

CUG 2009 Proceedings 1 of 12

Practical Examples for Efficient I/O
on Cray XT Systems

Jeff Larkin, Cray Inc. <larkin@cray.com>

With graphs from:

Lonnie Crosby, University of Tennessee and Galen Shipman, ORNL

ABSTRACT: The purpose of this paper is to provide practical examples on how to perform

efficient I/O at scale on Cray XT systems. Although this paper will provide some data from

recognized benchmarks, it will focus primarily on providing actual code excerpts as specific

examples of how to write efficient I/O into an HPC application. This will include explanations of

what the example code does and why it is necessary or useful. This paper is intended to

educate by example how to perform application checkpointing in an efficient manner at scale.

KEYWORDS: I/O, Lustre, MPI-IO, XT5, XT4, XT3, Parallel, IOR

Motivation
Over the past few years I have presented on

the subject of application I/O at several

Cray customer sites and at the Cray Users

Group meeting. In each of these

presentations I have shown data collected

from I/O micro-benchmarks and interpreted

at a high level in regards to application

performance. Often the audience of these

presentations lacks experience writing

effective I/O code and, therefore, resorts to

simpler, less effective methods. The

purpose of this paper is to provide

examples of I/O code that can be effectively

used on Cray XT systems as a supplement to

the previously mentioned, higher level

presentations.

It should be noted that benchmarking I/O is

extremely difficult. Because I/O operations

make use of two shared resources, the

network and the filesystem, I/O operations

are probably the most difficult to accurately

measure and predict. The fact that each

application has different needs and I/O

implementations also makes it difficult to

accurately predict how well an application’s

I/O will perform in relation to I/O

benchmarks. I/O benchmarks and kernels,

like the ones used in this paper, are written

with I/O in mind, while applications are

written with their calculations in mind.

Readers should not assume that their

application will perform like an I/O kernel,

but rather apply the ideas from these

benchmarks and kernels to improve the I/O

operations of their applications.

Example I/O Data
Before discussing I/O code examples, it is

useful to establish a baseline for I/O

performance comparisons. The IOR

benchmark is very commonly used for

establishing a high water mark for

filesystem performance. In many ways, IOR

does everything right to maximize I/O

performance, so it is often the basis for

CUG 2009 Proceedings 2 of 12

filesystem comparisons. The graphs in

Figure 1 (Crosby) (Shipman) show IOR File

Per Process performance on two separate

large Cray XT5 systems. Since filesystem

performance varies greatly from machine to

machine and even between filesystems on

the same machine, we will ignore the exact

I/O rates of these graphs and instead

concentrate on the shape of the graphs. It

should be noted that these two graphs do

not include open times, which scales

particularly poorly with file-per-process

operations and would be included in the

time necessary to checkpoint an

application.

The most striking note about the above

graphs is the consistent shape, where

performance increases rapidly as clients are

added up to a certain threshold, after which

performance degrades to a low asymptotic

value. This should illustrate that below

some threshold a program can utilize

simplistic I/O techniques and achieve

reasonable I/O performance, but as

programs scale to many thousands of

processors they will need to intelligently

scale their I/O. Intelligently scaling

application I/O may include using I/O

aggregators, multiple shared files, or other

techniques that computational scientists

may lack the skills to implement. The

sections below will demonstrate these

techniques and explain their benefits and

limitations.

Striping and Data Alignment
Before discussing different I/O methods, I

feel it is important to discuss two simple,

and commonly over-looked, ways of

improving I/O performance: adjusting stripe

count and stripe size. Because Lustre is a

parallel filesystem, it is critical to exploit

lustre striping intelligently. Default striping

values may differ from filesystem to

filesystem, but it is unlikely to be the best

values for your application. The default

stripe count for a lustre filesystem is

commonly configured to 4, which is safer

than 1 or all and performs better for serial

operations than either, but is not ideal for

most parallel jobs. At a high-level, large

shared files generally need a large stripe

count in order to perform optimally and

files written on a per-process basis

generally require a small stripe count.

