administrators and they suggested that we change 

the lustre scheduling algorithm from noop to deadline. 

Once we did this and reran the lustre reformat command it 

successfully completed in 2.5 hours. If this is done it is 

important to remember to set the lustre scheduling back to 

noop. 

Now that we had a formatted Lustre file system we 

were ready to reboot the system with Lustre mounted. We 

automated the srp_login process by creating an 

/etc/init.d/srp_login script on each OSS nodes. We also 

started using scsi aliasing at this point in order to easily 

identify the physical location of OST's.  For example, 

OST20 is equivalenced to /dev/scsi/r3u2l4, rack 3, 

controller u2, lun 4.  Once these scripts were in place and 

running, the lustre file system would then mount 

successfully. After all this was done we now had a 

mounted and functioning 380 TB lustre file system. 

Afterwards, once all the DDN cabinets were powered 

up and cabled, we attempted to build a 2.4PB Lustre file 

system. A reformat command was issued and after 2.5 

hours the reformat script failed attempting to mount the 

OST's. We tried a second time and got the same result. 

We thought that the issue might be with the 7 OST's per 

OSS (7 OSTs per OSS was new to Cray at the time).  We 

then reconfigured the system to only use 4 OST's per OSS 

and reran the reformat command.  This worked and 

completed successfully in 2.5 hours. The plan was then to 

try 5, 6, and 7 OST's per OSS and see where the limit 

was. However, because acceptance testing start time of 

the system was looming, we decided to use the 1.3PB file 

system for acceptance and rebuild a 2.4PB system after 

the acceptance period and before Kraken went into 

production. 

The 1.3PB file passed all performance related 

acceptance tests. We were sure that we could improve the 

MDS performance, which at that time had a 5TB raid that 

consisted of five 1TB 5400 rpm Engenio LSI drives on 

the boot raid.  NICS had available a DDN EF2915 5TB 

raid that consisted of fifteen 320GB 15000 rpm drives 

that we configured as a new MDS.  This gave us a big 

performance gain as discussed in section 3. 

During the acceptance period we learned from ORNL 

that 7 OST's per OSS was not a problem. What was 

needed to do was run the reformat command in stages, not 

all at once, as this overwhelmed the MDS. So we wrote a 

script to do this. It first reformatted the new MDS, and 

then reformatted 10 OSS's at a time.  The script 

completed successfully in 12.5 hours and the 2.4PB file 

system mounted properly after a reboot. 

3. Question of Purging vs. Quotas 

With such a large Lustre file system configured as 

scratch space, one of the inevitable questions is whether 

to purge files from it periodically or to impose quotas.  On 

Kraken-XT4, which used Lustre 1.4 and where quotas 

were not an option, experience had shown that walking 

the file system to identify files to purge was prohibitively 
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slow and degraded metadata performance on the file 

system to an unacceptable degree.  Therefore, after 

rebuilding the Lustre file system on Kraken-XT5 

following acceptance testing, one of the first sets of tests 

run was to quantify the performance impact of quotas.   

 

Three separate tests were run: 

� A threaded file creation and deletion test on a 

single compute node. 

� A file-per-process bandwidth test, using the 

standard IOR benchmark. 

� A shared file bandwidth test, also using IOR. 

 

These tests were run in four situations:   

� Before the file system rebuild. 

� After the file system rebuild with quotas 

disabled. 

� After the file system rebuild with quotas enabled 

but not enforced. 

� After the file system rebuild with quotas 

enforced. 

 

 

 

The threaded file creation/deletion test showed a 

substantial improvement in MDS performance of the 

DDN EF2915 array relative to the LSI RAID boot array 

used before the rebuild.  The sustained rate of file creation 

increased by 59%, while the sustained rate of file deletion 

increased by a surprising 718%.  After enabling quotas, 

these rates did drop slightly, by 12% in the case of file 

creation and 10% in the case of file deletion. 

The file-per-process I/O bandwidth on the system 

also saw a significant improvement due to the increased 

number of OSTs (and therefore disk spindles) in the file 

system.  Surprisingly, a further increase in performance 

was observed after enabling quotas on the file system, and 

also the writes after enforcing quotas as well.  There is no 

immediately obvious reason why this should be so, 

although it has been theorized that some OST devices 

were in the process of rebuilding during the first two post-

rebuild sets of tests.  In any case, there was no measured 

performance impact on file-per-process I/O by enabling 

quotas. 

