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ABSTRACT: The purpose of this paper is to provide practical examples on how to perform 

efficient I/O at scale on Cray XT systems.  Although this paper will provide some data from 

recognized benchmarks, it will focus primarily on providing actual code excerpts as specific 

examples of how to write efficient I/O into an HPC application.  This will include explanations of 

what the example code does and why it is necessary or useful.  This paper is intended to 

educate by example how to perform application checkpointing in an efficient manner at scale.   
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Motivation 
Over the past few years I have presented on 

the subject of application I/O at several 

Cray customer sites and at the Cray Users 

Group meeting.  In each of these 

presentations I have shown data collected 

from I/O micro-benchmarks and interpreted 

at a high level in regards to application 

performance.  Often the audience of these 

presentations lacks experience writing 

effective I/O code and, therefore, resorts to 

simpler, less effective methods.  The 

purpose of this paper is to provide 

examples of I/O code that can be effectively 

used on Cray XT systems as a supplement to 

the previously mentioned, higher level 

presentations. 

It should be noted that benchmarking I/O is 

extremely difficult.  Because I/O operations 

make use of two shared resources, the 

network and the filesystem, I/O operations 

are probably the most difficult to accurately 

measure and predict.  The fact that each 

application has different needs and I/O 

implementations also makes it difficult to 

accurately predict how well an application’s 

I/O will perform in relation to I/O 

benchmarks.  I/O benchmarks and kernels, 

like the ones used in this paper, are written 

with I/O in mind, while applications are 

written with their calculations in mind.  

Readers should not assume that their 

application will perform like an I/O kernel, 

but rather apply the ideas from these 

benchmarks and kernels to improve the I/O 

operations of their applications. 

Example I/O Data 
Before discussing I/O code examples, it is 

useful to establish a baseline for I/O 

performance comparisons.  The IOR 

benchmark is very commonly used for 

establishing a high water mark for 

filesystem performance.  In many ways, IOR 

does everything right to maximize I/O 

performance, so it is often the basis for 
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filesystem comparisons.  The graphs in 

Figure 1 (Crosby) (Shipman) show IOR File 

Per Process performance on two separate 

large Cray XT5 systems.  Since filesystem 

performance varies greatly from machine to 

machine and even between filesystems on 

the same machine, we will ignore the exact 

I/O rates of these graphs and instead 

concentrate on the shape of the graphs.  It 

should be noted that these two graphs do 

not include open times, which scales 

particularly poorly with file-per-process 

operations and would be included in the 

time necessary to checkpoint an 

application. 

The most striking note about the above 

graphs is the consistent shape, where 

performance increases rapidly as clients are 

added up to a certain threshold, after which 

performance degrades to a low asymptotic 

value.  This should illustrate that below 

some threshold a program can utilize 

simplistic I/O techniques and achieve 

reasonable I/O performance, but as 

programs scale to many thousands of 

processors they will need to intelligently 

scale their I/O.  Intelligently scaling 

application I/O may include using I/O 

aggregators, multiple shared files, or other 

techniques that computational scientists 

may lack the skills to implement.  The 

sections below will demonstrate these 

techniques and explain their benefits and 

limitations. 

Striping and Data Alignment 
Before discussing different I/O methods, I 

feel it is important to discuss two simple, 

and commonly over-looked, ways of 

improving I/O performance: adjusting stripe 

count and stripe size.  Because Lustre is a 

parallel filesystem, it is critical to exploit 

lustre striping intelligently.  Default striping 

values may differ from filesystem to 

filesystem, but it is unlikely to be the best 

values for your application.  The default 

stripe count for a lustre filesystem is 

commonly configured to 4, which is safer 

than 1 or all and performs better for serial 

operations than either, but is not ideal for 

most parallel jobs.  At a high-level, large 

shared files generally need a large stripe 

count in order to perform optimally and 

files written on a per-process basis 

generally require a small stripe count.  