Simply changing lustre striping from the

default value will often have a significant

effect on the performance of parallel I/O

operations. Figure 4 shows the difference

in performance writing from just 1440

processor to a shared file when striped to

the default count (4) and widest stripe

(144).

The simplest way to change striping is via

the lfs command, but setting the striping

programmatically is an often-requested

feature. Unfortunately the Lustre

filesystem does not include a simple user

API, but the code in Figure 2 demonstrates

one way to set the striping of a new file1

from within an application. This code

should only be executed from one

processor to avoid overwhelming the

metadata server. Since version 3.2.0 of the

xt-mpt library, users may also set the

striping for MPI-IO files via the

striping_factor and

striping_unit hints.

1 Lustre striping cannot be changed on an
existing file.

CUG 2009 Proceedings 3 of 12

It is also important for users to realize that

adjusting the size of lustre stripes may

affect the performance of I/O operations.

As one would expect, larger stripe sizes

often perform better than smaller, although

increasing stripe size too much can

negatively affect performance. Users

should also be careful to ensure that

multiple writers do not write to the same

stripe. The simplest way to avoid this

misalignment is to ensure that the size of

I/O buffers is a multiple of the lustre stripe

size. Additionally, lustre appears to prefer

I/O operations on power of 2 data buffers.

In addition to properly striping files,

properly aligning data along page

boundaries can have a noticeable effect on

I/O performance. Figure 5 shows the

results of the same benchmark code

running with and without page-aligned

buffers. In general, page-aligning I/O

buffers made operations no worse and

often improved bandwidth by varying

amounts. Data alignment in C/C++ can be

achieved via the posix_memalign

command and in FORTRAN by over-

allocating an array and using the loc

function to find the start of a new page.

POSIX File-per-process
Writing individual files from each processor

is likely the simplest I/O method to

implement and is among the most

commonly used methods. When evaluating

peak filesystem performance, this method

generally has the best peak performance,

but has numerous pitfalls at scale, including

high stress on the metadata server and user

inconvenience from file count. One

significant benefit to this method is that it

easily allows more OSTs to be used on

filesystems with greater than 160 OSTs

available2.

As noted, FPP I/O operations are very

stressful on the Lustre metadata server

(MDS). Figure 6 shows the cost of opening

a file from every processor versus opening a

single, shared file. Notice that open time

increases with processor count when using

either technique, but much worse with file-

per-process. Since a single checkpoint

operation will almost certainly include

opening one or more files, the poor scaling

behavior or open operations should not be

disregarded. Figure 11 gives a simplified

example of how to perform a buffered,

POSIX FPP write.

POSIX Shared Files
Using a single, shared file among all

processes addresses some, but not all of the

limitations of file-per-process. While using

a single file may be more convenient for the

user, it does not completely eliminate MDS

load or reduce the number of clients

simultaneously writing to the OSTs. Figure

6 compares open times when using POSIX

FPP or POSIX shared file. Using a shared file

generally performs slightly worse than

individual files, but this may be a

worthwhile trade-off for user convenience.

Implementing a shared file in C using POSIX

I/O functions is fairly straightforward, but

does require each processor to calculate its

own offset in the file. In applications with

uniform I/O for each processor, this step is

trivial, but it may be more difficult when

each processor must write a different

2 Lustre currently restricts the number of OSTs
for a given file to 160

CUG 2009 Proceedings 4 of 12

amount of data. Figure 7 shows a simplified

example of how to implement a POSIX

shared file between all processes. Each

process will open the same file, calculate

and seek to its portion of the file, write, and

then close. One may wish to use

open_striped from Figure 2 on one

process before opening from the remaining

processes.

FORTRAN Direct I/O
Shared file I/O may also be implemented in

FORTRAN using direct access files. Just as

with POSIX shared files, each process must

calculate its own offset in the file. Figure 8

shows a simplified example of how to

implement a FORTRAN direct access file. At

time of publication, I am still refining this

code to improve performance, but the code

is functional. Similar to POSIX shared file,

each process must determine its file offset.

