
Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy under contract DE-AC04-94AL85000.

Catamount N-Way Performance on XT5

Ron Brightwell, Suzanne Kelly, Jeff Crow
Scalable System Software Department 

Sandia National Laboratories
rbbrigh@sandia.gov

Cray User Group Conference
May 6, 2009

mailto:rbbrigh@sandia.gov


Catamount N-Way Lightweight Kernel

• Third-generation compute node operating system
• No virtual memory support

– No demand paging
• Virtual addressing

– Provides protection for the OS and privileged processes
• Multi-core processor support via Virtual Node Mode

– One process per core
– Memory is divided evenly between processes on a node
– Processes are completely mapped when started
– Physically contiguous address mappings

– No support for POSIX-style shared memory regions
– No support for threads

• Previous generation LWK supported threads and OpenMP
• Support was (reluctantly) removed in 2003 at Cray’s request



Sandia’s Huge Investment in MPI

• All Sandia HPC applications written in MPI
• Several are more than 15 years old
• More than a billion dollars invested in application development
• MPI has allowed for unprecedented scaling and performance
• Performance portability is critical for application developers
• Mixed-mode programming (MPI+threads) not very attractive



Message Passing Limitations on Multicore
Processors

• Multi-core processors stress memory bandwidth performance
• MPI compounds the problem

– Semantics require copying messages between address spaces
– Intra-node MPI messages use memory-to-memory copies
– Most implementations use POSIX-style shared memory

• Sender copies data in
• Receiver copies data out

• Alternative strategies
– OS page remapping between source and destination processes

• Trapping and remapping is expensive
• Serialization through OS creates bottleneck

– Network interface offload
• Serialization through NIC creates bottleneck
• NIC much slower relative to host processor



Intra-Node MPI for Cray XT with Catamount

• Uses Portals library for all messages
• Interrupt driven Portals implementation

– “Generic” Portals (GP)
– OS does memory copy between processes (<=512 KB)
– OS uses SeaStar NIC (>512 KB)
– Single copy
– Serialization through OS

• NIC-based Portals implementation
– “Accelerated” Portals (AP)
– SeaStar does DMA between processes
– Still need OS trap to initiate send
– Single copy
– Serialization through OS and SeaStar

• Both approaches create load imbalance



Page-map
Level-4 Table

Page Directory
Pointer Table

Page Directories Page Tables

Physical 
Memory



PML4 Mappings



PML4 Mappings



PML4 Mappings



PML4 Mappings



SMARTMAP: Simple Mapping of Address Region
Tables for Multi-core Aware Programming

• Direct access shared memory between processes
– User-space to user-space 
– No serialization through the OS
– Access to “remote” address by flipping a few bits

• Each process still has a separate virtual address space
– Everything is “private” and everything is “shared”
– Processes can be threads

• Allows MPI to eliminate all extraneous memory-to-memory copies on 
node
– Single-copy MPI messages
– No extra copying for non-contiguous datatypes
– In-place collective operations

• Not just for MPI
– Can emulate POSIX-style shared memory regions
– Supports one-sided put/get operations
– Can be used by applications directly



SMARTMAP Limitations on X86-64

• Limited to 511 processes per node
– 512 PML4 slots

• Limited to 512 GB per process

• Won’t stress these anytime soon



Simplicity of a Lightweight Kernel

OS Code
static void initialize_shared_memory( void )

{

extern VA_PML4T_ENTRY *KN_pml4_table_cpu[];

int cpu;

for( cpu=0 ; cpu < MAX_NUM_CPUS ;cpu++ ) {

VA_PML4T_ENTRY * pml4 = KN_pml4_table_cpu[ cpu ];

if( !pml4 ) continue;

KERNEL_PCB_TYPE * kpcb =

(KERNEL_PCB_TYPE*)KN_cur_kpcb_ptr[cpu];

if( !kpcb ) continue;

VA_PML4T_ENTRY dirbase_ptr =(VA_PML4T_ENTRY)

(KVTOP( (size_t) kpcb->kpcb_dirbase )

| PDE_P

| PDE_W

| PDE_U );

int other;

for( other=0 ; other<MAX_NUM_CPUS ; other++ ){

VA_PML4T_ENTRY * other_pml4 =

KN_pml4_table_cpu[other];

if( !other_pml4 ) continue;

other_pml4[ cpu+1 ] = dirbase_ptr;

}

}

}

User Code

static inline void *

remote_address( unsigned core, volatile void * vaddr)

{

uintptr_t addr = (uintptr_t) vaddr;

addr |= ((uintptr_t) (core+1)) << 39;

return (void*) addr;