Simply changing lustre striping from the 

default value will often have a significant 

effect on the performance of parallel I/O 

operations.  Figure 4 shows the difference 

in performance writing from just 1440 

processor to a shared file when striped to 

the default count (4) and widest stripe 

(144). 

The simplest way to change striping is via 

the lfs command, but setting the striping 

programmatically is an often-requested 

feature.  Unfortunately the Lustre 

filesystem does not include a simple user 

API, but the code in Figure 2 demonstrates 

one way to set the striping of a new file1 

from within an application.  This code 

should only be executed from one 

processor to avoid overwhelming the 

metadata server.  Since version 3.2.0 of the 

xt-mpt library, users may also set the 

striping for MPI-IO files via the 

striping_factor and 

striping_unit hints. 

                                                             
1  Lustre striping cannot be changed on an 
existing file. 
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It is also important for users to realize that 

adjusting the size of lustre stripes may 

affect the performance of I/O operations.  

As one would expect, larger stripe sizes 

often perform better than smaller, although 

increasing stripe size too much can 

negatively affect performance.  Users 

should also be careful to ensure that 

multiple writers do not write to the same 

stripe.  The simplest way to avoid this 

misalignment is to ensure that the size of 

I/O buffers is a multiple of the lustre stripe 

size.  Additionally, lustre appears to prefer 

I/O operations on power of 2 data buffers.  

In addition to properly striping files, 

properly aligning data along page 

boundaries can have a noticeable effect on 

I/O performance.  Figure 5 shows the 

results of the same benchmark code 

running with and without page-aligned 

buffers.  In general, page-aligning I/O 

buffers made operations no worse and 

often improved bandwidth by varying 

amounts.  Data alignment in C/C++ can be 

achieved via the posix_memalign 

command and in FORTRAN by over-

allocating an array and using the loc 

function to find the start of a new page. 

POSIX File-per-process 
Writing individual files from each processor 

is likely the simplest I/O method to 

implement and is among the most 

commonly used methods.  When evaluating 

peak filesystem performance, this method 

generally has the best peak performance, 

but has numerous pitfalls at scale, including 

high stress on the metadata server and user 

inconvenience from file count.  One 

significant benefit to this method is that it 

easily allows more OSTs to be used on 

filesystems with greater than 160 OSTs 

available2. 

As noted, FPP I/O operations are very 

stressful on the Lustre metadata server 

(MDS).  Figure 6 shows the cost of opening 

a file from every processor versus opening a 

single, shared file.  Notice that open time 

increases with processor count when using 

either technique, but much worse with file-

per-process.  Since a single checkpoint 

operation will almost certainly include 

opening one or more files, the poor scaling 

behavior or open operations should not be 

disregarded.  Figure 11 gives a simplified 

example of how to perform a buffered, 

POSIX FPP write. 

POSIX Shared Files 
Using a single, shared file among all 

processes addresses some, but not all of the 

limitations of file-per-process.  While using 

a single file may be more convenient for the 

user, it does not completely eliminate MDS 

load or reduce the number of clients 

simultaneously writing to the OSTs.  Figure 

6 compares open times when using POSIX 

FPP or POSIX shared file.  Using a shared file 

generally performs slightly worse than 

individual files, but this may be a 

worthwhile trade-off for user convenience.  

Implementing a shared file in C using POSIX 

I/O functions is fairly straightforward, but 

does require each processor to calculate its 

own offset in the file.  In applications with 

uniform I/O for each processor, this step is 

trivial, but it may be more difficult when 

each processor must write a different 

                                                             
2 Lustre currently restricts the number of OSTs 
for a given file to 160 



 

CUG 2009 Proceedings 4 of 12 

amount of data.  Figure 7 shows a simplified 

example of how to implement a POSIX 

shared file between all processes.   Each 

process will open the same file, calculate 

and seek to its portion of the file, write, and 

then close.  One may wish to use 

open_striped from Figure 2 on one 

process before opening from the remaining 

processes. 