Unlike with the POSIX example, record size

must be provided at open time and each

write must be done in terms of record

numbers within the file. As with POSIX I/O,

one should try to write large, contiguous

records of data for best performance.

MPI-IO
The MPI2 standard includes an extension

for performing parallel I/O (MPI-IO). While

one may find implementing MPI-IO

operations somewhat confusing, this may

be an appropriate I/O library for

applications already implemented using

MPI for communication.

One particular area of confusion for MPI-IO

users is that operations may be handled

using an explicit file offset, individual file

pointers, or shared file pointers. The choice

of which of these methods does not appear

to affect I/O performance, so users should

choose whichever method fits best with

their code. Briefly, explicit offsets require a

file offset be provided at write or read time,

while individual pointers allow the offsets

to be set when a file is opened. Shared file

pointers are less ideal for parallel

applications, as they inherently serialize I/O

operations for applications that cannot pre-

calculate file offsets, leading to very poor

performance.

On the surface, MPI-IO does not appear to

be better than simply writing a shared file

via other means, but MPI-IO provides

several options behind the scenes in the

form of hints to improve on other methods.

Just as the name implies hints guide the

library to make better decisions about I/O

operations. One family of hints that prove

extremely useful at scale are those involved

in collective buffering.

Collective buffering is a behind-the-scenes

approach to aggregating I/O operations to a

subset of the total processors. One may

choose to write one of many different

subsetting approaches by hand, but MPI-IO

collective buffering provides an automatic

solution. The choice between MPI-IO

collective buffering and hand-coded

aggregation is one of simplicity versus

control. Users can enable collective

buffering by setting the cb_nodes hint,

which tells the library how many I/O

aggregators to use, and the

romio_cb_{read,write} hint to

enable. One may also choose to adjust the

size of the collective buffer on each

aggregator via the cb_buffer_size

CUG 2009 Proceedings 5 of 12

hint. It should be noted that as of XT-

MPT/3.1, collective buffering is used by

default with the number of aggregators set

to one per node. In very large jobs, users

may wish to adjust the value of cb_nodes

to fewer than the total compute nodes.

When adjusting the value of cb_nodes, it is

suggested that the value be divisible by the

stripe count of the file. Collective buffering

and subsetting may allow applications run

at large scales perform I/O closer to the

peak of the I/O scaling curve.

In (Pagel) the author shows results

comparing collective I/O versus direct POSIX

I/O. He also summarizes several new

enhancements to the Cray MPI-IO

implementation that can provide significant

benefits over other solutions.

For those unfamiliar with the MPI-IO

interface, Figure 9 shows sample MPI-IO

code for opening a shared file, setting a file

view, performing a collective write, and

closing the file. It is suggested that one use

collective versions of MPI-IO write and read

routines so to take advantage of the

collective buffering capabilities within the

library. Figure 9 is a very simple example

that will use the library defaults for hint.

The code will also be affected by the Cray-

specific, MPICH_MPIIO_HINTS environment

variable. If one would like to set the hints

directly within the code, Figure 10 gives an

example of how to do that.

HDF5 and NetCDF
The HDF5 and NetCDF libraries provide

additional metadata and functionality that

many users desire. Beginning with version

4.0, NetCDF is built over top of the HDF5

library, so I will focus primarily on HDF5 in

this section.

For many, the additional metadata and

portability provided by HDF5 makes using

the library desirable. HDF5 allows the user

to represent the data structures within the

code, rather than just the raw data. This

additional feature means that each

application uses HDF5 very differently,

making it difficult to build example kernels

for using HDF5 effectively. I can, however,

make the following observations about

using HDF5.

HDF5 may be built to support serial or

parallel I/O, which is layered over POSIX or

MPI-IO routines respectively. Use of serial

HDF5 to write or read large amounts of data

in a large parallel job simply does not make

sense and is analogous to any other serial

method. The performance of such I/O

operations will be fully limited by the

performance of the single client, unless

multiple files are used. Since the parallel

HDF5 interface is built on top of MPI-IO, the

same hints are available to users and the

same guidance applies. Users should

perform large I/O operations and explore

collective buffering options. Figure 3

(Crosby) shows results from IOR and

demonstrates that HDF5 is capable of I/O

rates comparable to other methods when

used efficiently. As stated previously, these

results carry the caveat that IOR is written

specifically to test I/O rates, so it may not

be representative of how a given

application may wish to use HDF5.

