
Performance Characteristics of the Lustre File System on

the Cray XT5 with Respect to Application I/O Patterns.

Lonnie D. Crosby, National Institute for Computational Sciences

ABSTRACT: As the size and complexity of supercomputing platforms increases, additional attention must be
given to the performance challenges presented by application I/O. This paper presents the performance charac-
teristics of the Lustre file system utilized on the Cray XT5 system and illuminates the challenges presented by
applications which utilize tens of thousands of parallel processes.

KEYWORDS: Cray XT5, IOR, Lustre, IO

1 Introduction

The increasing size and capability of modern supercom-
puting platforms points to promises of ever increasing
scientific production. The major metric in categorizing
these systems and their scientific potential is their peak
performance measured in floating-point operations per
second (FLOP/s). For example, two Cray XT5 systems
housed at Oak Ridge National Laboratory designated
Jaguar and Kraken measure in the high teraflop (TF)
to petaflop (PF) range. This metric, however, is only a
function of the performance and number of processors
within the system and should only be viewed as a theo-
retical maximum.

Application performance depends on many more fac-
tors other than processor performance and number. For
example, an application will need to interact with vari-
ous aspects of the supercomputing platform in order to
produce scientific results. Besides performing raw op-
erations, an application will need to access both local
and remote random-access memory (RAM), communi-
cate with local and remote processes, and perform I/O to
acquire raw data and report results. Thus, interactions
with RAM, network interconnect, and file systems must
be addressed to understand application performance.

The focus of this paper is the application’s interac-
tion with the file system. This interaction is truly a
cooperative exercise. Both parties, application and file
system, are equally responsible for ensuring adequate
performance. By understanding the application’s I/O
patterns and the features/limitations of the file system,
optimal performance can be realized.

2 Application I/O

Applications perform I/O in a variety of ways. Many of
the particular choices depend heavily on the nature of
the specific application. Although this topic is very ap-
plication specific, general I/O patterns that accurately
describe portions of real application I/O patterns can
be identified. The fundamental questions regarding I/O
patterns are:

• How many processes are performing I/O?

• How is this I/O performed?

The first question relates to the number of process which
are involved in I/O operations. In extreme circum-
stances, an application may only utilize one process in
I/O or may involve all processes. The second question
gives some additional information. An application may
perform I/O by writing a single file in chunks of a given
size. This file may be uniquely owned by a single process
or shared between many processes. It is important how
these processes interact in I/O operations. For shared
files, this interaction may be collective or independent.

As a result, three distinct application I/O patterns
will be investigated. The first refers to an application
which only uses one process to perform I/O. The second
refers to an application in which all processes perform
I/O by writing an individual file per process. The third
I/O pattern also refers to an application in which all pro-
cesses perform I/O. However, these processes will share
access to a single file. It should be noted that none of
these I/O patterns should be considered as optimal. An
optimal I/O pattern for an application is very dependent
on the specifics of the application and is most likely some
combination of the above patterns.

1
Cray User Group 2009 Proceedings



3 Lustre File System

The Lustre file system [2] is a parallel shared file system
which is available on the Cray XT5 supercomputer at the
National Institute of Computational Sciences (NICS).
This file system make use of dedicated I/O servers called
Object Storage Servers (OSS) which each manage a set
of drives which are called Object Storage Targets (OST).
A metadata server (MDS) manages every file on the file
system by keeping track of which objects are associated
with each file. Objects are managed by the OSSs and
stored on the OSTs. A file may be striped across mul-
tiple OSTs by assigning it multiple objects which reside
on different OSTs. Sequential OSTs are managed by dif-
ferent OSSs in order to maintain a balanced workload.
The file is striped between objects by assigning a stripe
size. As a portion of a file is written to an object, if its
size becomes larger than the stripe size the next object
is utilized.

Figure 1: A diagrammatic representation of a file strip-
ing pattern utilizing two OSTs, a 1 MB stripe size, and
a 4 MB file.