FORTRAN Direct I/O 
Shared file I/O may also be implemented in 

FORTRAN using direct access files.  Just as 

with POSIX shared files, each process must 

calculate its own offset in the file.  Figure 8 

shows a simplified example of how to 

implement a FORTRAN direct access file.  At 

time of publication, I am still refining this 

code to improve performance, but the code 

is functional.  Similar to POSIX shared file, 

each process must determine its file offset.  

Unlike with the POSIX example, record size 

must be provided at open time and each 

write must be done in terms of record 

numbers within the file.  As with POSIX I/O, 

one should try to write large, contiguous 

records of data for best performance. 

MPI-IO 
The MPI2 standard includes an extension 

for performing parallel I/O (MPI-IO).  While 

one may find implementing MPI-IO 

operations somewhat confusing, this may 

be an appropriate I/O library for 

applications already implemented using 

MPI for communication.   

One particular area of confusion for MPI-IO 

users is that operations may be handled 

using an explicit file offset, individual file 

pointers, or shared file pointers.  The choice 

of which of these methods does not appear 

to affect I/O performance, so users should 

choose whichever method fits best with 

their code.  Briefly, explicit offsets require a 

file offset be provided at write or read time, 

while individual pointers allow the offsets 

to be set when a file is opened.  Shared file 

pointers are less ideal for parallel 

applications, as they inherently serialize I/O 

operations for applications that cannot pre-

calculate file offsets, leading to very poor 

performance. 

On the surface, MPI-IO does not appear to 

be better than simply writing a shared file 

via other means, but MPI-IO provides 

several options behind the scenes in the 

form of hints to improve on other methods.  

Just as the name implies hints guide the 

library to make better decisions about I/O 

operations.  One family of hints that prove 

extremely useful at scale are those involved 

in collective buffering. 

Collective buffering is a behind-the-scenes 

approach to aggregating I/O operations to a 

subset of the total processors.  One may 

choose to write one of many different 

subsetting approaches by hand, but MPI-IO 

collective buffering provides an automatic 

solution.  The choice between MPI-IO 

collective buffering and hand-coded 

aggregation is one of simplicity versus 

control.  Users can enable collective 

buffering by setting the cb_nodes hint, 

which tells the library how many I/O 

aggregators to use, and the 

romio_cb_{read,write} hint to 

enable.  One may also choose to adjust the 

size of the collective buffer on each 

aggregator via the cb_buffer_size 
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hint.  It should be noted that as of XT-

MPT/3.1, collective buffering is used by 

default with the number of aggregators set 

to one per node.  In very large jobs, users 

may wish to adjust the value of cb_nodes 

to fewer than the total compute nodes.  

When adjusting the value of cb_nodes, it is 

suggested that the value be divisible by the 

stripe count of the file.  Collective buffering 

and subsetting may allow applications run 

at large scales perform I/O closer to the 

peak of the I/O scaling curve. 

In (Pagel) the author shows results 

comparing collective I/O versus direct POSIX 

I/O.  He also summarizes several new 

enhancements to the Cray MPI-IO 

implementation that can provide significant 

benefits over other solutions. 

For those unfamiliar with the MPI-IO 

interface, Figure 9 shows sample MPI-IO 

code for opening a shared file, setting a file 

view, performing a collective write, and 

closing the file.  It is suggested that one use 

collective versions of MPI-IO write and read 

routines so to take advantage of the 

collective buffering capabilities within the 

library.  Figure 9 is a very simple example 

that will use the library defaults for hint.  

The code will also be affected by the Cray-

specific, MPICH_MPIIO_HINTS environment 

variable.  If one would like to set the hints 

directly within the code, Figure 10 gives an 

example of how to do that. 

HDF5 and NetCDF 
The HDF5 and NetCDF libraries provide 

additional metadata and functionality that 

many users desire.  Beginning with version 

4.0, NetCDF is built over top of the HDF5 

library, so I will focus primarily on HDF5 in 

this section.  