Multiple Shared Files
It should be clear from the previous

sections that both per-process and shared

CUG 2009 Proceedings 6 of 12

files both have scaling limitations. As

discussed, a single shared file is limited to

160 OSTs in the current version of lustre.

Using individual files per process solves this

limitation, but with additional metadata

overhead and inconvenience. Combining

both of these techniques by using multiple

shared files, via any of the APIs featured

above, may allow an application to mitigate

the limitations of both schemes. On a

filesystem consisting of greater than 160

OSTs, using multiple shared files would

allow an application to utilize more OSTs

without the metadata or convenience

issues of file-per-process. When exploiting

a multiple-shared-file technique, one

should look for existing groups within the

application, as the data within these groups

is likely related, so it will likely be

contiguous within a file.

Future Work
As I was completing work for this paper

some recent changes in the XT-MPT library

related to the performance of MPI-IO

collective buffering operations. These

changes are enabled using the

MPICH_CB_ALIGN environment variable. I

did not have sufficient time to investigate

the performance implications of this

environment variable, but intend to do so.

Preliminary results related to this feature

are available in (Pagel). I also intend to

further improve the FORTRAN direct I/O

example and implement a multiple shared

files example kernel.

The code written for this paper was

intended to be sharable and modifiable for

the education and use of the CUG

community. At the time of writing, this

code has not yet been made available, but it

is my intention to make the source code

available. When it has been made

available, a link will be posted at

http://users.nccs.gov/~larkin/.

About the Author
Jeff Larkin is a member of the Cray

Supercomputing Center of Excellence

located at Oak Ridge National Laboratory.

He has Bachelor and Master of Science

degrees in Computer Science and has

worked for Cray since 2005. His specialties

include performance analysis and

optimization, application porting

debugging, and scaling, and I/O issues. He

can be contacted via email at

larkin@cray.com.

References
Crosby, Lonnie. "Performance

Characteristics of the Lustre File System on

the Cray XT5 with Regard to Application I/O

Patterns." Cray User Group. Atlanta, GA,

2009.

Pagel, Mark. "Scaling the MPT Software on

the XT5 and Other New Features." Cray

Users Group. Atlanta, GA, 2009.

Shipman, Galen. "Introduction to Lustre and

NCCS Spider Parallel File Systems for XT5."

2009. <http://www.nccs.gov/wp-

content/training/2009_crayxt_workshop/ap

r15/GalenShipman.pdf>.

mailto:larkin@cray.com

CUG 2009 Proceedings 7 of 12

Figures and Charts

Figure 1 IOR File Per Process Baseline

#include <unistd.h>

#include <fcntl.h>

#include <sys/ioctl.h>

#include <lustre/lustre_user.h>

int open_striped(

 char *filename,

 int mode,

 int stripe_size,

 int stripe_offset,

 int stripe_count)

{

 int fd;

 struct lov_user_md opts = {0};

 opts.lmm_magic = LOV_USER_MAGIC;

 opts.lmm_stripe_size = stripe_size;

 opts.lmm_stripe_offset = stripe_offset;

 opts.lmm_stripe_count = stripe_count;

 /*

 ** Use O_LOV_DELAY_CREATE to delay file creation until

 ** after LL_IO_LOV_SETSTRIPE is used to set striping

 */

 fd = open64(filename, O_CREAT | O_EXCL |

 O_LOV_DELAY_CREATE | mode, 0644);

 if (fd >= 0) ioctl(fd, LL_IOC_LOV_SETSTRIPE, &opts);

 return fd;

}

Figure 2 Setting Lustre Striping Programatically

CUG 2009 Proceedings 8 of 12

Figure 3 Shared File Write Performance Comparisons

Figure 4 Single File parallel write performance: Default Striping vs. Wide Striping

0

1000

2000

3000

4000

5000

6000

7000

8000

0 2000 4000 6000 8000 10000

W
ri

te
 (

M
B

/s
)

Proccesses

Single Shared File
Write Perfomance

POSIX MPIIO

HDF5

CUG 2009 Proceedings 9 of 12

Figure 5 POSIX shared file with and without page-aligned buffers.