This is shown in Figure 1 for a 4 MB file which is
associated with two objects with a stripe size of 1MB.
The Lustre file system can be controlled by setting the
number of objects associated with the file (stripe count)
and the size of the stripes (stripe size). Additionally,
the beginning OST index (stripe index) may be set to
select the starting OST from which objects will be as-
signed. Additional objects will be assigned to sequential
OSTs. These parameters may be set for both files and
directories on the file system. Files will inherit the stripe
settings of the directory in which they reside or may be
given individual stripe attributes. These parameters are
set by the “lfs setstripe” command. They may be ap-
plied to directories at any time; however, the attributes
do not apply to files which are already present in the
directories. The stripe attributes of files are set at file
creation and must be assigned prior to this action.

4 Hardware

The goal of this work is to quantify the performance
characteristics of the previously stated three application
I/O patterns on the Lustre file system with emphasis on

their interaction. These tests of applicaiton/file system
performance are performed on the NICS supercomputer
“Kraken” which is a Cray XT5 platform. This super-
computer consists of 8253 compute nodes which contain
two quad-core 2.3 GHz AMD Opteron processors. The
peak performance of this system is about 608 TF. A
mixture of available RAM is available with both 8 and
16 GB nodes utilizing 800 MHz DIMMS. The intern-
odal communication network consists of a 22x16x24 3D
Torus topology which utilizes the SeaStar 2+ intercon-
nect. This high speed network is capable of achieving a
maximum bi-directional bandwidth of 9.6 GB/s.

The Lustre file system consists of 1 MDS, 48 OSSs,
and 336 OSTs. The OSSs are distributed evenly along
two dimensions of the torus topology. The peak band-
width of the filesystem is about 30 GB/s, which is
uniquely determined by the number of OSSs. Each OSS
manages 7 OSTs which have a usable size of 7.2 TB
through 10 1 TB disks in a (8+2) RAID 6 configuration.
The Lustre software utilized is based on version 1.6.5.

The initial observation from this combination of com-
pute nodes and file system is the proportion of compu-
tational resources to file system resources. Given the 30
GB/s peak bandwidth of the Lustre file system, if every
compute core is equally splitting the file I/O bandwidth
each core would maintain less than 500 KB/s. Similarly
each compute node would then only be able to main-
tain about 4 MB/s. Clearly, a cooperative balance be-
tween the number of cores/nodes performing I/O and
the parallel capabilities of the file system are necessary
for acceptable I/O performance.

5 I/O Tests

These tests are performed with IOR version 2.10.1 [1]
from Lawrence Livermore National Laboratory. Unless
otherwise noted the POSIX API is utilized in these tests.
Other APIs utilized include MPI-IO version 2.0 [4] and
parallel HDF5 version 1.6.2 [3]. IOR gives the flexibil-
ity to benchmark I/O by altering the size of read and
write operations (transfer size), the number of processes,
the structure of parallel files (block size, repetitions, and
file offsets), and the mode of operation (file per process
and single shared file). All tests utilize direct I/O in
which the system level buffers are bypassed which gives
finer control over the characteristics of the I/O opera-
tions. These tests are performed utilizing three separate
trials of both read and write operations in which the
maximum read and write performance is reported. This
method yields data which gives the expected best case
conditions given some variability due to the file system
load. These tests are run on a non-dedicated system.
Therefore, measured bandwidths are generally substan-
tially less than peak due to external file system load.

2
Cray User Group 2009 Proceedings



5.1 Single Writer

An application which utilizes one process that performs
I/O to a single file must, in general, aggregate data from
all other processes. This situation imposes some over-
head from the associated communication and memory
costs. Apart from these considerations to application
performance, a single process establishes a single I/O
stream to the filesystem. It is the interaction of this
process and the Lustre file system which is of interest
in this case. The comparable test is to determine the
effectiveness of file striping on the resulting single file.

The striping pattern of this file is scanned between
stripe counts of 1 and 160, which is the maximum al-
lowed within Lustre. A file size ranging between 32 MB
and 5 GB is utilized to keep the load per OST constant at
32 MB. This method is utilized in order to eliminate in-
creases in performance due to a decreased load per OST,
which would be the case with a constant file size. A 32
MB transfer size is utilized in these tests in order to give
increased I/O volume. A larger transfer size is consistent
with the I/O aggregation necessarily, although, given the
particular application may vary in size. The stripe size
is also changed between 1 and 32 MB to determine the
effect of this parameter on performance. Figures 2 and
3 show the write and read performance results.