For many, the additional metadata and 

portability provided by HDF5 makes using 

the library desirable.  HDF5 allows the user 

to represent the data structures within the 

code, rather than just the raw data.  This 

additional feature means that each 

application uses HDF5 very differently, 

making it difficult to build example kernels 

for using HDF5 effectively.  I can, however, 

make the following observations about 

using HDF5. 

HDF5 may be built to support serial or 

parallel I/O, which is layered over POSIX or 

MPI-IO routines respectively.  Use of serial 

HDF5 to write or read large amounts of data 

in a large parallel job simply does not make 

sense and is analogous to any other serial 

method.  The performance of such I/O 

operations will be fully limited by the 

performance of the single client, unless 

multiple files are used.  Since the parallel 

HDF5 interface is built on top of MPI-IO, the 

same hints are available to users and the 

same guidance applies.  Users should 

perform large I/O operations and explore 

collective buffering options.  Figure 3 

(Crosby) shows results from IOR and 

demonstrates that HDF5 is capable of I/O 

rates comparable to other methods when 

used efficiently.  As stated previously, these 

results carry the caveat that IOR is written 

specifically to test I/O rates, so it may not 

be representative of how a given 

application may wish to use HDF5. 

Multiple Shared Files 
It should be clear from the previous 

sections that both per-process and shared 
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files both have scaling limitations.  As 

discussed, a single shared file is limited to 

160 OSTs in the current version of lustre.  

Using individual files per process solves this 

limitation, but with additional metadata 

overhead and inconvenience.  Combining 

both of these techniques by using multiple 

shared files, via any of the APIs featured 

above, may allow an application to mitigate 

the limitations of both schemes.  On a 

filesystem consisting of greater than 160 

OSTs, using multiple shared files would 

allow an application to utilize more OSTs 

without the metadata or convenience 

issues of file-per-process.  When exploiting 

a multiple-shared-file technique, one 

should look for existing groups within the 

application, as the data within these groups 

is likely related, so it will likely be 

contiguous within a file.    

Future Work 
As I was completing work for this paper 

some recent changes in the XT-MPT library 

related to the performance of MPI-IO 

collective buffering operations.  These 

changes are enabled using the 

MPICH_CB_ALIGN environment variable.  I 

did not have sufficient time to investigate 

the performance implications of this 

environment variable, but intend to do so.  

Preliminary results related to this feature 

are available in (Pagel).  I also intend to 

further improve the FORTRAN direct I/O 

example and implement a multiple shared 

files example kernel. 

The code written for this paper was 

intended to be sharable and modifiable for 

the education and use of the CUG 

community.  At the time of writing, this 

code has not yet been made available, but it 

is my intention to make the source code 

available.  When it has been made 

available, a link will be posted at 

http://users.nccs.gov/~larkin/. 
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Figures and Charts 

  

Figure 1 IOR File Per Process Baseline 

#include <unistd.h> 

#include <fcntl.h> 

#include <sys/ioctl.h> 

#include <lustre/lustre_user.h> 

 

int open_striped( 

    char *filename, 

    int  mode, 

    int  stripe_size, 

    int  stripe_offset, 

    int  stripe_count) 

{ 

  int fd; 

  struct lov_user_md opts = {0}; 

  opts.lmm_magic = LOV_USER_MAGIC; 

  opts.lmm_stripe_size = stripe_size; 

  opts.lmm_stripe_offset = stripe_offset; 

  opts.lmm_stripe_count = stripe_count; 

 

  /*  

  ** Use O_LOV_DELAY_CREATE to delay file creation until  

  ** after LL_IO_LOV_SETSTRIPE is used to set striping 

  */ 

  fd = open64(filename, O_CREAT | O_EXCL |  

              O_LOV_DELAY_CREATE | mode, 0644); 

  if ( fd >= 0 ) ioctl(fd, LL_IOC_LOV_SETSTRIPE, &opts); 

 

  return fd; 

} 

Figure 2 Setting Lustre Striping Programatically 
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Figure 3 Shared File Write Performance Comparisons 

 

Figure 4 Single File parallel write performance: Default Striping vs. Wide Striping 
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Figure 5 POSIX shared file with and without page-aligned buffers. 