Figure 6 Comparison of file open time for file-per-process and single shared file.

CUG 2009 Proceedings 10 of 12

fd = open64("test.dat", mode, 0644);

/* Seek to start place for rank */

ierr64 = lseek64(fd, commrank*iosize, SEEK_SET);

remaining = iosize;

/* Write by buffers to the file */

while (remaining > 0)

{

 i = (remaining < buffersize) ?

 remaining : buffersize;

 /* Copy from data to buffer */

 memcpy(tmpbuf, dbuf, i);

 ierr = write(fd, tmpbuf, i);

 if (ierr >= 0) {

 remaining -= ierr;

 dbuf += ierr;

 } else

 {

 MPI_Abort(MPI_COMM_WORLD, ierr);

 }

}

close(fd);

Figure 7 Simplified POSIX Shared File code example

! Establish Sizes

reclength = 8*1024*1024

iosize = reclength * 10

! Starting Record For Rank

recnum = (iosize * myrank)/reclength

recs = iosize/8

numwords = recs/10

open(fid, file='output/test.dat',

 status='replace', form='unformatted',

 access='direct', recl=reclength,

 iostat=ierr)

! Write a record at a time to the file

do i=1,recs,numwords

 write(fid, rec=recnum, iostat=ierr)

 writebuf(i:i+numwords-1)

 recnum = recnum + 1

end do

close(fid)

Figure 8 Simplified FORTRAN shared direct-access file code example

CUG 2009 Proceedings 11 of 12

int mode;

MPI_File fh;

MPI_Status status;

/* Open the file */

mode = MPI_MODE_CREATE|MPI_MODE_RDWR;

MPI_File_open(comm, "output/test.dat", mode, info, &fh);

/* Set the view of the file */

MPI_File_set_view(fh, commrank*iosize, MPI_DOUBLE,

 MPI_DOUBLE, "native", MPI_INFO_NULL);

/* Perform collective write from all. */

MPI_File_write_all(fh, dbuf, iosize/sizeof(double),

 MPI_DOUBLE, &status);

/* Close the file */

MPI_File_close(&fh);

Figure 9 Performing MPI-IO collective write.

char tmps[24];

MPI_Info info;

MPI_Info_create(&info);

/* Adjust buffer size */

snprintf(tmps,24, "%d",buffersize);

MPI_Info_set(info, "cb_buffer_size", tmps);

/* Adjust number of I/O aggregators */

snprintf(tmps,24,"%d",numagg);

MPI_Info_set(info, "cb_nodes", tmps);

/* Enable collective writing */

MPI_Info_set(info, "romio_cb_write", "enable");

/* Open the file */

MPI_File_open(comm, "output/test.dat", mode, info, &fh);

Figure 10 Setting MPI-IO hints

CUG 2009 Proceedings 12 of 12

double *tmpbuf;

int mode, fd, remaining, ierr;

char tmps[24];

snprintf(tmps,24,"test%05d.dat", commrank);

fd = open_striped(tmps, mode, 0, -1, 1);

remaining = iosize;

while (remaining > 0)

{

 i = (remaining < buffersize) ? remaining : buffersize;

 memcpy(tmpbuf, dbuf, i);

 ierr = write(fd, tmpbuf, i);

 if (ierr >= 0) {

 remaining -= ierr;

 dbuf += ierr;

 } else

 {

 fprintf(stderr, "[%d] write: %s\n", commrank,

strerror(errno));

 MPI_Abort(MPI_COMM_WORLD, ierr);

 }

}

close(fd);

Figure 11 POSIX File-per-process write