Figure 2: The write performance measured in MB/s
for a single process as a function of stripe count.

Figure 2 shows that striping a single file which is
written by a single process over multiple OSTs doesn’t
provide substantially improved performance. The maxi-
mum write performance is obtained with 2 OSTs. How-
ever, this performance gain is not significant compared
to utilizing 1 or even 4 OSTs. The largest gains in per-
formance come from increasing the stripe size to 32 MB.
This operation provides for a more contiguous write on
the particular OST as compared to a 1 MB stripe which
may be distributed throughout the device. A similar

situation is seen in Figure 3 with respect to read per-
formance. The only difference, besides the increased
bandwidth as compared to writes, is that with a 32 MB
stripe size stripe counts up to 16 provide increased per-
formance. These results suggest that performance is lim-
ited by the single process which performs I/O.

Figure 3: The read performance measured in MB/s for
a single process as a function of stripe count.

Due to the increased performance of a 32 MB stripe,
which happens to be equal to the transfer size, another
test is necessary to correlate the transfer size and stripe
size utilized. This test will restrict a 128 MB file to a
single OST. The transfer size is varied between 1 and 32
MB while the stripe size is varied between 1 and 128 MB.
The write performance of these tests are shown in Figure
4. For a 1 MB transfer size performance is unaffected by
changes in the stripe size. The performance is effectively
limited by the 1 MB transfer size. However, the 8 and 32
MB transfer size cases have performance which increases
with the stripe size. Previous studies on the Cray XT4
[5] have shown a very strong interdependence between
transfer size and performance. In general at stripe sizes
smaller than the transfer size performance is limited by
the stripe size. At larger stripe sizes performance is lim-
ited by the transfer size. The maximum performance
for the 8 MB transfer size case occurs at a stripe size of
32 MB. Similarly, the maximum performance for the 32
MB transfer size occurs at a stripe size of 64 MB. Al-
though stripe sizes slightly larger than the transfer size
can provide increased performance, a stripe size roughly
equal to the transfer size should provide a good compro-
mise which would reduce the possibility that either will
become a substantial bottleneck to performance.

3
Cray User Group 2009 Proceedings



Figure 4: The write performance for a single process
as a function of transfer and stripe size.

5.2 Single Shared File

The single shared file application I/O pattern utilizes
multiple processes performing parallel I/O to a single
shared file. This results in multiple I/O streams which
access the same file. The structure of this parallel file
is setup with offsets for each process such that they do
not access the same portion of the file. Important appli-
cation I/O characteristics include the transfer size and
layout of the parallel file. From previous experience and
results from the single writer performance, this shared
file should be striped over a number of OSTs which are
at least equal to the number of processes involved in the
I/O operation. This choice will minimize both overhead
associated with splitting an operation between OSTs and
the contention between processes over a single OST.

Figure 5: The write performance of a single shared file.

Figure 5 shows the results of this test utilizing 32
processes which write to a 1 or 2 GB shared file. This
file is striped over 32 and 64 OSTs. The total file size
is altered by increasing the amount of IO each process

performs (block size) to maintain 32 MB per OST. This
is an attempt to keep the load on each OST constant.
A 32 MB transfer size is also utilized in this test. The
layout of the shared files are shown in Figure 6 [5]. Se-
quential offsets are utilized in both layouts. Layout #1
uses a stride of 32 or 64 MB and layout #2 uses a stride
of 1 or 2 MB with 32 repetitions of the overall pattern
in order to maintain the same total file size and size per
process. For layout #2 a 1 MB transfer size is utilized.

Figure 6: A diagrammatic representation of two dis-
tinct parallel file layouts.