}



Implementing Cray SHMEM

void shmem_ putmem( void *target, void *source, size_t length, int pe )

{

int  core;

if   ( (core = smap_pe_is_local( pe )) != −1 ) {

void targetr = remote_address( core , target );

memcpy( targetr, source, length );

} else {

pshmem_putmem( target, source, length, pe );

}

}



Cray SHMEM Put Latency



Open MPI

• Modular Component Architecture
• Point-to-point modules

– Point-to-Point Management Layer (PML)
• Matching in the MPI library
• Multiplexes over multiple transport layers (BTL)

– Sockets, IB Verbs, shared memory, MX, Portals
– Matching Transport Layer (MTL)

• Matching in the transport layer
• Only a single transport can be used

– MX, Qlogic PSM, Portals

• Collective modules
– Layered on MPI point-to-point

• Basic, tuned, hierarchical
– Directly on underlying transport



SMARTMAP MPI Point-to-Point

• Portals MTL
– Each process has a

• Receive queue for each core
• Send queue

– To send a message
• Write request to the end of the destination receive queue
• Wait for send request to be marked complete

– To receive a message
• Traverse send queues looking for a match
• Copy message once match is found
• Mark send request as complete

• Shared Memory BTL
– Emulate shared memory with SMARTMAP

• One process allocates memory from its heap and publishes this address
• Other processes read address and convert it to a “remote” address



Portals MTL Limitations

• Messages are synchronous
– Data is not copied until receiver posts matching receive
– Send-side copy defeats the purpose

• Two posted receive queues
– One inside Portals for inter-node messages
– One in shared memory for intra-node messages

• Handling MPI_ANY_SOURCE receives
– Search unexpected messages
– See if communicator is all on-node or all off-node
– Otherwise

• Post Portals receive and shared memory receive
• Only use shared memory receive if Portals receive hasn’t been used



Test Environment

• Cray XT hardware
– 2.3 GHz dual-socket quad-core AMD Barcelona

• Software
– Catamount N-Way 2.1.41
– Open MPI r17917 (February 2008)

• Benchmarks
– Intel MPI Benchmarks (IMB) 2.3
– MPI Message rate

• PathScale modified OSU bandwidth benchmark

• Single node results



MPI Ping-Pong Latency



MPI Ping-Pong Bandwidth



MPI Exchange – 8 cores



MPI Sendrecv – 8 cores



MPI Message Rate – 2 cores



MPI Message Rate – 4 cores



MPI Message Rate – 8 cores



SMARTMAP MPI Collectives

• Broadcast
– Each process copies from the root

• Reduce
– Serial algorithm

• Each process operates on root’s buffer in rank order
– Parallel algorithm

• Each process takes a piece of the buffer

• Gather
– Each process writes their piece to the root

• Scatter
– Each process reads their piece from the root

• Alltoall
– Every process copies its piece to the other processes

• Barrier
– Each process atomically increments a counter



MPI Reduce - Serial

Rank 0

Rank 1 Rank 2 Rank 3

Send Buffer

Send Buffer Send Buffer Send Buffer

Receive Buffer

Core 0

Core 1

Core 2

Core 3



MPI Reduce – Parallel

Rank 0

Rank 1 Rank 2 Rank 3

Send Buffer

Send Buffer Send Buffer Send Buffer

Receive Buffer

Core 0

Core 1

Core 2

Core 3



MPI Reduce – 8 cores



MPI Broadcast – 8 cores



MPI Barrier



MPI Allreduce – 8 cores



MPI Alltoall – 8 cores



SMARTMAP for Cray MPICH2

• Cray’s MPICH2 is the production MPI for Red Storm
– Really old version of MPICH2
– Cray added support for hierarchical Barrier, Bcast, Reduce, Allreduce

• Initial approach is to use SMARTMAP for these collectives
– Reducing point-to-point latency with SMARTMAP unlikely to impact 

performance
• Most codes dominated by longest latency

– Optimizing collectives likely to have the most impact
• Results show hierarchical using SMAP versus non-hierarchical











SMARTMAP Summary

• SMARTMAP provides significant performance improvements for intra-
node MPI
– Single-copy point-to-point messages
– In-place collective operations
– “Threaded” reduction operations
– No serialization through OS or NIC
– Simplified resource allocation

• Supports one-sided get/put semantics
• Can emulate POSIX-style shared memory regions



Project Kitten

• Creating modern open-source LWK platform
– Multi-core becoming MPP on a chip, requires innovation
– Leverage hardware virtualization for flexibility

