

Performance Characteristics of the Lustre File System on the Cray XT5 with Respect to Application I/O Patterns.

Lonnie D. Crosby

National Institute for Computational Sciences

Application Performance

- Computation
 - -2.3 GHz Quad Core AMD Opteron
- Inter-process Communication

 SeaStar2+ 3D-Torus
 HyperTransport
- Memory Capacity
 - 8 16 GB
- File I/O
 - Lustre File System

Compute the Future

COMPUTE Efuture

A Bigger Picture: Kraken XT5

- Computation Nodes
 8253 (608 TF)
- Object Storage Servers
 48 (30 GB/s)
- Object Storage Targets
 336 (2.4 PB)

Factors which affect file I/O.

- Who is performing I/O and when?
 Number of processes which perform I/O.
- How is I/O performed in the Application?
 - I/O Rate from processes.
 - File access pattern.
- How is I/O handled by the Lustre file system?
 - File striping pattern.

File Striping in Lustre

Stripe Count

• 32 MB per OST (32 MB – 5 GB) and 32 MB Transfer Size

Single Writer Read Performance

Single Writer Transfer vs. Stripe Size

- Conclusions
 - Striping a single file over multiple OSTs does not substantially improve performance if a single process is performing I/O.
 - Performance can be limited by either transfer or stripe sizes.

- Important Considerations
 - Data locality
 - Data Continuity
- Parallel file Structure

Single Shared File (32 Processes) 1 GB and 2 GB file

File Per Process

• 128 MB per file and a 32 MB Transfer size

32 MB per process and 32 MB Transfer size

----POSIX Write (MB/s) ----MPIIO ----HDF5 **Proccesses**

Single Shared File Write Performance

Conclusions

- Important Considerations
 - Data Locality and Continuity
- Parameters
 - Restrict a process to one OST.
 - Utilize sufficiently large transfer and stripe sizes.
 - Consider the layout of parallel files.
- Limitations manifest themselves at large process counts.

Subsetting I/O

Lustre

- Advantages
 - Decreases number of files.
 - Increases the volume of I/O
- Disadvantages
 - Communication and memory costs.
- For shared files
 - Increases number of files