Diminished performance is seen when utilizing a 1
MB stripe size with shared file layout #1. There are
two reasons for this occurrence. The performance is lim-
ited by the 1 MB stripe size and portions of the file
written by each process are stored on each OST. Each
process is writing to every utilized OST which causes
process contention for any particular OST and incurs
additional overhead related to switching OSTs. Both of
these situations can be overcome by utilizing a 32 MB
stripe size. This localizes each processes I/O to a single
OST which minimizes process contention and overhead.
Using a stripe count of 32 provides better performance
than a stripe count of 64 due to the overhead of switching
between OSTs for each process. Process contention for
an OST is not a factor in this reduction of performance.

The vastly improved performance from utilizing a 32
MB stripe size comes from both data localization and

4
Cray User Group 2009 Proceedings



data continuity as compared to the 1 MB stripe size
case. To gauge the relative importance of these two fac-
tors shared file layout #2 is used with a 1 MB stripe
size. This combination provides for data localization but
not data continuity on an OST. As Figure 5 shows this
results in improved performance, but only accounts for
25% to 50% of the overall increase in performance seen
by using a 32 MB stripe size. For shared files, both data
locality and continuity are of importance to I/O perfor-
mance.

5.3 File per Process

From the information obtained during the tests on the
single writer application I/O pattern, it was determined
that the resulting files should reside on an individual
OST. Also the stripe size should be set in a manner con-
sistent with the transfer size. The performance will be
reduced if either of these two parameters become limit-
ing. Setting these to be about equal should give near
optimal performance for this case. The file per process
application I/O pattern scales the idea of a single writer
to encompass all processes. Each process will perform
I/O operations on separate files. Figure 7 shows the
write performance of this I/O pattern as a function of
the number of processes/files. To be consistent with pre-
vious results each file is striped over a single OST which
is chosen on a round-robin or load-based metric. Each
file is 128 MB in size and utilizes a 32 MB transfer size.
Both 1 MB and 32 MB stripe sizes are utilized.

Figure 7: The write performance of the File per Pro-
cess I/O pattern as a function of the number of pro-
cesses/files.

In both cases the overall trend shows increasing per-
formance as the number of processes/files are increased
until a maximum is reached. This trend has been pre-
viously reported for the Cray XT3/XT4 platforms [5, 6]

At large process counts, the performance degrades sub-
stantially for the 1 MB stripe size. For the 32 MB stripe
size case the performance mostly flattens out at large
process counts. In general, the 32 MB stripe size case
performs better than the 1 MB case which is consistent
with previous results.

There are two major implication to scaling this I/O
pattern to large core counts. The first is the number of
OSTs, which is 336 on Kraken. Increasing the number of
processes/files is sustainable for some time after all the
OSTs are utilized. This continues until contention for
the file system resources become a limiting factor. The
second is the number of simultaneous I/O operations,
which are independent of the number of OSTs. The ma-
jor characteristic of this situation is elongated times for
file open operations due to contention at the MDS server.
Additional contention may also be present at the OSSs
and OSTs.

5.4 Scaling of the Single Shared File

From previous investigation of the single shared file ap-
plication I/O pattern, it was determined that data lo-
cality and continuity are the most important factors af-
fecting performance. As this pattern is scaled to larger
process counts a trend similar to the file per process pat-
tern emerges.

Figure 8: The write performance of the single shared
file I/O pattern as a function of the number of partici-
pating processes.

This is shown in Figure 8 for the POSIX, MPI-IO,
and HDF5 APIs. These tests utilize a file size of between
1.25 and 252 GB and the parallel file labeled as layout
#1 in Figure 6 with a 32 MB block size. The parallel
files are striped across a number of OSTs which are equal
to the number of processes. Since the maximum stripe

5
Cray User Group 2009 Proceedings



count for the Lustre file system is 160, the stripe count is
set to 160 for clients greater than 160. For data locality
and continuity reasons the transfer size is set to 32 MB.