• Retain scalability and determinism of Catamount
• Better match user and vendor expectations
• Available from http://software.sandia.gov/trac/kitten



Leverage Linux and Open Source

• Repurpose basic functionality from Linux Kernel
– Hardware bootstrap
– Basic OS kernel primitives

• Innovate in key areas
– Memory management (Catamount-like)‏
– Network stack
– SMARTMAP
– Fully tick-less operation, but short duration OS work

• Aim for drop-in replacement for CNL
• Open platform more attractive to collaborators

– Collaborating with Northwestern Univ. and Univ. New Mexico on 
lightweight virtualization for HPC, http://v3vee.org/

– Potential for wider impact



Kitten Architecture



Current Status

• Initial release (December 2008) ‏
– Single node, multi-core
– Available from http://software.sandia.gov/trac/kitten

• Development trunk
– Support for Glibc NPTL and GCC OpenMP via Linux ABI compatible 

clone(), futex(), ...
– Palacios virtual machine monitor support

(planning parallel Kitten and Palacios releases for May 1)
– Kernel threads and local files for device drivers ‏

• Private development trees
– Catamount user-level for multi-node

(yod, PCT, Catamount Glibc port, Libsysio, etc.) ‏
– Ported Open Fabrics Alliance IB stack

http://software.sandia.gov/trac/kitten


Virtualization Support

• Kitten optionally links with Palacios
– Palacios developed by Jack Lange and Peter Dinda at Northwestern
– Allows user-level Kitten applications to launch unmodified guest ISO 

images or disk images
– Standard PC environment exposed to guest, even on Cray XT
– Guests booted: Puppy Linux 3.0 (32-bit), Finnix 92.0 (64-bit), Compute 

Node Linux, Catamount
• “Lightweight Virtualization”

– Physically contiguous memory allocated to guest
– Pass-through devices (memory + interrupts) ‏
– Low noise, no timers or deferred work
– Space-sharing rather than time-sharing



Motivations for Virtualization in HPC

• Provide full-featured OS functionality in a lightweight kernel
– Custom tailor OS to application (ConfigOS, JeOS)
– Possibly augment guest OS's capabilities

• Improve resiliency
– Node migration, full-system checkpointing
– Enhanced debug capabilities

• Dynamic assignment of compute node roles
– Individual jobs determine I/O node to compute node balance
– No rebooting required

• Run-time system replacement
– Capability run-time poor match for high-throughput serial workloads



VM Guest

Host OS

Exit Dispatch

Device Layer
APIC

ATAPI

PIC PIT

NVRAM

PCI

Keyboard 

NIC

Nested
Paging

Shadow
Paging

VM Memory Map

IO Port
Map

MSR
Map

IRQs

HardwarePassthrough IO

Hypercall
Map

Palacios Architecture
(credit: Jack Lange, Northwestern University) ‏

(Kitten or GeekOS)‏



Shadow vs. Nested Paging:
No Clear Winner

Shadow Paging,Shadow Paging,
O(N) O(N) memmem accessesaccesses

per TLB missper TLB miss

Page tables the
guest OS thinks it

is using

Palacios managed
page tables used by

the CPU

Page Faults

Nested Paging,Nested Paging,
O(N^2) O(N^2) memmem accessesaccesses

per TLB missper TLB miss

Guest OS managed
guest virt to guest
phys page tables

Palacios managed
guest phys to host
phys page tables

CPU MMU 



Lines of Code in Kitten and Palacios



Kitten+Palacios on Cray XT

• Kitten boots as drop-in replacement for CNL
– Kitten kernel vmlwk.bin -> vmlinux
– Kitten initial task ELF binary -> initramfs
– Kernel command-line args passed via parameters file

• Guest OS ISO image embedded in Kitten initial task
– Kitten boots, starts user-level initial task, initial task “boots” the embedded 

guest OS
– Both CNL and Catamount ported to the standard PC environment that 

Palacios exposes
• SeaStar direct-mapped through to guest 

– SeaStar 2 MB device window direct mapped to guest physical memory
– SeaStar interrupts delivered to Kitten, Kitten

forwards to Palacios, Palacios injects into guest



Native vs. Guest
CNL and Catamount Tests

• Testing performed on rsqual XT4 system at Sandia
– Single cabinet, 48 2.2 GHz quad-core nodes
– Developers have reboot capability

• Benchmarks:
– Intel Messaging Benchmarks (IMB, formerly Pallas)
– HPCCG “Mini-application”

• Sparse CG solver
• 100 x 100 x 100 problem, ~400 MB per node

– CTH Application
• Shock physics, important Sandia application
• Shaped charge test problem (no AMR)
• Weakly scaled



IMB PingPong Latency:
Nested Paging has Lowest Overhead

Compute Node Linux Catamount

7.0 us
13.1 us
16.7 us

4.8 us

11.6 us

35.0 us

Still investigating cause of poor performance of shadow paging on
Catamount. Likely due to overhead/bug in emulating guest 2 MB pages
for pass-through memory-mapped devices.