 

 

 

 

 

However, shared-file I/O performance was another 

matter.  Write and read performance to a shared file 

dropped by 6% and 1% respectively after the rebuild; 

since the maximum number of OSTs a file can be striped 

across on Lustre is fixed at 160, adding more OSTs did 

not improve performance, and since the number of 

Infiniband paths to to the DDN 9900 controllers remained 

fixed, there was actually slightly increased contention 

across these links.  Enabling quotas actually improved 

write performance by 5% but also decreased read 

performance by 5%, while enforcing quotas effectively 

reversed the situation.  The maximum impact of quotas 

observed on shared-file I/O performance was 6%. 

With a metadata performance penalty of 10-12% and 

a maximum bandwidth impact of 6%, NICS chose to 

move forward with quotas being enabled but not enforced 

on the Kraken-XT5 Lustre file system.  We suggest that 

this small performance penalty will be largely offset by 

not having to traverse the Lustre file system periodically 

in order to generate a file purge list and, thereby, 

impacting file system performance significantly as the 

purge program runs. Our purge policy was developed 
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with this in mind and requires that the top Lustre file 

system users be notified to purge files as a file system 

usage threshold is reached.  To date file system usage is 

below 50% and no file system purging has been required.  

We expect this to change over the next few months. 

4. Configuration and Performance 

Budget constraints limited our configuration to a 

minimum number of controllers, a high number of OSTs 

per OSS and with such a large system there are a large 

number of Lustre clients (O8300) which led to some 

interesting tradeoffs in performance and capability.  

The DDN configuration has 6 cabinets with two 

S2A9900s each with four port controllers.  The theoretical 

peak burst rate for Lustre is approximately 76.8 GB/s (1.6 

per port * 4ports * 2controllers per cabinet * 6 cabinets).  

The estimated sustained performance is approximately 

38.4 GB/s (.8 GB/s port * 4 ports * 2 controllers per 

cabinet * 6 cabinets).  During our acceptance testing we 

were able to demonstrate about 5GB/s per cabinet as we 

obtained 30GB/s on portions of the IOR benchmark 

application.  No redundant controller paths exist in our 

current configuration. This means no failover is possible 

for this configuration.  Therefore, it is very important to 

handle controller errors with the upmost care in order to 

prevent loss of data.  Our process for dealing with 

controller errors, of which we have had two, is to contact 

Cray that there is an issue and immediately contact DDN 

support.  We let DDN support guide our response to any 

controller error in order to prevent unnecessary controller 

reboots which could lead to loss of data.  SEC errors that 

indicated possible drive or controller errors usually have 

“Hard SCSI Error” in the error message. 

Our initial OSS/OST configuration was to have 14 

OSTs per OSS due to a configuration of 24 OSS service 

nodes.  Cray told us this was not going to be supported 

and we eventually had to trade some compute nodes for 

service nodes to come up with 48 OSS service nodes and 

a supported configuration of 7 OSTs per OSS.  This led to 

some interesting Lustre file system build problems 

discussed earlier.  Eventually, the production Lustre file 

system was configured and preliminary tests showed we 

would be able to get near the maximum sustained transfer 

rates advertised at approximately 30GB/s.  We are still 

limited in the number of transactions to the MDS and 

OSS servers which has been problematic when the portal 

LND layer wait queue is full due to a large job writing 

checkpoint files beyond the physical limit. Other users 

can notice the backlog in the wait queue and can notice 

significant slowdowns in response time to the execution 

of “ls” commands for example.  Use of “lfs find” 

commands can help with this situation but is not a normal 

command used by users and requires user education.  

Also, because of the size of the system and number of 

clients, Cray recommended that we increase the credit 

values for portals for compute nodes, OSS nodes and 

MDS node. The tuneable parameters were 2048 credits 

value on the MDS node, credits value of 512 for compute 

nodes and credits value of 1024 for the OSS nodes.  Also 

the Lustre ldlm_timeout value was increased to 250 so 

that the 8000+ clients can avoid the timeout, eviction and 

reconnect loop. Our default strip count is 4 and the default 

stripe size of 1MB.  Investigation on the prior XT4 Lustre 

filesystem showed that only two users had changed their 

stripe count from the default on the XT4.  This indicates 

that more user education is needed to effectively use the 

Lustre filesystem.  