The performance of the three parallel I/O libraries
are very similar and peak near 8k processors at 5983 to
6886 MB/s write bandwidth. The predominate feature
is the leveling off of write performance at large process
counts. The major limiting factor is the restriction to
160 OSTs. Performance increases dramatically at low
process counts and continues to grow past 160 processes
until the contention for these OSTs becomes limiting.
These results are very similar to previous studies per-
formed on the Cray XT4 [5]

The importance of data locality and continuity is also
seen if Figure 8. By changing the stripe size to 1 MB
data from each process is spread across OSTs. This has
a very large negative impact on write performance on
the order of 4000 MB/s, although the overall trend is
similar to the 32 MB stripe size case.

6 Conclusion

In these tests of I/O performance, the major consider-
ations are data locality and continuity. Previously pro-
posed I/O guidelines [6] from benchmarks run on Cray
XT3/XT4 systems agrees with the implications of fo-
cusing on these considerations. Data locality is achieved
by restricting a process’s I/O to a single OST for both
private and shared files. For shared files, this locality
must be ensured by a combination of parallel file layout
and stripe characteristics. Data continuity is achieved
by addressing the issue at both the application and file
system level. The size of the I/O transfer is very im-
portant in terms of performance and may be adjusted in
the application or by the use of external buffers. Larger
I/O transfers perform substantially better than smaller
transfers. If these large transfers are written to a single
object in the Lustre file systems then data continuity can
be maintained. However, the striping characteristics can
easily deteriorate data continuity by spreading this data
between objects or distributing it throughout a single
OST. For this reason the I/O transfer size must cooper-
ate with the file’s striping characteristics such that data
continuity is maintained. In general, stripe sizes less
than application transfer sizes will degrade performance
as mentioned previously. Stripe sizes larger than transfer
sizes may also show improved performance; however, the
overhead involved in completing a partial stripe eventu-
ally degrades performance.

Both the file per process and single shared file I/O
patterns have distinct problems when scaled to high pro-
cess counts. These methods are limited by either the
physical number of OSTs or by the maximum Lustre
stripe count of 160. Typically process counts of about
6k are sustainable for a file per processes pattern. This

limit decreases somewhat for a single shared file to about
4k processes. Improvements in performance at high pro-
cess counts may be realized if slightly different I/O pat-
terns are utilized. A subsetting approach may be uti-
lized which aggregates I/O from a subset of processes to
a single process. For an application of many thousands
of processes there may be many such I/O aggregators.
In fact the MPI-IO API is able to perform this kind of
aggregation through the use of some environmental vari-
ables.

A similar I/O pattern with respect to shared files
is also possible. The application may divide itself into
groups of processors which each write to an individual
shared file. No additional memory costs are incurred
during this process. The major benefit of this approach
is the ability to utilize more of the filesystem by striping
multiple shared files over disjoint sets of OSTs, which
would circumvent the 160 OST restriction for a single
file.

7 About the Author

Lonnie D. Crosby is a computational scientist in the Na-
tional Institute for Computational Sciences (NICS) lo-
cated at Oak Ridge National Laboratory (ORNL). NICS
is a joint partnership between the University of Ten-
nessee and ORNL. Lonnie has a Ph.D. in chemistry from
The University of Memphis located in Memphis, TN. He
may be contacted at Oak Ridge National Laboratory,
P.O. Box 2008 MS6173, Oak Ridge, TN 37831-6173,
Email: lcrosby1@utk.edu.

References

[1] IOR 2.10.1, https://asc.llnl.gov/computing resources/
purple/archive/benchmarks/ior/

[2] Lustre File System: High-Performance
Storage Architecture and Scalable Clus-
ter File System, White Paper, October
2008, www.sun.com/software/products/lustre/
docs/lustrefilesystem wp.pdf

[3] HDF5 1.6.2, http://www.hdfgroup.org/HDF5

[4] MPI-2: Extensions to the Message Passing In-
terface. http://www.mpi-forum.org/docs/mpi-20-
html/mpi2-report.html

[5] Using IOR to Analyze the I/O performance for HPC
Platforms, H. Shan and J. Shalf, CUG Proceedings
2007.

[6] Guidlines for Efficient Parallel I/O on the Cray
XT3/XT4, J. Larkin and M. Fahey, CUG Proceed-
ings 2007.

6
Cray User Group 2009 Proceedings