IMB PingPong Bandwidth:
All Cases Converge to Same Peak Bandwidth

Compute Node Linux Catamount

For 4KB message:
Native: 285 MB/s
Nested: 123 MB/s
Shadow: 100 MB/s

For 4KB message:
Native: 381 MB/s
Nested: 134 MB/s
Shadow: 58 MB/s



48-Node IMB Allreduce Latency:
Nested Paging Wins,

Most Converge at Large Message Sizes

Compute Node Linux Catamount



16-byte IMB Allreduce Scaling:
Native and Nested Paging Scale Similarly

Compute Node Linux Catamount



HPCCG Scaling:
5-6% Virtualization Overhead

Shadow faster than Nested on Catamount

Compute Node Linux Catamount
Poor performance of shadow paging on CNL due to context switching.
Could be avoided by adding page table caching to Palacios.

Higher is Better

48 node MFLOPs/node:
Native: 544
Nested: 495
Shadow: 516 (-5.1%) ‏

48 node MFLOPs/node:
Native: 540
Nested: 507 (-6.1%) ‏
Shadow: 200

Catamount is essentially doing no context switching, benefiting 
shadow paging (2n vs. n^2 page table depth issue discussed earlier)‏



CTH Scaling:
< 5% Virtualization Overhead

Nested faster than Shadow on Catamount

Compute Node Linux Catamount

32 node runtime:
Native: 281 sec
Nested: 294 sec
Shadow: 308 sec

32 node runtime:
Native: 294 sec
Nested: 308 sec
Shadow: 628 sec

Lower is Better

Poor performance of shadow paging on CNL due to context switching.
Could be avoided by adding page table caching to Palacios.



Kitten Summary

• Kitten LWK is in active development
– Runs on Cray XT and standard PC hardware
– Guest OS support when combined with Palacios
– Available now, open-source

• Virtualization experiments on Cray XT indicate ~5% performance 
overhead for CTH application
– Would like to do larger scale testing
– Accelerated portals may further reduce overhead



Acknowledgments

• Catamount/SMARTMAP
– John VanDyke, SNL
– Tramm Hudson, OS Research
– Kevin Pedretti, SNL
– Kurt Ferreira, SNL
– Sue Kelly, SNL
– Jeff Crow, HP

• Kitten
– Kevin Pedretti, SNL
– Tramm Hudson, OS Research
– Mike Levenhagen, SNL
– Peter Dinda, Northwestern U.
– Jack Lange, Northwestern U.
– Patrick Bridges, U. New Mexico



Questions?


	Catamount N-Way Performance on XT5
	Catamount N-Way Lightweight Kernel
	Sandia’s Huge Investment in MPI
	Message Passing Limitations on Multicore Processors
	Intra-Node MPI for Cray XT with Catamount
	PML4 Mappings
	PML4 Mappings
	PML4 Mappings
	PML4 Mappings
	SMARTMAP: Simple Mapping of Address Region�Tables for Multi-core Aware Programming
	SMARTMAP Limitations on X86-64
	Simplicity of a Lightweight Kernel
	Implementing Cray SHMEM
	Cray SHMEM Put Latency
	Open MPI
	SMARTMAP MPI Point-to-Point
	Portals MTL Limitations
	Test Environment
	MPI Ping-Pong Latency
	MPI Ping-Pong Bandwidth
	MPI Exchange – 8 cores
	MPI Sendrecv – 8 cores
	MPI Message Rate – 2 cores
	MPI Message Rate – 4 cores
	MPI Message Rate – 8 cores
	SMARTMAP MPI Collectives
	MPI Reduce - Serial
	MPI Reduce – Parallel
	MPI Reduce – 8 cores
	MPI Broadcast – 8 cores
	MPI Barrier
	MPI Allreduce – 8 cores
	MPI Alltoall – 8 cores
	SMARTMAP for Cray MPICH2
	SMARTMAP Summary
	Leverage Linux and Open Source
	Current Status
	Virtualization Support
	Motivations for Virtualization in HPC�
	Kitten+Palacios on Cray XT�
	Native vs. Guest�CNL and Catamount Tests�
	Kitten Summary
	Acknowledgments
	Questions?