5. Canary in the Coal Mine 

While Lustre tends to provide a lot of warning 

messages and Error codes, it does only when a set of 

clearly defined conditions are met.  Hardware issues 

affecting the portals network are not always noticed until 

Lustre generates errors - Lustre being the equivalent of 

the canary in the coal mine - followed by user complaints 

on a file system hang.  Users are justified for deploring 

over the poor performance of the file system because that 

is the only place they notice the hidden problems.  Lustre 

on the other hand assumes solid network hardware 

reliability and keeps trying to recover from hardware 

caused errors.  Endless sequence of Lustre errors 

continues unless the hardware issues are resolved, mostly 

by a system reboot.  We typically get half million to seven 

million lines of Lustre error messages a week.  Once we 

separate the interconnect failure caused error messages, 

Lustre messages are predictable and consistent: Failed 

nodes are identified by the timeout and eviction sequence, 

heavy concurrent I/O patterns beyond the current 

bandwidth limits manifest themselves as a global delay.  

By focusing on the onset point of volumes of Lustre 

errors and correlating the netwatch log messages on the 

mesh link states of the HSN, we identified that a 

cascading chain of deadlock timeouts, also known as 

router error precedes the HSN collapse.  The sequence of 

events starts with a sudden appearance of a router error on 

the event log file, propagation of the router error to other 

links, Lustre servers severed from network, nfs server 

boot node not responding, and stream of beer messages. 

By the time we see the beer (basic end-to-end reliability) 

messages, it is beyond the point of no return for the HSN. 

The HSN sometimes recovers by itself eventually 

ingesting all the portal traffic.  We did see the self 

recovery twice during last three months.  But it tends to 

have lingering effects and job performances become 

unpredictable after such recovery. 
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5.1 RAID rebuild failure 

On 2 April 2009, we observed several errors with error 

number -30 (EROFS) from Lustre logs on an OSS server 

occurring on 2 of its OSTs.We went to the machine room 

and noticed the LEDs on top two cages indicate error.  

Reporting it to the DDN support, we learned that there 

were hardware rebuild errors earlier on two of the 56 

LUNs possibly due to interrupts on rebuilds while write-

cache enabled.  Lustre on the other hand did the right 

thing to detect it as a SCSI device error on its back end 

disk device and immediately remounted the affected 

OSTs read-only. 

After warnings from DDN that we might need to 

reformat the two OSTs and a quick estimate on the 

number of files to be lost with reformat close to a million, 

we decided to force the rebuild option on two LUNs while 

performing the fsck on two OSTs.  Both were successful.  

File system checks on the OST took about 90 minutes in 

parallel, and the RAID rebuild successfully completed in 

a day. 

Guided by job schedule records, we narrowed the 

time windows and obtained the possibly affected user list. 

Extensive lfs find, debugfs stats on candidates confirmed 

that we avoided a massive data loss.  In the end, no 

corrupted files were found or reported by users.  Lustre 

prevented a massive file system corruption, and we 

confirmed that the Lustre did its job as it was supposed to. 

5.2 Monitoring 

We keep track of the following three: 

� Lustre error counter: monitors the Lustre 

warnings, Errors, and ratio of the two. It 

generates the data for weekly snapshot graph, 

and it alerts the global system event when it 

happens.  Thank to a large number of clients, we 

can tell the difference whether it is a global scale 

or a localized timeout-eviction sequence.  It 

complements the SEC-rule set based warning 

system. 

� Lustre hang sampling: random interval checks on 

Lustre response time and is logged continuously 

during production.  Combined with Lustre 

warning message, it enabled us to identify heavy 

I/O jobs causing file system response hangs. 

� Lustre File system state: number of files 

generated and total disk space used are recorded 

hourly.  It not only provides the file usage trends 

but also gives extra clues to unusual Lustre 

warning messages. 

Conclusion 

Lustre is the only currently supported high 

performance parallel file system available for the Cray 

XT5 system that can be used by the compute nodes and 

having this distinction NICS has to take advantage of all 

Lustre features applicable to the NICS environment and 

try to manage and minimize all of Lustre’s disadvantages.  

NICS has observed that Lustre seems to provide early 

warning of system failures both detected and undetected 

and is affectionately known as our “canary in a coal 

mine”.  Enabling but not using Lustre quotas seems to 

provide a decent trade-off between automated system 

purging and full quotas based on performance testing with 

and without quotas and the known performance impact of 

file system traversal with a script that identifies file purge 

targets.  However, NICS purge policy will still depend on 

end users to take action which experience has shown can 

be unpredictable.  NICS is iteratively improving our 

Lustre monitoring with a combination of log watching, 

Lustre file system response time and file system state 
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