 

Figure 6 Comparison of file open time for file-per-process and single shared file. 
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fd = open64("test.dat", mode, 0644); 

/* Seek to start place for rank */ 

ierr64 = lseek64(fd, commrank*iosize, SEEK_SET); 

remaining = iosize; 

/* Write by buffers to the file */ 

while (remaining > 0) 

{ 

  i = (remaining < buffersize ) ? 

      remaining : buffersize; 

  /* Copy from data to buffer */ 

  memcpy(tmpbuf, dbuf, i); 

  ierr = write(fd, tmpbuf, i); 

  if (ierr >= 0) { 

    remaining -= ierr; 

    dbuf += ierr; 

  } else 

  { 

    MPI_Abort(MPI_COMM_WORLD, ierr); 

  } 

} 

close(fd);  

 

Figure 7 Simplified POSIX Shared File code example 

! Establish Sizes 

reclength = 8*1024*1024 

iosize = reclength * 10 

! Starting Record For Rank 

recnum = (iosize * myrank)/reclength  

recs = iosize/8 

numwords = recs/10 

open(fid, file='output/test.dat',  

   status='replace', form='unformatted', 

   access='direct', recl=reclength,  

   iostat=ierr) 

! Write a record at a time to the file 

do i=1,recs,numwords 

  write(fid, rec=recnum, iostat=ierr) 

    writebuf(i:i+numwords-1) 

    recnum = recnum + 1 

end do 

close(fid)  

 

Figure 8 Simplified FORTRAN shared direct-access file code example 
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int mode; 

MPI_File fh; 

MPI_Status status;  

  

/* Open the file */ 

mode = MPI_MODE_CREATE|MPI_MODE_RDWR; 

MPI_File_open(comm, "output/test.dat", mode, info, &fh); 

  

/* Set the view of the file */ 

MPI_File_set_view(fh, commrank*iosize, MPI_DOUBLE,  

  MPI_DOUBLE, "native", MPI_INFO_NULL); 

 

/* Perform collective write from all. */ 

MPI_File_write_all(fh, dbuf, iosize/sizeof(double),    

  MPI_DOUBLE, &status); 

  

/* Close the file */ 

MPI_File_close(&fh); 

 

Figure 9 Performing MPI-IO collective write. 

char tmps[24]; 

MPI_Info info; 

   

MPI_Info_create(&info); 

 

/* Adjust buffer size */ 

snprintf(tmps,24, "%d",buffersize); 

MPI_Info_set(info, "cb_buffer_size", tmps); 

 

/* Adjust number of I/O aggregators */ 

snprintf(tmps,24,"%d",numagg); 

MPI_Info_set(info, "cb_nodes", tmps); 

 

/* Enable collective writing */ 

MPI_Info_set(info, "romio_cb_write", "enable"); 

 

/* Open the file */ 

MPI_File_open(comm, "output/test.dat", mode, info, &fh); 

Figure 10 Setting MPI-IO hints 
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double *tmpbuf; 

int mode, fd, remaining, ierr; 

char tmps[24]; 

 

snprintf(tmps,24,"test%05d.dat", commrank); 

fd = open_striped(tmps, mode, 0, -1, 1); 

remaining = iosize; 

while (remaining > 0) 

{ 

  i = (remaining < buffersize ) ? remaining : buffersize; 

  memcpy(tmpbuf, dbuf, i); 

  ierr = write(fd, tmpbuf, i); 

  if (ierr >= 0) { 

    remaining -= ierr; 

    dbuf += ierr; 

  } else 

  { 

    fprintf(stderr, "[%d] write: %s\n", commrank, 

strerror(errno)); 

    MPI_Abort(MPI_COMM_WORLD, ierr); 

  } 

} 

close(fd); 

Figure 11 POSIX File-per-process write 


